首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consistent evidence suggests that the probable human carcinogen acrylamide is formed in starch-rich foodstuffs through heat-induced interaction of asparagine and reducing sugars during Maillard browning. However, information regarding the influence of processing parameters on acrylamide formation is scarce. We investigated the impact of temperature, heating time, browning level, and surface-to-volume ratio (SVR) on acrylamide generation in fried potatoes. Acrylamide content was determined by liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In potato shapes with low SVR, acrylamide content consistently increased with increasing temperature and processing times. By contrast, in shapes with intermediate to high SVR, maximal acrylamide formation occurred at 160-180 degrees C, while higher temperatures or prolonged processing times caused a decrease of acrylamide levels. Moreover, browning levels were not a reliable measure of acrylamide content in large-surface products.  相似文献   

2.
The aim of this work was to examine the effect of blanching or soaking in different acid solutions on the acrylamide content in potato crisps. Furthermore, the effects of a shorter frying time and a lower frying temperature combined with a postdrying were investigated. Soaking or blanching of potato slices in acidic solutions decreased the pH of potato juice and increased the extraction of amino acids and sugars. Potato crisps obtained after such pretreatments were characterized by lower acrylamide content. The most effective extraction of free amino acids and sugars as well as the largest decrease of acrylamide content (90%) in crisps was obtained when potato slices were soaked in acetic acid solution for 60 min at 20 degrees C. Shorter frying time followed by postdrying resulted in low-moisture potato crisps. Furthermore, the postdrying treatment gave a decreases in acrylamide content of approximately 70% when potato slices were fried at 185 degrees C and approximately 80% when potato slices were fried at 160 degrees C. Effective ways of decreasing acrylamide content in crisps production have been found. Crisps with low acrylamide content and good sensory quality can be obtained either by blanching in acetic acid as pretreatment or by a short frying followed by postdrying.  相似文献   

3.
Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3-methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.  相似文献   

4.
3-Aminopropionamide (3-APA) has recently been suggested as a transient intermediate in acrylamide (AA) formation during thermal degradation of asparagine initiated by reducing carbohydrates or aldehydes, respectively. 3-APA may also be formed in foods by an enzymatic decarboxylation of asparagine. Using a newly developed method to quantify 3-APA based on liquid chromatography/tandem mass spectrometry, it could be shown that the biogenic amine was present in several potato cultivars in different amounts. Further experiments indicated that 3-APA is formed during storage of intact potatoes (20 or 35 degrees C) or after crushing of the cells. The heating of 3-APA under aqueous or low water conditions at temperatures between 100 and 180 degrees C in model systems always generated more AA than in the same reaction of asparagine, thereby pointing to 3-APA as a very effective precursor of AA. While the highest yields measured were about 28 mol % in the presence of carbohydrates (170 degrees C; aqueous buffer), in the absence of carbohydrates, 3-APA was even converted by about 63 mol % into AA upon heating at 170 degrees C under aqueous conditions. Propanoic acid amides bearing an amino or hydroxy group in the alpha-position, such as 2-hydroxypropionamide and l-alaninamide, were ineffective in AA generation indicating that elimination occurs only from the beta-position.  相似文献   

5.
Acrylamide in French fries: influence of free amino acids and sugars   总被引:8,自引:0,他引:8  
The free amino acid profile and sugar (fructose, glucose, and sucrose) composition were determined in potato samples selected to give a large range of variation (a total of 66 samples). From these samples French fries were produced in a laboratory-scale simulation of an industrial process followed by a finish fry at 180 degrees C for 3.5 min using a restaurant fryer. The final product was blast frozen and analyzed for acrylamide. Acrylamide was detected in all samples, but its concentration varied significantly from 50 to 1800 ng/g. For isotope dilution (13C3) acrylamide analysis, samples were extracted with water, cleaned up on HLB Oasis polymeric and Accucat mixed mode anion and cation exchange SPE columns, and analyzed by LC-MS/MS. Statistical analysis of the data indicates that the effect of sugars and asparagine on the concentration of acrylamide in French fries is positive and significant (p < 0.001). It appears that one of the ways acrylamide formation in French fries can be effectively controlled is by the use of raw products with low sugar (and to a lesser degree, asparagine) content.  相似文献   

