首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trajectory shifts in the Arctic and subarctic freshwater cycle   总被引:1,自引:0,他引:1  
Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in freshwater sources and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and excess net precipitation on the ocean contributed approximately 20,000 cubic kilometers of fresh water to the Arctic and high-latitude North Atlantic oceans from lows in the 1960s to highs in the 1990s. Sea ice attrition provided another approximately 15,000 cubic kilometers, and glacial melt added approximately 2000 cubic kilometers. The sum of anomalous inputs from these freshwater sources matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995. The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures. Fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North Atlantic Oscillation enters into a new high phase.  相似文献   

2.
Dynamics of recent climate change in the Arctic   总被引:2,自引:0,他引:2  
The pattern of recent surface warming observed in the Arctic exhibits both polar amplification and a strong relation with trends in the Arctic Oscillation mode of atmospheric circulation. Paleoclimate analyses indicate that Arctic surface temperatures were higher during the 20th century than during the preceding few centuries and that polar amplification is a common feature of the past. Paleoclimate evidence for Holocene variations in the Arctic Oscillation is mixed. Current understanding of physical mechanisms controlling atmospheric dynamics suggests that anthropogenic influences could have forced the recent trend in the Arctic Oscillation, but simulations with global climate models do not agree. In most simulations, the trend in the Arctic Oscillation is much weaker than observed. In addition, the simulated warming tends to be largest in autumn over the Arctic Ocean, whereas observed warming appears to be largest in winter and spring over the continents.  相似文献   

3.
In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with ice-core constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.2 to 3.4 meters of sea-level rise during the Last Interglaciation.  相似文献   

4.
Lithologic, faunal, seismic, and isotopic evidence from the Blake Nose (subtropical western North Atlantic) links a massive release of biogenic methane approximately 55.5 million years ago to a warming of deep-ocean and high-latitude surface waters, a large perturbation in the combined ocean-atmosphere carbon cycle (the largest of the past 90 million years), a mass extinction event in benthic faunas, and a radiation of mammalian orders. The deposition of a mud clast interval and seismic evidence for slope disturbance are associated with intermediate water warming, massive carbon input to the global exogenic carbon cycle, pelagic carbonate dissolution, a decrease in dissolved oxygen, and a benthic foraminiferal extinction event. These events provide evidence to confirm the gas hydrate dissociation hypothesis and identify the Blake Nose as a site of methane release.  相似文献   

5.
Reconstructions of ancient atmospheric carbon dioxide (CO2) variations help us better understand how the global carbon cycle and climate are linked. We compared CO2 variations on millennial time scales between 20,000 and 90,000 years ago with an Antarctic temperature proxy and records of abrupt climate change in the Northern Hemisphere. CO2 concentration and Antarctic temperature were positively correlated over millennial-scale climate cycles, implying a strong connection to Southern Ocean processes. Evidence from marine sediment proxies indicates that CO2 concentration rose most rapidly when North Atlantic Deep Water shoaled and stratification in the Southern Ocean was reduced. These increases in CO2 concentration occurred during stadial (cold) periods in the Northern Hemisphere, several thousand years before abrupt warming events in Greenland.  相似文献   

6.
Law KS  Stohl A 《Science (New York, N.Y.)》2007,315(5818):1537-1540
Notable warming trends have been observed in the Arctic. Although increased human-induced emissions of long-lived greenhouse gases are certainly the main driving factor, air pollutants, such as aerosols and ozone, are also important. Air pollutants are transported to the Arctic, primarily from Eurasia, leading to high concentrations in winter and spring (Arctic haze). Local ship emissions and summertime boreal forest fires may also be important pollution sources. Aerosols and ozone could be perturbing the radiative budget of the Arctic through processes specific to the region: Absorption of solar radiation by aerosols is enhanced by highly reflective snow and ice surfaces; deposition of light-absorbing aerosols on snow or ice can decrease surface albedo; and tropospheric ozone forcing may also be contributing to warming in this region. Future increases in pollutant emissions locally or in mid-latitudes could further accelerate global warming in the Arctic.  相似文献   

7.
The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn in northeastern (NE) Russia provides a continuous, high-resolution record from the Arctic, spanning the past 2.8 million years. This core reveals numerous "super interglacials" during the Quaternary; for marine benthic isotope stages (MIS) 11c and 31, maximum summer temperatures and annual precipitation values are ~4° to 5°C and ~300 millimeters higher than those of MIS 1 and 5e. Climate simulations show that these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.  相似文献   

8.
Contaminant lead in sediments underlying boundary currents in the Arctic Ocean provides an image of current organization and stability during the past 50 years. The sediment distributions of lead, stable lead isotope ratios, and lead-210 in the major Arctic Ocean basins reveal close coupling of the Eurasian Basin with the North Atlantic during the 20th century. They indicate that the Atlantic water boundary current in the Eurasian Basin has been a prominent pathway, that contaminant lead from the Laptev Sea supplies surface water in the transpolar drift, and that the Canadian and Eurasian basins have been historically decoupled.  相似文献   

9.
Secular variation of iron isotopes in north atlantic deep water   总被引:3,自引:0,他引:3  
A high-precision iron isotope time series for a ferromanganese crust demonstrates that the iron isotope composition in North Atlantic Deep Water has changed substantially over the past 6 million years and that iron isotope variations in the crust are closely correlated to those of lead isotopes. The close correlation between the two isotope series indicates that the observed iron isotope variations predominantly reflect those of iron input from terrigenous sources and provides no evidence for biologically induced mass fractionation within North Atlantic Deep Water.  相似文献   

