首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
OBJECTIVE: To determine the disposition of a bolus of meloxicam (administered IV) in horses and donkeys (Equus asinus) and compare the relative pharmacokinetic variables between the species. ANIMALS: 5 clinically normal horses and 5 clinically normal donkeys. PROCEDURES: Blood samples were collected before and after IV administration of a bolus of meloxicam (0.6 mg/kg). Serum meloxicam concentrations were determined in triplicate via high-performance liquid chromatography. The serum concentration-time curve for each horse and donkey was analyzed separately to estimate standard noncompartmental pharmacokinetic variables. RESULTS: In horses and donkeys, mean +/- SD area under the curve was 18.8 +/- 7.31 microg/mL/h and 4.6 +/- 2.55 microg/mL/h, respectively; mean residence time (MRT) was 9.6 +/- 9.24 hours and 0.6 +/- 0.36 hours, respectively. Total body clearance (CL(T)) was 34.7 +/- 9.21 mL/kg/h in horses and 187.9 +/- 147.26 mL/kg/h in donkeys. Volume of distribution at steady state (VD(SS)) was 270 +/- 160.5 mL/kg in horses and 93.2 +/- 33.74 mL/kg in donkeys. All values, except VD(SS), were significantly different between donkeys and horses. CONCLUSIONS AND CLINICAL RELEVANCE: The small VD(SS) of meloxicam in horses and donkeys (attributed to high protein binding) was similar to values determined for other nonsteroidal anti-inflammatory drugs. Compared with other species, horses had a much shorter MRT and greater CL(T) for meloxicam, indicating a rapid elimination of the drug from plasma; the even shorter MRT and greater CL(T) of meloxicam in donkeys, compared with horses, may make the use of the drug in this species impractical.  相似文献   

2.
OBJECTIVE: To compare serum disposition of sulfamethoxazole and trimethoprim after IV administration to donkeys, mules, and horses. ANIMALS: 5 donkeys, 5 mules, and 3 horses. PROCEDURE: Blood samples were collected before (time 0) and 5, 15, 30, and 45 minutes and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, and 24 hours after IV administration of sulfamethoxazole (12.5 mg/kg) and trimethoprim (2.5 mg/kg). Serum was analyzed in triplicate with high-performance liquid chromatography for determination of sulfamethoxazole and trimethoprim concentrations. Serum concentration-time curve for each animal was analyzed separately to estimate noncompartmental pharmacokinetic variables. RESULTS: Clearance of trimethoprim and sulfamethoxazole in donkeys was significantly faster than in mules or horses. In donkeys, mean residence time (MRT) of sulfamethoxazole (2.5 hours) was less than half the MRT in mules (6.2 hours); MRT of trimethoprim in donkeys (0.8 hours) was half that in horses (1.5 hours). Volume of distribution at steady state (Vdss) for sulfamethoxazole did not differ, but Vdss of trimethoprim was significantly greater in horses than mules or donkeys. Area under the curve for sulfamethoxazole and trimethoprim was higher in mules than in horses or donkeys. CONCLUSIONS AND CLINICAL RELEVANCE: Dosing intervals for IV administration of trimethoprim-sulfamethoxazole in horses may not be appropriate for use in donkeys or mules. Donkeys eliminate the drugs rapidly, compared with horses. Ratios of trimethoprim and sulfamethoxazole optimum for antibacterial activity are maintained for only a short duration in horses, donkeys, and mules.  相似文献   

3.
The effect of flunixin meglumine on renal function was studied in 6 healthy horses by use of nonimaging nuclear medicine techniques. Effective renal plasma flow (ERPF) and effective renal blood flow (ERBF) were determined by plasma clearance of 131I-orthoiodohippuric acid before and after administration of flunixin meglumine. Mean ERPF and ERBF was 6.03 ml/min/kg and 10.7 ml/min/kg, respectively, before treatment and was 5.7 ml/min/kg and 9.7 ml/min/kg, respectively, after treatment. Although ERPF and ERBF decreased after flunixin meglumine administration, the difference was not statistically significant.  相似文献   