6.
The influence of water activity on the formation and elimination reactions of acrylamide was examined by means of multiresponse modeling on two different levels of complexity: basic equimolar asparagine-glucose systems and equimolar potato-based asparagine-glucose systems. To this end, model systems were first equilibrated to initial water activities in the range of 0.88-0.99 (corresponding roughly to the moisture gradient observed in French fries) and then heated at temperatures between 120 and 200 degrees C during different reaction times. For each sample, the concentration of acrylamide, glucose, asparagine, and aspartic acid was measured, as well as the extent of browning. A mechanistic model was proposed to model the five measured responses simultaneously. For both types of model systems, the model prediction was quite adequate, with the exception of the extent of browning, especially in the case of the potato-based model system. Moreover, the corresponding estimated kinetic parameters for acrylamide formation and elimination did not change significantly (based on a 95% confidence level) within the range of water activities tested, nor between the systems in the absence or presence of the potato matrix. The only remarkable difference was observed for the activation energy of acrylamide elimination, which was lower in the presence of the potato matrix, although not always significant. In general, these results confirm the generic nature of the model proposed and show that the influence of different moisture levels on acrylamide formation and elimination is minimal and that the addition of a potato matrix has little or no influence on the kinetic model and corresponding kinetic parameters.  相似文献   

7.
In this study, the effect of employing an oil temperature program during frying on the acrylamide content of French fries was investigated. The frying conditions that could lead to lower acrylamide levels in French fries were first simulated by means of an experimentally validated frying model. Then, experiments were conducted to test the simulated conditions in real frying process. Different time/temperature combinations (4 min at 170 degrees C, 2 min at 170 degrees C + 2 min at 150 degrees C, 1 min at 170 degrees C + 3 min at 150 degrees C, 1 min at 190 degrees C + 3 min at 150 degrees C) were employed for frying potato strips (8.5 x 8.5 x 70 mm), and the resultant acrylamide levels were determined with a gas chromatography-mass spectrometry (GC-MS) method. The results indicated that acrylamide levels in French fries can be reduced by half if the final stage of the frying process employs a lower oil temperature. Therefore, the method appears to be an effective way of controlling the acrylamide level in the final product.  相似文献   

8.
Acrylamide formed in browning model systems was analyzed using a gas chromatograph with a nitrogen-phosphorus detector. Asparagine alone produced acrylamide via thermal degradation at the level of 0.99 microgram/g of asparagine. When asparagine was heated with triolein-which produced acrolein at the level of 1.82 +/- 0.31 (n = 5) mg/L of headspace by heat treatment-acrylamide was formed at the level of 88.6 microgram/g of asparagine. When acrolein gas was sprayed onto asparagine heated at 180 degrees C, a significant amount of acrylamide was formed (114 microgram/g of asparagine). On the other hand, when acrolein gas was sprayed onto glutamine under the same conditions, only a trace amount of acrylamide was formed (0.18 microgram/g of glutamine). Relatively high levels of acrylamide (753 microgram/g of ammonia) were formed from ammonia and acrolein heated at 180 degrees C in the vapor phase. The reaction of acrylic acid, which is an oxidation product of acrolein and ammonia, produced a high level of acrylamide (190 000 microgram/g of ammonia), suggesting that ammonia and acrolein play an important role in acrylamide formation in lipid-rich foods. Acrylamide can be formed from asparagine alone via thermal degradation, but carbonyl compounds, such as acrolein, promote its formation via a browning reaction.  相似文献   

