首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
  • ? Soil resources are heterogeneously distributed in terrestrial plant communities. This heterogeneity is important because it determines the availability of local soil resources. A forest fire may change the spatial distribution of soil nutrients, affecting nutrition and survival of colonizing plants. However, specific information on the effects of ecosystem disturbance on the spatial distribution of soil resources is scarce.
  • ? We hypothesized that, on a short-term basis, wildfire would change the spatial patterns of soil N and P availability. To test this hypothesis, we selected two Pinus canariensis forests burned in 2005 and 2000, respectively, and a third forest that was unburned since at least 1990 (unburned). We incubated ionic exchange membranes (IEMs) in replicated plots to estimate soil N and P availability and characterized the spatial pattern using SADIE (Spatial Analysis by Distance Indices).
  • ? Mineral N, NO3-N and PO4-P availability, and aggregation and cluster indices for all nutrients were higher in the 2005 wildfire plots than in the 2000 wildfire and unburned plots.
  • ? Our results suggest that surviving plants or new individuals becoming established in a burned area would find higher soil resources, but also higher small-scale heterogeneity in nutrients, which may have a major impact on the performance of individual plants and on the forest structure and dynamics.
  •   相似文献   

    2.
  • ? Growing concerns about fires and the increase of fire frequency and severity due to climate change have stimulated a large number of scientific papers about fire ecology. Most researchers have focused on the short-term effects of fire, and the knowledge about the long-term consequences of fires on ecosystem nutrient dynamics is still scarce.
  • ? Our aim was to improve the existing knowledge about the long-term effects of wildfires on forestlabile N concentrations. We hypothesized that fires may cause an initial decline in organic and inorganic N availability, and in the amount of microbial biomass-N; this should be followed by the recovery of pre-fire N concentrations on a long-term basis. We selected a fire chronosequence in Pinus canariensis forests on La Palma Island (Canary Islands, Spain). These forests are under low anthropogenic atmospheric deposition, and forest management is completely lacking; wildfires are therefore the only significant disturbance. Soil samples were collected during the winter and spring at 22 burned and unburned plots.
  • ? Fire produced a significant decrease in microbial biomass N, mineral N and dissolved organic N. Almost 20 y after fire, pre-fire levels of N concentrations had not recovered.
  • ? These results demonstrate that P. canariensis forest soils have a lower resilience against fire than expected. The magnitude of these observed changes suggests that pine forest wildfires may induce long-term (2 decades) changes in soil and in plant primary production.
  •   相似文献   

    3.
    To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5–6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire treatments were applied in 1999, 2001, 2003, and 2005. All prescribed fires were intense and averaged 700 kJ/s/m of fire front across all 12 burns. Using pretreatment variables as covariates, longleaf pine survival and volume per hectare were significantly less on the three prescribed fire treatments than on checks. Least-square means in 2006 for survival were 70, 65, 64, 58, and 56% and volume per hectare was 129, 125, 65, 84, and 80 m3/ha on the check, herbicide, March-, May-, and July-burn treatments, respectively. A wildfire in March 2007 disproportionately killed pine trees on the study plots. In October 2007, pine volume per hectare was 85, 111, 68, 98, and 93 m3/ha and survival was 32, 41, 53, 57, and 55% on the check, herbicide, March-, May-, and July-burn treatments, respectively, after dropping trees that died through January 2009 from the database. Understory plant cover was also affected by treatment and the ensuing wildfire. In September 2006, herbaceous plant cover averaged 4% on the two unburned treatments and 42% on the three prescribed fire treatments. Seven months after the wildfire, herbaceous plant cover averaged 42% on the two previously unburned treatments and 50% on the three prescribed fire treatments. Before the wildfire, understory tree cover was significantly greater on checks (15%) than on the other four treatments (1.3%), but understory tree cover was similar across all five treatments 7 months after the wildfire averaging 1.1%. The greater apparent intensity of the wildfire on the previously unburned treatments most likely resulted from a greater accumulation of fuels on the check and herbicide plots that also collectively had a higher caloric content than fuels on the biennially prescribed burned plots. These results showed the destructive force of wildfire to overstory trees in unburned longleaf pine stands while also demonstrating the rejuvenating effects of wildfire within herbaceous plant communities. They caution for careful reintroduction of prescribed fire even if fire was excluded for less than a decade.  相似文献   