4.
The pharmacokinetics of flunixin meglumine was determined after its multiple (altogether 4 doses at 24-hours intervals) intravenous administration at a dose of 2.2 mg/kg body weight in six mature clinically healthy heifers. Plasma flunixin and its metabolite 5-hydroxyflunixin concentrations were analyzed with high-pressure liquid chromatography using an assay with a lower limit detection of 0.03 microg/ml for both substances. Plasma concentrations versus time curves were described by a two compartment open model. Mean plasma flunixin concentrations were similar on day 1 and 4, and than rapidly decreased (within 2 hours) from initial concentrations higher than 10 microg/ml to the concentrations lower than 1 microg/ml. The distribution phase of flunixin was short (t0.5 alpha = 0.29 +/- 0.16 and 0.18 +/- 0.04 on day 1 and 4, respectively) and the elimination phase was more prolonged (t0.5 beta = 3.30 +/- 0.60 and 3.26 +/- 0.22 on day 1 and 4, respectively). The mean residence time of flunixin was similar on day 1 (1.83 +/- 0.83) and 4 (1.88 +/- 0.46), and for 5-hydroxyflunixin this parameter was insignificantly (P > 0.05) higher on day 1 (5.49 +/- 2.22) as compared to that found on day 4 (3.99 +/- 2.17). The clearance of flunixin was similar on both examined days (0.23 +/- 0.12 on day 1 and 0.31 +/- 0.15 on day 4), and for 5-hydroxyflunixin was insignificantly (P > 0.05) lower on day 1 (2.37 +/- 1.21) as compared to that determined on day 4 (3.23 +/- 1.06). Our data indicate that multiple administration of flunixin did not alter significantly the parent drug and its metabolite concentrations in plasma, however may cause some small changes in pharmacokinetic parameters.  相似文献   

5.
An injectable preparation of flunixin meglumine was administered orally and intravenously at a dose of 1.1 mg/kg to six healthy adult horses in a cross-over design. Flunixin meglumine was detected in plasma within 15 min of administration and peak plasma concentrations were observed 45-60 min after oral administration. Mean bioavailability of the oral drug was 71.9 +/- 26.0%, with an absorption half-life of 0.76 h. The apparent elimination half-life after oral administration was 2.4 h. The injectable preparation of flunixin meglumine is suitable for oral administration to horses.  相似文献   

6.
OBJECTIVE: To compare plasma disposition of the R(-) and S(+) enantiomers of carprofen after IV administration of a bolus dose to donkeys and horses. ANIMALS: 5 clinically normal donkeys and 3 clinically normal horses. PROCEDURE: Blood samples were collected from all animals at time 0 (before) and at 10, 15, 20, 30, and 45 minutes and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 24, 28, 32, and 48 hours after IV administration of a bolus of carprofen (0.7 mg/kg). Plasma was analyzed in triplicate via high-performance liquid chromatography to determine the concentrations of the carprofen enantiomers. A plasma concentrationtime curve for each donkey and horse was analyzed separately to estimate noncompartmental pharmacokinetic variables. RESULTS: In donkeys and horses, the area under the plasma concentration versus time curve (AUC) was greater for the R(-) carprofen enantiomer than it was for the S(+) carprofen enantiomer. For the R(-) carprofen enantiomer, the AUC and mean residence time (MRT) were significantly less and total body clearance (CIT) was significantly greater in horses, compared with donkeys. For the S(+) carprofen enantiomer, AUC and MRT were significantly less and CIT and apparent volume of distribution at steady state were significantly greater in horses, compared with donkeys. CONCLUSIONS AND CLINICAL RELEVANCE: Results have suggested that the dosing intervals for carprofen that are used in horses may not be appropriate for use in donkeys.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Absorption of endotoxin across ischaemic-injured mucosa is a major cause of mortality after colic surgery. Recent studies have shown that flunixin meglumine retards mucosal repair. Systemic lidocaine has been used to treat post operative ileus, but it also has novel anti-inflammatory effects that could improve mucosal recovery after ischaemic injury. HYPOTHESIS: Systemic lidocaine ameliorates the deleterious negative effects of flunixin meglumine on recovery of mucosal barrier function. METHODS: Horses were treated i.v. immediately before anaesthesia with either 0.9% saline 1 ml/50 kg bwt, flunixin meglumine 1 mg/kg bwt every 12 h or lidocaine 1.3 mg/kg bwt loading dose followed by 0.05 mg/kg bwt/min constant rate infusion, or both flunixin meglumine and lidocaine, with 6 horses allocated randomly to each group. Two sections of jejunum were subjected to 2 h of ischaemia by temporary occlusion of the local blood supply, via a midline celiotomy. Horses were monitored with a behavioural pain score and were subjected to euthanasia 18 h after reversal of ischaemia. Ischaemic-injured and control jejunum was mounted in Ussing chambers for measurement of transepithelial electrical resistance (TER) and permeability to lipopolysaccharide (LPS). RESULTS: In ischaemic-injured jejunum TER was significantly higher in horses treated with saline, lidocaine or lidocaine and flunixin meglumine combined, compared to horses treated with flunixin meglumine. In ischaemic-injured jejunum LPS permeability was significantly increased in horses treated with flunixin meglumine alone. Behavioural pain scores did not increase significantly after surgery in horses treated with flunixin meglumine. CONCLUSIONS: Treatment with systemic lidocaine ameliorated the inhibitory effects of flunixin meglumine on recovery of the mucosal barrier from ischaemic injury, when the 2 treatments were combined. The mechanism of lidocaine in improving mucosal repair has not yet been elucidated.  相似文献   