9.
A number of parameters linked to storage of potatoes were evaluated with regard to their potential to influence the acrylamide formation in French fries. Acrylamide, which is a potential human carcinogen, is reported to be formed during the frying of potatoes as a result of the reactions between asparagine and reducing sugars. This study was conducted using three potato varieties (Bintje, Ramos, and Saturna) typically used in Belgium, The Netherlands, and the northern part of France for French fry and crisp production. Saturna, mainly used in crisp production, appeared to be the least susceptible for acrylamide formation during frying. Especially storage at low temperatures (4 degrees C) compared to storage at 8 degrees C seemed to enhance acrylamide formation due to a strong increase in reducing sugars caused by low-temperature storage. Because of the reversible nature of this physiological reaction, it was possible to achieve a significant reduction of the reducing sugars after a reconditioning of the cold-stored potatoes for 3 weeks at 15 degrees C. All changes in acrylamide concentrations could mainly be explained by the reducing sugar content of the potato (R2 = 0.84, n = 160). This means that, by ensuring a low reducing sugar content of the potato tuber, the risk for acrylamide formation will largely be reduced. Finally the use of a sprout inhibitor did not influence the composition of the potato, and thus acrylamide formation was not susceptible to this treatment.  相似文献   

10.
This research aims to optimize roasted green tea (Houjicha) processing by using roasting treatments to achieve acrylamide mitigation without compromising the quality. 2-Ethyl-3,5-dimethylpyrazine and 2-ethyl-3,6-dimethylpyrazine were identified as potent odorants by aroma extract dilution analysis. In preliminary sensory experiments, the desirable Houjicha flavor was produced in products roasted at 160 degrees C for 30 min and at 180 degrees C for 15 min. Under these conditions, potent odorants were formed at levels adequate for contributing to the Houjicha flavor. Acrylamide amounts in tea infusions were 2.0 and 4.0 microg/L by roasting at 160 degrees C for 30 min and at 180 degrees C for 15 min, respectively. Compared to roasting at 180 degrees C, the degradation of tea catechins was suppressed by roasting at 160 degrees C. Hence, roasting at 160 degrees C for is recommended for Houjicha processing for acrylamide mitigation, formation of potent odorants, and suppression of degradation of tea catechins.  相似文献   

11.
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying.  相似文献   

12.
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.  相似文献   

13.
The effect of pH on acrylamide formation and elimination kinetics was studied in an equimolar (0.1 M) asparagine-glucose model system in phosphate or citrate buffer, heated at temperatures between 120 and 200 degrees C. To describe the experimental data, a simplified kinetic model was proposed and kinetic parameters were estimated by combined nonlinear regression and numerical integration on the data obtained under nonisothermal conditions. The model was subsequently validated in a more realistic potato-based matrix with varying pH. By increasing acidity, the reaction rate constants at T(ref) (160 degrees C) for both acrylamide formation and elimination can significantly be reduced, whereas the temperature dependence of both reaction rate constants increases. The introduction of a lyophilized potato matrix (20%) did not affect the acrylamide formation reaction rate constant at reference temperature (160 degrees C) as compared to the asparagine-glucose model system; the elimination rate constant at T(ref), on the contrary, was almost doubled.  相似文献   

14.
The formation of acrylamide in crystalline model systems based on asparagine and reducing sugars was investigated under low-moisture reaction conditions. The acrylamide amounts were correlated with physical changes occurring during the reaction. Molecular mobility of the precursors turned out to be a critical parameter in solid systems, which is linked to the melting behavior and the release of crystallization water of the reaction sample. Heating binary mixtures of asparagine monohydrate and anhydrous reducing sugars led to higher acrylamide amounts in the presence of fructose compared to glucose. Differential scanning calorimetry measurements performed in open systems indicated melting of fructose at 126 degrees C, whereas glucose and galactose fused at 157 and 172 degrees C, respectively. However, glucose was the most reactive and fructose the least efficient sugar in anhydrous liquid systems, indicating that at given molecular mobility the chemical reactivity of the sugar was the major driver in acrylamide formation. Furthermore, reaction time and temperature were found to be covariant parameters: acrylamide was preferably formed by reacting glucose and asparagine at 120 degrees C for 60 min, whereas 160 degrees C was required at shorter reaction time (5 min). These results suggest that, in addition to the chemical reactivity of ingredients, their physical state as well as reaction temperature and time would influence the formation of acrylamide during food processing.  相似文献   