    4.
    Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site preparations (scarified, unscarified) that had been applied in a mature ponderosa pine forest in the montane zone of the Colorado Front Range in 1981. We used this event to examine how pre-fire fine fuels, surface-level burn severity and post-fire soil nitrogen-availability varied with pre-fire silvicultural treatments. Prior to the wildfire, litter cover was higher under both shelterwood and unscarified treatments than seed-tree and scarified treatments. Immediately after the fire in 2002, we assessed burn severity under 346 mature trees, around 502 planted saplings, and in 448 4 m2 microplots nested within the original experimental treatments. In one-fourth of the microplots, we measured resin-bound soil nitrate and ammonium accumulated over the second and third post-fire growing season. Microplots burned less severely than bases of trees and saplings with only 6.8% of microplot area burned down to mineral soil as compared to >28% of tree and sapling bases. Sapling burn severity was highest in unscarified treatments but did not differ by overstory harvest. Microplot burn severity was higher under the densest overstory (shelterwood) and in unscarified treatments and was positively related to pre-fire litter/duff cover and negatively associated with pre-fire total plant cover, grass cover and distance to tree. In both years, resin-bound nitrate and ammonium (NH4+-N) increased weakly with burn severity and NH4+-N availability was higher in unscarified than scarified plots. The lasting effects of soil scarification and overstory harvest regime on modern patterns of surface burn severity after two decades underscores the importance of historic landuse and silviculture on fire behavior and ecological response. Unraveling causes of these patterns in burn severity may lead to more sustainable fire and forest management in ponderosa pine ecosystems.  相似文献   

    5.
    Pine resistance to low- to moderate-intensity fire arises from traits (namely related to tissue insulation from heat) that enable tree survival. Predictive models of the likelihood of tree mortality after fire are quite valuable to assist decision-making after wildfire and to plan prescribed burning. Data and models pertaining to the survival of European pines following fire are reviewed. The type and quality of the current information on fire resistance of the various European species is quite variable. Data from low-intensity fire experiments or regimes is comparatively abundant for Pinus pinaster and Pinus sylvestris, while tree survival after wildfire has been modelled for Pinus pinea and Pinus halepensis. P. pinaster and P. pinea, and Pinus canariensis in special, are better equipped to survive fire, but low-intensity fire is tolerated even by species often referred to as fire-sensitive (P. halepensis and Pinus radiata). The relative fire resistance of European pine species is assessed on the basis of (i) morphological and experimental data, and (ii) mortality modelling that considers fire behaviour. Limitations of these approaches to rate fire resistance are discussed, and the current knowledge gaps are indicated.  相似文献   

    6.
    Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

    7.
    Two types of measures have traditionally been used to monitor changes after disturbances in the nutrient availability of forest ecosystems: (1) soil nutrient pools and transformation rates and (2) foliar nutrient content. We used a wildfire chronosequence in natural and unmanaged Pinus canariensis forests to determine which kind of measure is more effective in discriminating between disturbed and undisturbed plots and to determine whether the different availability indices provide comparable and consistent results within the chronosequence and between different sampling dates. The results showed that (1) foliar N and P concentrations were the variables that best discriminated between the plots of the chronosequence, (2) the various soil N availability indices neither showed steady relationships nor predicted the plant nutrient availability, and (3) P availability indices showed steady relationships and predicted plant nutrient availability. Due to the changing nature of the soil N pools, repeated sampling over a long period of time could yield results different from those presented here. However, the large sampling effort required would favor the use of foliar nutrient concentrations as the most desirable first approach to the community’s nutritional status, especially when time or budget constraints are relevant.  相似文献   

    8.
    Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing’an Mountains (Greater Xing’an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.  相似文献   

    9.
    In Canada's eastern boreal forest, the stagnant growth of black spruce (Picea mariana (Mill.) BSP) seedlings is often observed in the presence of ericaceous shrubs such as Kalmia angustifolia L. Many mechanisms, including allelopathic interference, reduced soil N mineralization, soil enzymes inhibition, and direct resource competition have been proposed to explain poor spruce growth in the presence of Kalmia. However, the relative importance of direct competition versus indirect interference remains unclear. Our objective was thus to adequately isolate the “Kalmia effect” from other growth-limiting factors and to determine if removal of Kalmia also resulted in fundamental changes in the biochemical properties of the forest floor. By sampling plots established in 2000, we evaluated how Kalmia eradication and spot fertilization influenced soil nutrient availability, N mineralization rates, microbial basal respiration and biomass, as well as planted black spruce seedling growth, dimensions, and foliar nutrient concentrations 6 years later. We measured higher extractable-P, mineralizable-N, seedling dimensions and growth rates, as well as lower extractable-K, total-K, basal respiration and microbial biomass, in plots without Kalmia than in those where Kalmia had been maintained from 2000 to 2006. Our results thus confirmed that Kalmia eradication over 6 years not only improved the growth and nutrition of black spruce seedlings, but also resulted in fundamental changes in the biochemical properties of the forest floor. We demonstrated that along with direct competition for resources, Kalmia interferes indirectly with black spruce by modifying nutrient cycling and energy fluxes in soil. Higher indices of available C in plots with Kalmia corroborates that Kalmia tannins or rhizodeposition may reduce N mineralization by stimulating microbial immobilization, a relation that however needs to be confirmed with longer term laboratory incubations. Our results indicated that although it had a positive influence on seedling growth, the fertilization effect was confined to the first few years following treatment application, and failed to influence soil processes as did Kalmia eradication. Further monitoring will indicate if the increased litterfall in fertilized plots will eventually initiate a second wave of fertilizer-induced changes to soil processes, as observed in other ecosystems.  相似文献   