10.
Two global coupled climate models show that even if the concentrations of greenhouse gases in the atmosphere had been stabilized in the year 2000, we are already committed to further global warming of about another half degree and an additional 320% sea level rise caused by thermal expansion by the end of the 21st century. Projected weakening of the meridional overturning circulation in the North Atlantic Ocean does not lead to a net cooling in Europe. At any given point in time, even if concentrations are stabilized, there is a commitment to future climate changes that will be greater than those we have already observed.  相似文献   

11.
The Turonian (93.5 to 89.3 million years ago) was one of the warmest periods of the Phanerozoic eon, with tropical sea surface temperatures over 35 degrees C. High-amplitude sea-level changes and positive delta18O excursions in marine limestones suggest that glaciation events may have punctuated this episode of extreme warmth. New delta18O data from the tropical Atlantic show synchronous shifts approximately 91.2 million years ago for both the surface and deep ocean that are consistent with an approximately 200,000-year period of glaciation, with ice sheets of about half the size of the modern Antarctic ice cap. Even the prevailing supergreenhouse climate was not a barrier to the formation of large ice sheets, calling into question the common assumption that the poles were always ice-free during past periods of intense global warming.  相似文献   

12.
Human-induced Arctic moistening   总被引:1,自引:0,他引:1  
The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.  相似文献   

13.
Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet instability. Carbon isotopes (delta(13)C) of benthic foraminifers, a proxy of deepwater circulation, reveal that South Atlantic IRD events coincided with strong increases in North Atlantic Deep Water (NADW) production and inferred warming (interstadials) in the high-latitude North Atlantic. Sea level rise or increased NADW production associated with strong interstadials may have resulted in destabilization of grounded ice shelves and possible surging in the Weddell Sea region of West Antarctica.  相似文献   

14.
Influence of the Atlantic subpolar gyre on the thermohaline circulation   总被引:2,自引:0,他引:2  
During the past decade, record-high salinities have been observed in the Atlantic Inflow to the Nordic Seas and the Arctic Ocean, which feeds the North Atlantic thermohaline circulation (THC). This may counteract the observed long-term increase in freshwater supply to the area and tend to stabilize the North Atlantic THC. Here we show that the salinity of the Atlantic Inflow is tightly linked to the dynamics of the North Atlantic subpolar gyre circulation. Therefore, when assessing the future of the North Atlantic THC, it is essential that the dynamics of the subpolar gyre and its influence on the salinity are taken into account.  相似文献   

15.
Expanding oxygen-minimum zones in the tropical oceans   总被引:3,自引:0,他引:3  
Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series of dissolved-oxygen concentration for select tropical oceanic regions by augmenting a historical database with recent measurements. These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years. The oxygen decrease in the 300- to 700-m layer is 0.09 to 0.34 micromoles per kilogram per year. Reduced oxygen levels may have dramatic consequences for ecosystems and coastal economies.  相似文献   

16.
Oxygen isotope analysis of benthic foraminifera in deep sea cores from the Atlantic and Southern Oceans shows that during the last interglacial period, North Atlantic Deep Water (NADW) was 0.4 degrees +/- 0.2 degrees C warmer than today, whereas Antarctic Bottom Water temperatures were unchanged. Model simulations show that this distribution of deep water temperatures can be explained as a response of the ocean to forcing by high-latitude insolation. The warming of NADW was transferred to the Circumpolar Deep Water, providing additional heat around Antarctica, which may have been responsible for partial melting of the West Antarctic Ice Sheet.  相似文献   

17.
Variations in the cadmium/calcium ratio of North Atlantic Deep Water are recorded in the fossil shells of benthic foraminifera. The oceanic distribution of cadmium is similar to that of the nutrients, hence the cadmium/calcium ratio in shells records temporal variations in nutrient distributions. Data from a North Atlantic sediment core show that over the past 200,000 years there has been a continuous supply of nutrient-depleted waters into the deep North Atlantic. The intensity of this source relative to nutrient-enriched southern waters diminished by about a factor of 2 during severe glaciations. This evidence combined with carbon isotope data indicates that the continental carbon inventory may have been less variable than previously suggested.  相似文献   

18.
为了研究北极航线通航问题,对北极航线的航行技术环境、人文环境和自然环境进行了深入分析,建立了北极航线通航环境评估指标体系,并在此基础上,利用盲数模型对北极航线通航环境进行了安全风险评估,确定了北极航线通航环境安全等级.研究结果表明,盲数理论用于航线通航环境评价,具有一定的理论可行性和推广应用价值.  相似文献   

19.
Tropical origins for recent North Atlantic climate change   总被引:3,自引:0,他引:3  
Evidence is presented that North Atlantic climate change since 1950 is linked to a progressive warming of tropical sea surface temperatures, especially over the Indian and Pacific Oceans. The ocean changes alter the pattern and magnitude of tropical rainfall and atmospheric heating, the atmospheric response to which includes the spatial structure of the North Atlantic Oscillation (NAO). The slow, tropical ocean warming has thus forced a commensurate trend toward one extreme phase of the NAO during the past half-century.  相似文献   

20.
In contrast to the relatively stable climate of the past 10,000 years, during glacial times the North Atlantic region experienced large-amplitude transitions between cold (stadial) and warm (interstadial) states. In this modeling study, we demonstrate that hydrological interactions between the Atlantic thermohaline circulation (THC) and adjacent continental ice sheets can trigger abrupt warming events and also limit the lifetime of the interstadial circulation mode. These interactions have the potential to destabilize the THC, which is already more sensitive for glacial conditions than for the present-day climate, thus providing an explanation for the increased variability of glacial climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号