8.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

9.
Two cyclooxygenase inhibitors (flunixin meglumine and phenylbutazone) and a selective thromboxane synthetase inhibitor were assessed in the management of experimental equine endotoxemia. Drugs or saline solution were administered to 16 horses 15 minutes before administration of a sublethal dose of endotoxin (Escherichia coli 055:B5). Plasma concentrations of thromboxane B2 (TxB2), prostacyclin (6-keto PGF1 alpha), plasma lactate, and hematologic values and clinical appearance were monitored for 3 hours after endotoxin administration. Pretreatment with flunixin meglumine (1 mg/kg of body weight) prevented most of the endotoxin-induced changes and correlated with a significant decrease in plasma TxB2 and 6-keto PGF1 alpha concentrations, compared with concentrations in nontreated horses (ie, pretreated with saline solution). Pretreatment with phenylbutazone (2 mg/kg) attenuated the effects of endotoxin and was associated with a brief, early, significant increase in plasma TxB2 concentrations, but not in plasma 6-keto PGF1 alpha concentrations. Pretreatment with the thromboxane synthetase inhibitor did not appear to clinically benefit the horses involved; however, arachidonic acid metabolism was redirected to prostacyclin production.  相似文献   

10.
OBJECTIVE: To determine effects of reactive oxygen metabolites (ROMs), with and without flunixin meglumine, on equine right ventral colon (RVC) in vitro. ANIMALS: 18 healthy horses and ponies. PROCEDURES: In 3 groups of 6 animals each, short-circuit current and conductance were measured in RVC mucosa in Ussing chambers. The 3 groups received physiologic saline (0.9% NaCl) solution, IV, 10 minutes before euthanasia and tissue incubation in Krebs-Ringer-bicarbonate (KRB) solution; flunixin meglumine (1.1 mg/kg, IV) 10 minutes before euthanasia and tissue incubation in KRB solution; or physiologic saline solution, IV, 10 minutes before euthanasia and incubation in KRB solution with 2.7 x 10(5)M flunixin meglumine. Incubation conditions included control (no addition) and ROM systems, including addition of 1 mM xanthine and 80 mU of xanthine oxidase (to produce the superoxide radical), 1 mM H(2)O(2), and 1 mM H(2)O(2) and 0.5 mM ferrous sulfate (to produce the hydroxyl radical). RESULTS: All ROMs that were added or generated significantly increased the short-circuit current except in tissues coincubated with flunixin meglumine, and they induced mild epithelial vacuolation and apoptosis, but did not disrupt the epithelium nor change conductance, lactate dehydrogenase release, or [(3)H]mannitol flux. CONCLUSIONS AND CLINICAL RELEVANCE: Responses to ROMs could be attributed to increased chloride secretion and inhibited neutral NaCl absorption in equine RVC, possibly by stimulating prostaglandin production. The ROMs examined under conditions of this study could play a role in prostaglandin-mediated colonic secretion in horses with enterocolitis without causing direct mucosal injury.  相似文献   