    10.
    In the western United States, mechanical thinning and prescribed fire are common forest management practices aimed at reducing potential wildfire severity and restoring historic forest structure, yet their effects on forest microclimate conditions are not well understood. We collected microclimate data between 1998 and 2003 in a mixed-conifer forest in California's Sierra Nevada. Air and soil temperatures, relative humidity, photosynthetically active radiation (PAR), wind speed, soil heat flux, and soil volumetric moisture were measured at the center of 18 four-ha plots. Each plot was assigned one of six combinations of thinning and burning treatments, and each treatment was thus given three replications. We found that spatial variability in microclimate, quantified as standard deviations among monthly values of each microclimatic variable across different locations (n ≤ 18), was significantly high and was influenced primarily by elevation and canopy cover. The combination of thinning and burning treatments increased air temperature from 58.1% to 123.6%. Soil temperatures increased in all thinned plots. Air moisture variables indicated that treatments made air drier, but soil moisture increased in the range 7.9–39.8%, regardless of treatment type. PAR increased in the range 50.4–254.8%, depending on treatment type. Treatments combining thinning and burning increased wind speed by 15.3–194.3%. Although soil heat flux increased dramatically in magnitude in some plots, overall treatment effects on G were not statistically significant. We discussed the significance and implications of the spatial variability of microclimate and the treatment effects to various ecological processes and to forest management.  相似文献   

    11.
    Soil respiration (RS) is a major carbon pathway from terrestrial ecosystems to the atmosphere and is sensitive to environmental changes. Although commonly used mechanical thinning and prescribed burning can significantly alter the soil environment, the effect of these practices on RS and on the interactions between RS and belowground characteristics in managed forests is not sufficiently understood. We: (1) examined the effects of burning and thinning treatments on soil conditions, (2) identified any changes in the effects of soil chemical and physical properties on RS under burning and thinning treatments, and (3) indirectly estimated the changes in the autotrophic soil respiration (RA) and heterotrophic soil respiration (RH) contribution to RS under burning and thinning treatments. We conducted our study in the Teakettle Experimental Forest where a full factorial design was implemented with three levels of thinning, none (N), understory thinning (U), and overstory thinning (O; September to October 2000 for thin burn combination and June and July 2001 for thin only treatments) and two levels of burning, none (U) and prescribed burning (B; fall of 2001). RS, soil temperature, soil moisture, litter depth, soil total nitrogen and carbon content, soil pH, root biomass, and root nitrogen (N) concentration were measured between June 15 and July 15, 2002 at each plot. During this period, soil respiration was measured three times at each point and averaged by point. When we assumed the uniform and even contribution of RA and RH to RS in the studied ecosystem without disturbances and a linear relationship of root N content and RA, we calculated the contributions of RA to RS as 22, 45, 53, 48, and 45% in UU, UO, BN, BU, and BO, respectively. The results suggested that after thinning, RS was controlled more by RH while after burning RS was more influenced by RA. The least amount of RS variation was explained by studied factors under the most severe treatment (BO treatment). Overall, root biomass, root N concentration, and root N content were significantly (p < 0.01) correlated with soil respiration with correlation coefficients of 0.37, −0.28, and 0.29, respectively. This study contributes to our understanding of how common forestry management practices might affect soil carbon sequestration, as soil respiration is a major component of ecosystem respiration.  相似文献   