15.
Analysis of acrylamide,a carcinogen formed in heated foodstuffs   总被引:55,自引:0,他引:55  
Reaction products (adducts) of acrylamide with N termini of hemoglobin (Hb) are regularly observed in persons without known exposure. The average Hb adduct level measured in Swedish adults is preliminarily estimated to correspond to a daily intake approaching 100 microg of acrylamide. Because this uptake rate could be associated with a considerable cancer risk, it was considered important to identify its origin. It was hypothesized that acrylamide was formed at elevated temperatures in cooking, which was indicated in earlier studies of rats fed fried animal feed. This paper reports the analysis of acrylamide formed during heating of different human foodstuffs. Acrylamide levels in foodstuffs were analyzed by an improved gas chromatographic-mass spectrometric (GC-MS) method after bromination of acrylamide and by a new method for measurement of the underivatized acrylamide by liquid chromatography-mass spectrometry (LC-MS), using the MS/MS mode. For both methods the reproducibility, given as coefficient of variation, was approximately 5%, and the recovery close to 100%. For the GC-MS method the achieved detection level of acrylamide was 5 microg/kg and for the LC-MS/MS method, 10 microg/kg. The analytic values obtained with the LC-MS/MS method were 0.99 (0.95-1.04; 95% confidence interval) of the GC-MS values. The LC-MS/MS method is simpler and preferable for most routine analyses. Taken together, the various analytic data should be considered as proof of the identity of acrylamide. Studies with laboratory-heated foods revealed a temperature dependence of acrylamide formation. Moderate levels of acrylamide (5-50 microg/kg) were measured in heated protein-rich foods and higher contents (150-4000 microg/kg) in carbohydrate-rich foods, such as potato, beetroot, and also certain heated commercial potato products and crispbread. Acrylamide could not be detected in unheated control or boiled foods (<5 microg/kg). Consumption habits indicate that the acrylamide levels in the studied heated foods could lead to a daily intake of a few tens of micrograms.  相似文献   

16.
Acrylamide in foods: occurrence,sources, and modeling   总被引:24,自引:0,他引:24  
Acrylamide in food products-chiefly in commercially available potato chips, potato fries, cereals, and bread-was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were homogenized with water/dichloromethane, centrifuged, and filtered through a 5 kDa filter. The filtrate was cleaned up on mixed mode, anion and cation exchange (Oasis MAX and MCX) and carbon (Envirocarb) cartridges. Analysis was done by isotope dilution ([D(3)]- or [(13)C(3)]acrylamide) electrospray LC-MS/MS using a 2 x 150 mm (or 2 x 100 mm) Thermo HyperCarb column eluted with 1 mM ammonium formate in 15% (or 10% for the 2 x 100 mm column) methanol. Thirty samples of foods were analyzed. Concentrations of acrylamide varied from 14 ng/g (bread) to 3700 ng/g (potato chips). Acrylamide was formed during model reactions involving heating of mixtures of amino acids and glucose in ratios similar to those found in potatoes. In model reactions between amino acids and glucose, asparagine was found to be the main precursor of acrylamide. Thus, in the reaction between nitrogen-15 (amido)-labeled asparagine and glucose, corresponding (15)N-labeled acrylamide was formed. The yield of the model reaction is approximately 0.1%.  相似文献   