11.
A randomized, controlled, blinded clinical trial was performed to determine whether butorphanol administered by continuous rate infusion (CRI) for 24 hours after abdominal surgery would decrease pain and surgical stress responses and improve recovery in horses. Thirty-one horses undergoing exploratory celiotomy for abdominal pain were randomly assigned to receive butorphanol CRI (13 microg/kg/h for 24 hours after surgery; treatment) or isotonic saline (control). All horses received flunixin meglumine (1.1 mg/kg IV q12h). There were no significant differences between treatment and control horses in preoperative or operative variables. Treatment horses had significantly lower plasma cortisol concentration compared with control horses at 2, 8, 12, 24, 36, and 48 hours after surgery. Mean weight loss while hospitalized was significantly less for treatment horses than control horses, whether expressed as total decrease in body weight (13.9+/-3.4 and 27.9+/-4.5 kg, respectively) or as a percentage decrease in body weight (2.6+/-0.7 and 6.3+/-1.1%, respectively). Treatment horses were significantly delayed in time to first passage of feces (median times of 15 and 4 hours, respectively). Treatment horses had significantly improved behavior scores during the first 24 hours after surgery, consistent with the conclusion that they experienced less pain during that time. Butorphanol CRI during the immediate postoperative period significantly decreased plasma cortisol concentrations and improved recovery characteristics in horses undergoing abdominal surgery.  相似文献   

12.
The effects of the intravenous (i.v.) administration of 1.1 mg/kg of flunixin meglumine on thromboxane B2 (TxB2) concentrations were studied in sedentary and 2-year-old horses in training. The baseline TxB2 serum concentrations generated during clotting were 2.89 +/- 0.81, 2.19 +/- 0.25 and 0.88 +/- 0.12 ng/ml for the 2-year-old Thoroughbreds in training, sedentary horses under 10 and over 10 years old, respectively. There was a significant difference in baseline TxB2 concentrations between older and younger horses (P less than 0.005). Significant reduction in TxB2 production from baseline were noted at 1 (P less than 0.01) and 4 h (P less than 0.01) but not at 8 h after flunixin administration. The percent reduction in serum TxB2 concentration at 1 h after the administration of flunixin was 68.6 +/- 7.3 and 45.2 +/- 6.8 for the training and sedentary horses, respectively; the differences were significant (P less than 0.04). Serum concentrations of TxB2 returned to baseline values by 12-16 h after flunixin administration. The results of this study indicate a difference in the TxB2 concentrations of older vs. younger horses and a difference in the suppression of TxB2 after the administration of flunixin in 2-year-old Thoroughbreds in training compared to sedentary horses. The results of this study suggest that the detection of low concentrations of flunixin in urine 24 h post-administration may not represent pharmacologic effective concentrations of flunixin in plasma.  相似文献   

