首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper examines the maple syrup production potential of American forests by analyzing Forest Inventory & Analysis (FIA) data provided by the US Forest Service on the resource of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) trees in twenty states. The analysis is based on tree species and size (diameter at breast height, or dbh), ownership category, jurisdiction, the density of maple trees in a stand, and the distance of the stand to an access road. Although there are over 2 billion sugar and red maple trees of tappable size growing in US forests, when narrowed down according to the attributes of an optimal ‘sugarbush’, there are 100 million potential taps from sugar maples alone and 286 million potential taps with sugar and red maples combined. Overall, 45 % of the tappable-size maple trees are found in stands whose density is not high enough to support commercial sap extraction whereas only 6 % are found in stands that are at least 1.6 km from an access road. The ten states with commercial maple syrup industries have a much higher percentage of their maple trees occurring in stands of optimal density and also contain a higher percentage of sugar maple than red maple trees. States that are utilizing the highest percentage of their potential sugarbushes include Vermont and Maine, whereas states that have significant room for expansion include Michigan, New York, and Pennsylvania.  相似文献   

2.
Maple sugar and maple syrup have long been important non-timber forest products in North America. We examined the historical and the scientific literature to determine the long-term sustainability of the industry in an economic, an ecological, and a cultural context. During the 18th and 19th centuries, maple sugar was an inexpensive substitute for cane sugar and a cash crop that fit into the work schedule of the northern farmer. Maple syrup replaced maple sugar as the mainstay of the industry at the end of the 19th century as increasingly cheaper cane sugar and other sweeteners undercut the sugar market. Active government intervention and support have made Quebec the major bulk supplier of maple syrup today. Quebec alone produces approximately 80% of the world’s supply of maple products. A series of good sap years and production in excess of demand, however, has recently reduced the price of bulk syrup and the profit of producers in Quebec. Producers in the United States have focused on the more lucrative and price stable retail syrup market.

Farming practices in the late 18th and early 19th centuries tended to clear away sugar maple on the more fertile, level sites and preserve sugar maple as a source of fuel wood, sugar and syrup on the less accessible, marginal sites. The crude tapping procedures employed at the same time often killed the trees. Widespread grazing in the 20th century and more recently diameter-limit cutting of even-aged stands have hindered the regeneration of the sugarbush. An emphasis on monocultures and global warming currently threatens the sustainability of the sugarbush. On the whole, however, the maple products industry has probably increased sugar maple’s representation in the forest. From a cultural standpoint, the industry represents a positive work experience that unites families, connects one to the land, and provides a sense of continuity with the past.  相似文献   


3.
Pine honeydew honey is an economically important non-wood forest product from eastern Mediterranean Pinus brutia forests, which are also important for timber production. Pine honey is produced by bees that feed on the honeydew secretions of Marchalina hellenica, a scale insect that infests pine stands and feeds on pine sap. The aim of this study was to optimize the joint production of pine honeydew honey and timber by maximizing the soil expectation value of pine stands. The simulation of P. brutia stand dynamics and timber production in healthy and infested stands is based on individual-tree growth and yield models that account for the effect of M. hellenica on tree- and stand-level growth and mortality. The optimization procedure uses a direct search method based on nonlinear programming. The results suggest that pine stands growing on good sites should be managed using rather short rotations and mainly aiming at timber production. In contrast, forest management in medium- and poor-quality sites should aim at longer rotations by taking advantage of the joint production of pine honey and timber assortments. Honey-oriented forest management can be much more profitable than timber production in stands growing on medium and poor sites. Pine honey represents an opportunity to increase the value and economic profitability of P. brutia forests.  相似文献   