17.
Optimization of the solid-phase extraction cleanup procedure enabled the GC-MS analysis of acrylamide in tea samples without the interference of bromination by tea catechins. Although polyvinylpolypyrrolidone (PVPP) is available for removing tea catechins from tea extract, the peaks derived from PVPP had the same retention time as brominated acrylamide in mass chromatograms obtained by GC-MS. A considerable amount of acrylamide was formed at roasting temperatures of > or =120 degrees C; the highest acrylamide level was observed when tea samples were roasted at 180 degrees C for 10 min. Higher temperatures and longer processing times caused a decrease in the acrylamide content. Furthermore, an analysis of 82 tea samples showed that rather than the reducing sugar content, the asparagine content in tea leaves was a significant factor related to acrylamide formation in roasted products. The acrylamide level in roasted tea products was controlled by asparagine in the presence of reducing sugars.  相似文献   

18.
A number of parameters linked to the selection of potato tubers were evaluated with regard to their potential to influence acrylamide formation in French fries. The formation of acrylamide, which is a potential human carcinogen, can be minimized for a big extent by the selection of an appropriate tuber. This study focused on the following selection criteria: variety as influenced by storage time and soil type, underwater weight, and tuber size. A total of 16 varieties were compared, concerning their potential for acrylamide formation. From that survey, certain varieties, such as Tebina and Quincy, could be appointed as unsuitable for frying. The differences in the potential of acrylamide formation between the varieties could mainly be explained by the reducing sugar content of the potato (R2 = 0.82, n = 96). The investigated type of soil and storage time at 8 degrees C appeared to have a minor influence on the acrylamide formation during frying. On the other hand, the tuber size of the potato did contribute in a significant manner to the acrylamide formation. Smaller tubers were more susceptible to acrylamide formation and should be avoided in the frying process. The last selection parameter, the underwater weight, appeared to be of minor importance in the acrylamide formation. On the basis of these simple selection criteria, it is possible to make a first screening of potatoes to reduce the acrylamide formation during frying.  相似文献   

19.
Acrylamide (AA) was found to form a stable thioether in reasonable yields (45-50%) when reacted with 2-mercaptobenzoic acid at 20 degrees C for 3 h. On the basis of this finding and using [(13)C(3)]-acrylamide as the internal standard, a sensitive and selective new stable isotope dilution analysis for AA quantitation in food samples was developed based on single stage LC/MS. Comparison of the quantitative results obtained by applying the new method to potato chips, crispbread or butter cookies with data obtained by two stable isotope dilution analysis, using direct measurement of AA by GC/MS, but differing in the workup procedure, revealed detection limits in the same order of magnitude (6.6 microg/kg). Quantitative data obtained by application of the three methods on the same samples of potato chips or cookies, respectively, were also in very good agreement. Quantitation of AA in crispbreads treated with an amylase/protease mixture did not show increased AA levels, thereby indicating that inclusion of AA in starch/protein gels is not very probable during breadmaking.  相似文献   

20.
The present study was to demonstrate the efficiency of antioxidant of bamboo leaves (AOB) on the reduction of acrylamide during thermal processing and to summarize the optimal level of AOB applied in potato-based products. Potato crisps and French fries were immersed into different contents of AOB solution, and the frying processing parameters were optimized. The acrylamide content was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensory evaluation was performed in double blind manner. Our results showed that nearly 74.1% and 76.1% of acrylamide in potato crisps and French fries was reduced when the AOB addition ratio was 0.1% and 0.01% (w/w), respectively. The maximum inhibitory rate was achieved when the immersion time was designed as 60 s. Sensory evaluation results showed that the crispness and flavor of potato crisps and French fries processed by AOB solution had no significant difference compared to normal potato matrixes (P > 0.05) when the AOB addition ratio was <0.5% (w/w). These results suggested that AOB could significantly reduce acrylamide formation in potato-based foods and keep original crispness and flavor of potato matrixes. This study could be regarded as a pioneer contribution on the reduction of acrylamide in various foods by natural antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号