13.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

14.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVE: To evaluate propofol for induction and maintenance of anesthesia, after detomidine premedication, in horses undergoing abdominal surgery for creation of an experimental intestinal adhesion model. STUDY DESIGN: Prospective study. ANIMALS: Twelve horses (424 +/- 81 kg) from 1 to 20 years of age (5 females, 7 males). METHODS: Horses were premedicated with detomidine (0.015 mg/kg i.v.) 20 to 25 minutes before induction, and a propofol bolus (2 mg/kg i.v.) was administered for induction. Propofol infusion (0.2 mg/kg/min i.v.) was used to maintain anesthesia. The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by muscle relaxation, occular signs, response to surgery, and cardiopulmonary responses. Oxygen (15 L/min) was insufflated through an endotracheal tube as necessary to maintain the SpO2 greater than 90%. Systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressures, heart rate (HR), electrocardiogram (ECG), respiratory rate (RR), SpO2 (via pulse oximetry), and nasal temperature were recorded at 15 minute intervals, before premedication and after induction of anesthesia. Arterial blood gas samples were collected at the same times. Objective data are reported as mean (+/-SD); subjective data are reported as medians (range). RESULTS: Propofol (2.0 mg/kg i.v.) induced anesthesia (mean bolus time, 85 sec) within 24 sec (+/-22 sec) after the bolus was completed. Induction was good in 10 horses; 2 horses showed signs of excitement and these two inductions were not smooth. Propofol infusion (0.18 mg/kg/min +/- 0.04) was used to maintain anesthesia for 61 +/- 19 minutes with the horses in dorsal recumbency. Mean SAP, DAP, and MAP increased significantly over time from 131 to 148, 89 to 101, and 105 to 121 mm Hg, respectively. Mean HR varied over time from 43 to 45 beats/min, whereas mean RR increased significantly over anesthesia time from 4 to 6 breaths/min. Mean arterial pH decreased from a baseline of 7.41 +/- 0.07 to 7.30 +/- 0.05 at 15 minutes of anesthesia, then increased towards baseline values. Mean PaCO2 values increased during anesthesia, ranging from 47 to 61 mm Hg whereas PaO2 values decreased from baseline (97 +/- 20 mm Hg), ranging from 42 to 57 mm Hg. Muscle relaxation was good and no horses moved during surgery: Recovery was good in 9 horses and acceptable in 3; mean recovery time was 67 +/- 29 minutes with 2.4 +/- 2.4 attempts necessary for the horses to stand. CONCLUSIONS: Detomidine-propofol anesthesia in horses in dorsal recumbency was associated with little cardiovascular depression, but hypoxemia and respiratory depression occurred and some excitement was seen on induction. CLINICAL RELEVANCE: Detomidine-propofol anesthesia is not recommended for surgical procedures in horses if dorsal recumbency is necessary and supplemental oxygen is not available (eg, field anesthesia).  相似文献   

16.
OBJECTIVE: To describe the pharmacokinetics of phenylbutazone and oxyphenbutazone after IV administration in miniature donkeys. ANIMALS: 6 clinically normal miniature donkeys. PROCEDURE: Blood samples were collected before and 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360, and 480 minutes after IV administration of phenylbutazone (4.4 mg/kg of body weight). Serum was analyzed in triplicate by use of high-performance liquid chromatography for determination of phenylbutazone and oxyphenbutazone concentrations. The serum concentration-time curve for each donkey was analyzed separately to estimate model-independent pharmacokinetic variables. RESULTS: Serum concentrations decreased rapidly after IV administration of phenylbutazone, and they reached undetectable concentrations within 4 hours. Values for mean residence time ranged from 0.5 to 3.0 hours (median, 1.1 hour), whereas total body clearance ranged from 4.2 to 7.5 ml/kg/min (mean, 5.8 ml/kg/min). Oxyphenbutazone appeared rapidly in the serum; time to peak concentration ranged from 13 to 41 minutes (mean, 26.4 minutes), and peak concentration in serum ranged from 2.8 to 4.0 mg/ml (mean, 3.5 microg/ml). CONCLUSION AND CLINICAL RELEVANCE: Clearance of phenylbutazone in miniature donkeys after injection of a single dose (4.4 mg/kg, IV) is rapid. Compared with horses, miniature donkeys may require more frequent administration of phenylbutazone to achieve therapeutic efficacy.  相似文献   