4.
Although it is well known that sap exudation during early spring in temperate deciduous trees occurs in response to daytime warming and nighttime cooling, the mechanisms of the process are not yet fully understood. Previous theories suggested that changes in stress in the wood caused by daytime heating and nighttime cooling might be linked with sap flow. Consequently, a study of itaya-kaede maple (Aver mono) and shirakamba birch (Betula platyphylla var.japonica) looked at tangential strains. One-hour intervals for 3 years of the tangential strains on the inner bark of stem and root were measured in itaya-kaede maple and shirakamba birch during the sap exudation season. The measurements indicated different mechanisms of sap exudation in these two trees. During the sap exudation season in late March, when the temperature fluctuated around 0°C, the tangential strain in the root of itaya-kaede maple showed expansion in the daytime and contraction at night. Conversely, in early April the tangential strain in the root of shirakamba birch exhibited contraction in the daytime and expansion at night. The changes in tangential strains in itaya-kaede maple were attributed to conditioning, a known concept used to explain the uptake mechanism of soil water in maple and its exudation during early spring. However, because the change in tangential strain in the roots of shirakamba birch was similar to that found during the rampant season, sap exudation was not attributed to conditioning but to the plentiful supply of water from the roots. The implications of these mechanisms are that different sap harvesting techniques may be appropriate for different tree species.  相似文献   

5.
Transpiration is generally assumed to be insignificant at night when stomata close in response to the lack of photosynthetically active radiation. However, there is increasing evidence that the stomata of some species remain open at night, which would allow for nighttime transpiration if there were a sufficient environmental driving force. We examined nighttime water use in co-occurring species in a mixed deciduous stand at Harvard Forest, MA, using whole-tree and leaf-level measurements. Diurnal whole-tree water use was monitored continuously with Granier-style sap flux sensors in paper birch (Betula papyrifera Marsh.), red oak (Quercus rubra L.) and red maple (Acer rubrum L.). An analysis was conducted in which nighttime water flux could be partitioned between refilling of internal water stores and transpiration. Substantial nighttime sap flux was observed in all species and much of this flux was attributed to the refilling of depleted water stores. However, in paper birch, nighttime sap flux frequently exceeded recharge estimates. Over 10% of the total daily sap flux during the growing season was due to transpiration at night in paper birch. Nighttime sap flux was over 8% of the total daily flux in red oak and 2% in red maple; however, this flux was mainly associated with recharge. On nights with elevated vapor pressure deficit, sap flux continued through the night in paper birch, whereas it reached zero during the night in red oak and red maple. Measurements of leaf-level gas exchange on a night with elevated vapor pressure deficit showed stomatal conductance dropping by only 25% in paper birch, while approaching zero in red oak and red maple. The study highlighted differences in ecophysiological controls on sap flux exerted by co-occurring species. Paper birch is a fast-growing, shade-intolerant species with an earlier successional status than red oak and red maple. Risking water loss through nighttime transpiration may provide paper birch with an ecological advantage by enabling the species to maximize photosynthesis and support rapid growth. Nighttime transpiration may also be a mechanism for delivering oxygen to respiring cells in the deep sapwood of paper birch.  相似文献   

6.
  • ? It has been known for a long time that sectored and integrated patterns of vascular systems exist in different species and even within the same tree, depending on its age and history. However, very few publications consider the topology of the vascular pathways between roots and branches.
  • ? Some results on this important aspect of the vascular system are presented in this paper. They have been obtained with adult maple trees by directly studying the water movement in the stem and root xylem with the heat field deformation (HFD) method for sap flow measurements.
  • ? Multi-point HFD sensors were installed at different heights of a Norway maple tree (Acer platanoides L.) along its stem axis. Single-point HFD sensors were installed in three small lateral roots of another sample maple. Experimental treatments (branch severing) triggered changes in sap movement in the stem and root sapwood.
  • ? The sample trees belong to the group with an integrated transport system (“integrated pipes”), sharing stem space on both sides of the tree to supply two large parts of the crown with water from each root sector. Nevertheless, conducting pathways had their autonomy for axial transport and the pipe model theory describes the vascular system of the studied trees well. Thus, the integration of axial transport in the stem xylem should presumably occur through the cross-grained network of axial vessels.
  •   相似文献   

    7.
    Following a report submitted by a beekeeper to Istituto Zooprofilattico Sperimentale delle Venezie, in Padua province (Borgoricco, Veneto, NE Italy), the authors discovered in April 2011 several specimens of the dusky sap beetle Carpophilus lugubris Murray 1864 (Coleoptera, Nitidulidae) on the bottom board of some beehives. At a later time (May 2012), an isolated specimen was also collected within a Natural Reserve in Belluno province (Feltre, Veneto, NE Italy). These specimens represent the first known records of this species in Italy or Europe as a whole. This is also the first record of the species associated with beehives. This discovery led us to review the available bionomical and faunistic data for this widespread Nearctic and Neotropical species. C. lugubris is a recognized pest of corn, therefore is very important monitoring its possible dispersal into cornfields, beehives, and other agricultural regions of NE Italy and southern Europe over the next few years.  相似文献   

    8.
    Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

    9.
    Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.  相似文献   

    10.
    This paper reports estimates of the costs of damage from the ice storm of 1998 for two producer size categories of maple syrup operation (1000 and 3000 tap) and three damage levels (light, moderate and severe) for eastern Ontario. These size categories represent approximately 500 and 1500 trees in production, respectively, given the general practice in the region of installing two taps per tree. Damage categories were defined on the basis of the proportion of average crown loss inflicted by the storm. Partial budget capital budgeting and stochastic simulation were used to generate interval estimates of damages. Sensitivity analysis was used to explore the robustness of the estimated damages. Estimated losses for 1000-tap operators with light, moderate and severe damage were $5385, $13 821 and $28 721, respectively. Losses for 3000-tap operators with light, moderate and severe damage were $14 160, $37 399 and $75 630, respectively. Average government financial assistance was found to be within 5–30% of the estimated losses.  相似文献   

    11.
    枫香毛竹混交造林生长效应   总被引:1,自引:0,他引:1  
    研究了中国枫香与毛竹混交造林生长效应。结果表明:竹木间生长发育良好,种间关系协调,混交林毛竹与毛竹纯林比立竹数、平均胸径、平均高分别增加了13.1%、10.8%和21.9%;产笋量和产材量分别增加了48.2%和22.5%。提高了毛竹林经营效益。混交林中枫香与纯林枫香比,平均胸径、平均树高分别增加了44.2%和 38.7%。由于株数较少,混交林枫香立木材积50.073 5 m3/hm2,比纯林枫香的64.635 0 m3/hm2少,但未达显著水平, 而单株材积混交林中枫香比纯林枫香提高了177.1%。  相似文献   

    12.
    Acorn production by Quercus ilex L. ssp. ballota (Desf.) Samp. in SW Spain was assessed, and variations between years and the influence of pruning on it were examined. To this end, an experimental study was conducted at two different sites (Calañas and San Bartolomé, in the province of Huelva) where trees were subjected to traditional (light, moderate or heavy) pruning and also to a new (crown-regeneration) pruning method. Acorn yield was quantified over a period of 5 years in the Calañas plot and 4 in the San Bartolomé plot, and found to average at 95.61 ± 0.76 g DM/m2, which is equivalent to 6.5 ± 0.05 kg DM/tree; however, yield figures varied markedly between years depending on the particular climatic conditions. The average acorn production was correlated with the water potential in mid summer (end of July); the annual, spring and autumn rainfall; and the actual evapotranspiration for the period from September (previous year) to August. No significant differences in acorn production between traditional pruning intensities were detected; in fact, there were only hints that heavy pruning might result in decreased acorn yields. The new pruning method used, crown-regeneration, seems promising with a view to increasing acorn yield; however, it should be tested on larger sample sizes before any final conclusions can be drawn in this respect. Based on the results, the present health status of holm oaks in southwestern Spain (a result of sustained decline) and the low value of firewood — which used to be a very important source of income from pruning a few decades ago -, the authors recommend reducing the frequency and intensity of pruning in the dehesas of the study area.  相似文献   