17.
18.
OBJECTIVE: To use force plate analysis to evaluate the analgesic efficacies of flunixin meglumine and phenylbutazone administered i.v. at typical clinical doses in horses with navicular syndrome. ANIMALS: 12 horses with navicular syndrome that were otherwise clinically normal. PROCEDURE: Horses received flunixin (1.1 mg/kg), phenylbutazone (4.4 mg/kg), or physiologic saline (0.9% NaCI; 1 mL/45 kg) solution administered IV once daily for 4 days with a 14-day washout period between treatments (3 treatments/horse). Before beginning treatment (baseline) and 6, 12, 24, and 30 hours after the fourth dose of each treatment, horses were evaluated by use of the American Association of Equine Practitioners lameness scoring system (half scores permitted) and peak vertical force of the forelimbs was measured via a force plate. RESULTS: At 6, 12, and 24 hours after the fourth treatment, subjective lameness evaluations and force plate data indicated significant improvement in lameness from baseline values in horses treated with flunixin or phenylbutazone, compared with control horses; at those time points, the assessed variables in flunixin- or phenylbutazone-treated horses were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with navicular syndrome treated once daily for 4 days, typical clinical doses of flunixin and phenylbutazone resulted in similar significant improvement in lameness at 6, 12, and 24 hours after the final dose, compared with findings in horses treated with saline solution. The effect of flunixin or phenylbutazone was maintained for at least 24 hours. Flunixin meglumine and phenylbutazone appear to have similar analgesic effects in horses with navicular syndrome.  相似文献   

19.
Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are commonly used systemically for the treatment of inflammatory ocular disease in horses. However, little information exists regarding the ocular penetration of this class of drugs in the horse. Objective: To determine the distribution of orally administered flunixin meglumine and firocoxib into the aqueous humor of horses. Animals: Fifteen healthy adult horses with no evidence of ophthalmic disease. Methods: Horses were randomly assigned to a control group and 2 treatment groups of equal sizes (n = 5). Horses assigned to the treatment groups received an NSAID (flunixin meglumine, 1.1 mg/kg PO q24h or firocoxib, 0.1 mg/kg PO q24h for 7 days). Horses in the control group received no medications. Concentrations of flunixin meglumine and firocoxib in serum and aqueous humor and prostaglandin (PG) E2 in aqueous humor were determined on days 1, 3, and 5 and aqueous : serum ratios were calculated. Results: Firocoxib penetrated the aqueous humor to a significantly greater extent than did flunixin meglumine at days 3 and 5. Aqueous : serum ratios were 3.59 ± 3.32 and 11.99 ± 4.62% for flunixin meglumine and firocoxib, respectively. Ocular PGE2 concentrations showed no differences at any time point among study groups. Conclusions and Clinical Importance: Both flunixin meglumine and firocoxib penetrated into the aqueous humor of horses. This study suggests that orally administered firocoxib penetrates the aqueous humor better than orally administered flunixin meglumine at label dosages in the absence of ocular inflammation. Firocoxib should be considered for the treatment of inflammatory ophthalmic lesions in horses at risk for the development of adverse effects associated with nonselective NSAID administration.  相似文献   

20.
OBJECTIVE: To assess effects of treatment with phenylbutazone (PBZ) or a combination of PBZ and flunixin meglumine in horses. ANIMALS: 24 adult horses. PROCEDURE: 13 horses received nonsteroidal antiinflammatory drugs (NSAIDs) in a crossover design. Eleven control horses were exposed to similar environmental conditions. Treated horses received PBZ (2.2 mg/kg, PO, q 12 h, for 5 days) and a combination of PBZ and flunixin meglumine (PBZ, 2.2 mg/kg, PO, q 12 h, for 5 days; flunixin meglumine, 1.1 mg/kg, IV, q 12 h, for 5 days). Serum samples were obtained on day 0 (first day of treatment) and day 5, and total protein, albumin, and globulin were measured. RESULTS: 1 horse was euthanatized with severe hypoproteinemia, hypoalbuminemia, and colitis during the combination treatment. Comparisons revealed no significant difference between control horses and horses treated with PBZ alone. There was a significant difference between control and treated horses when administered a combination of PBZ and flunixin meglumine. Correction for horses with values >2 SDs from the mean revealed a significant difference between control horses and horses administered the combination treatment, between control horses and horses administered PBZ alone, and between horses receiving the combination treatment and PBZ alone. Gastroscopy of 4 horses revealed substantial gastric ulcers when receiving the combination NSAID treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of results of the study indicates the need for caution when administering a combination NSAID treatment to horses because the detrimental effects may outweigh any potential benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号