    13.
    Natural regeneration in canopy gaps is a key process affecting long-term dynamics of many forests, including northern hardwood forests. The density and composition of regenerating trees are often highly variable, reflecting sensitivity to a suite of driving factors operating at different scales (e.g., harvest gap to regional landscape), including production of seeds, physical characteristics of gaps and stands, competition with non-tree vegetation, and browsing by animals. Multivariate analyses over broad geographic areas provide insights into the relative effects of these factors and permit exploration of spatial patterns in regeneration. We examined the effects of gap-, stand-, and landscape-scale factors on densities of tree seedlings (<1 m tall) and saplings (1-2 m tall) in 59 selection-harvested northern hardwood stands located across a 4500 km2 region of Michigan's Upper Peninsula. We used Bayesian multilevel modeling to account for the hierarchical structure of the data and assess uncertainty in parameter estimates. Sugar maple (Acer saccharum) saplings were absent from 61% of 154 m2 plots centered in harvest gaps (n = 347) despite its high shade tolerance and overstory dominance, but densities were high in other gaps. Densities of sugar maple seedlings and/or saplings were negatively associated with a combination of greater stand-scale densities of white-tailed deer (Odocoileus virginianus), greater gap-scale cover of non-tree vegetation, and lower gap-scale light availability, with deer density having the greatest effect. Densities of unpalatable and commercially less valuable ironwood (Ostrya virginiana), the second most common regeneration species, were positively related to gap-scale seed-production potential but were unrelated to factors affecting sugar maple. Ironwood tended to replace sugar maple saplings in areas with high deer density. At the landscape scale, densities of sugar maple seedlings and saplings decreased with decreasing latitude and snow depth and increasing winter deer densities. These inverse spatial patterns suggest that deer herbivory can lead to landscape-scale variation in regeneration success. However, the spatial distribution of habitat types (a proxy for soil moisture and nutrient conditions) confound this observation, with higher densities of sugar maple generally located on stands with less nutrient-rich habitat types. Results demonstrate that combinations of factors operating at different scales, and with different relative magnitudes of impact, contribute to high variation in regeneration composition and density following timber harvest. Selection silvicultural practices, as currently applied, do not ensure regeneration of desirable species; practices might require modifications in general (e.g., increasing gap size) and to match them to regionally varying factors like deer density.  相似文献   

    14.
    Bowden JD  Bauerle WL 《Tree physiology》2008,28(11):1675-1683
    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.  相似文献   

    15.
    《林业研究》2021,32(4)
    The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_k),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_k had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%.  相似文献   

    16.
    The effects of four cleaning practices (including a control) on species composition and structural characteristics were studied over a 31-year period following treatment of an even-aged 25-year-old northern-hardwood stand that originated after complete clearcutting in 1933–1935. The treatments consisted of: a heavy and a light crop tree cleaning; a drastic species-cleaning treatment that removed nearly all pin cherry (Prunus pensylvanica L.f.), aspen (Populus tremuloides Michx. and grandidentata Michx.), striped maple (Acer pensylvanicum L.), and red maple (Acer rubrum L.) sprout clumps followed by a crop-tree cleaning; and an uncut control. There were no significant differences among treatments in species and structural characteristics in the 56-year-old stand at the end of the study period, except for the presence of a moderate aspen component in the light cleaning and the control. Although previous research shows that cleaning treatments in young northern hardwoods may have silvicultural and economic benefits, the impact of such treatments on long-term stand development is relatively minor.  相似文献   

    17.
    Anthropogenic factors such as elevated deer populations, invasive earthworms or climate change may alter old-growth forests of the Upper Midwest region of the United States. We examined demographic trends of woody species across all size classes over 35 years in a late-successional forest dominated by hemlock (Tsuga canadensis), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) in Michigan's Upper Peninsula using two sets of permanent plots. For the duration of the study period, species that were less-preferred white-tailed deer (Odocoileus virginianus) forage, especially sugar maple, comprised a much higher fraction of all seedlings and saplings compared to overstory trees. The density of small sugar maple declined across the study period, but no other species became more abundant, creating a more open forest understory. By the most recent census, preferred species for deer browse had been nearly eliminated from the understory, and declines in unpreferred species such as sugar maple were also apparent. We found small changes in temperature (<0.5-1 °C rise in minimum and maximum temperatures depending on season) and precipitation (±28 mm depending on season) and little evidence of invasive earthworms impacts. Our results suggest that the sustained elevated deer density is shifting the structure and composition of this old-growth forest. A demographic model showed that if current recruitment, growth and mortality rates were to continue for 500 years the forest would eventually reach a new equilibrium with virtually no hemlock or yellow birch remaining.  相似文献   

    18.
    With an increasing demand of sustainable raw materials for bioenergy use, coppicing as management approach to increase the biomass production of forests is becoming of greater importance. This study describes the parameterization of biomass equations for six tree species traditionally used in coppices forests, namely sycamore maple (Acer pseudoplatanus L.), field maple (Acer campestre L.), European ash (Fraxinus excelsior L.), European hornbeam (Carpinus betulus L.), downy birch (Betula pubescens Ehrh.), and common hazel (Corylus avellana L.) growing in coppice-with-standard systems in Lower Saxony, Germany. The parameterization was based on measurements of over 950 trees sampled from two forest sites. The sampled trees were felled and separated into three biomass compartments (stem, coarse branches, and fine brushwood) and weighed on site. The dry weight of sub samples from each compartment was measured. Equations were derived for total aboveground biomass, stem biomass, and crown biomass using regression analyses. We either used diameter at breast height as single independent explanatory variable or in combination with tree height. Biomass production of stump sprouts and generatively grown stems was compared for ash and sycamore maple. In the same age classes, it was found that ash stump sprouts had a slightly higher production than seed-grown stems. For sycamore maple, no difference was detected.  相似文献   

    19.
    利用热扩散技术(TDP)分别监测新疆杨冠基部、杆基部处液流密度的变化,并结合同步气象观测,分析液流密度与大气蒸发潜力(ET0)的关系,结果表明:典型晴天日,新疆杨树冠、杆基部的液流密度日变化格局总体上与大气蒸发潜力相一致,但前者与ET0的相关性更强,可用Hill函数式得到较好的拟合,而后者与ET0间呈斜率不等的线性关系;在午间,冠基部液流密度是杆基部的3倍以上,在清晨,冠基部液流比杆基部液流提前平均约1 h启动。冠、杆基部边材液流间的"净"量因季节而异,在生长旺盛的7、8月份略有"亏损",而在6、9月份略有"盈余",新疆杨单株日吸收水分量与冠层日失水量并不完全一致。6—9各月冠基部液流日平均通量一般呈晴天>云天>阴天的规律,这与太阳辐射及大气蒸发潜力的变化格局相一致,而基部液流有时会呈现出云天>晴天的趋势。  相似文献   

    20.
    Assessing and using tree species (exotic or native) with superior tolerance to environmental stresses (such as drought and high temperature) play an important role in afforestation practices. In the present study, stem sap flow characteristics and responses to ambient meteorological factors of three tree species, Albizzia kalkora (native), Azadirachta indica (exotic), and Acacia auriculaeformis (exotic), in a dry-hot valley (Yuanmou, Yunnan Province, China) were investigated using thermal dissipation probes. The diurnal dynamics of sap flow in three studied species displayed an obvious circadian rhythm during the wet and dry seasons, with the exception of A. indica during the dry season. The sap flow velocity (SFV) in A. kalkora and A. auriculaeformis was significantly positively correlated with photosynthetically active radiation (PAR), air temperature, vapour pressure deficit (VPD) and wind speed, but negatively correlated with atmospheric relative humidity over the two seasons. The cross-correlation analysis also revealed that the SFV of the three species was significantly correlated with PAR and VPD (P < 0.001). Additionally, stem sap flow lagged behind PAR but ahead of VPD, and the diurnal sap flow was more dependent on PAR than on VPD. However, we found that the dominant climatic factor influencing the stem sap flow differed between daytime and nighttime. PAR was more influential than other meteorological factors during the daytime, while VPD or other factors were more influential overnight. When the nighttime refilling ability of the three tree species was compared, our results suggest that A. indica has higher drought resistance and better for afforestation of the studied region.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号