    12.
    Large wildfire events in coniferous forests of the western United States are often followed by postfire timber harvest. The long-term impacts of postfire timber harvest on fire-associated cavity-nesting bird species are not well documented. We studied nest-site selection by cavity-nesting birds over a 10-year period (1994–2003), representing 1–11 years after fire, on two burns created by mixed severity wildfires in western Idaho, USA. One burn was partially salvaged logged (the Foothills burn), the other was primarily unlogged (the Star Gulch burn). We monitored 1367 nests of six species (Lewis’s Woodpecker Melanerpes lewis, Hairy Woodpecker Picoides villosus, Black-backed Woodpecker P. arcticus, Northern Flicker Colaptes auratus, Western Bluebird Sialia mexicana, and Mountain Bluebird S. currucoides). Habitat data at nest and non-nest random locations were characterized at fine (field collected) and coarse (remotely sensed) spatial scales. Nest-site selection for most species was consistently associated with higher snag densities and larger snag diameters, whereas wildfire location (Foothills versus Star Gulch) was secondarily important. All woodpecker species used nest sites with larger diameter snags that were surrounded by higher densities of snags than at non-nest locations. Nests of Hairy Woodpecker and Mountain Bluebird were primarily associated with the unlogged wildfire, whereas nests of Lewis’s Woodpecker and Western Bluebird were associated with the partially logged burn in the early years after fire. Nests of wood-probing species (Hairy and Black-backed Woodpeckers) were also located in larger forest patch areas than patches measured at non-nest locations. Our results confirm previous findings that maintaining clumps of large snags in postfire landscapes is necessary for maintaining breeding habitat of cavity-nesting birds. Additionally, appropriately managed salvage logging can create habitat for some species of cavity-nesting birds that prefer more open environments. Our findings can be used by land mangers to develop design criteria for postfire salvage logging that will reserve breeding habitat for cavity-nesting birds.  相似文献   

    13.

    Context

    Mediterranean pine woodlands are strongly affected by wildfires; however, there are knowledge gaps in the role of fire severity on Pinus pinaster Ait. regeneration.

    Objectives

    The principal questions were: (a) does post-fire regeneration of Maritime Pine differ where canopies were consumed to a low vs. high degree and (b) which factors, besides fire severity, could explain these differences.

    Methods

    Pine recruitment was monitored from 2 to 36?months after a summer wildfire in 18 25?m2 plots, equally divided over two fire severity classes based on crown consumption. Besides the degree of crown consumption, three quantitative fire severity indices as well as post-fire site conditions, seed input and understory vegetation recovery were measured.

    Results

    Pine seedling densities were consistently higher in the plots with low than high crown consumption but due to marked spatial variability, they were only significantly different at two out of the eight sampling occasions. This variability could be explained by a quantitative index based on the diameter of twigs, as well as by seed input and post-fire site conditions (ash and litter cover).

    Conclusion

    Fire severity was found to strongly affect the pine recruitment following wildfire, using both a qualitative visual severity index and a quantitative, more labour-intensive one.  相似文献   

    14.
    The forests of Nothofagus pumilio have historically been affected by forest fires. The effects of fire on certain above and belowground, biotic and abiotic components of these ecosystems have been previously documented, albeit belowground components have received much less attention. It has been suggested that the effects observed in the short-term after a fire usually differ from the longer-term effects. The long-term effects of fire (i.e. >5 years after burning) on belowground components in Nothofagus forests are currently unknown. In the present study we evaluated the long-term effect of fire on ectomycorrhiza (ECM) colonization and morphotype composition in N. pumilio roots, as well as soil chemical properties in temperate forests in Patagonia. Sampling was conducted in three mature monospecific forests. In each, nearby burned and unburned sites were selected. The time since the occurrence of fires differed between areas (i.e. 6-10 years). Within each site, 3 transects of 40 m were established randomly along which 5 samples of roots and soil were collected in spring and autumn. The main results were: (1) in comparison with the unburned site, ECM colonization was lower in the burned site in the area with the shorter time length since fire occurrence and no effects in the other two areas were observed; (2) richness and diversity were not significantly affected by fire but there was a significant effect of season for both parameters, being higher in spring; (3) ECM dominance was significantly higher in the unburned than in the burned site in Tronador, while in Challhuaco the opposite was observed, mainly in autumn; (4) in general carbon, nitrogen and phosphorous decreased while pH increased in the burned sites; (5) ECM colonization positively correlated with NH4+ and phosphorus and negatively with pH but was not significantly correlated with organic matter or any other soil variable. Altogether the results suggest that effects of fire on ectomycorrhiza and soil properties in N. pumilio forests are probably related to the time elapsed since fire occurrence combined with site characteristics. In addition, the direct and indirect effects of fire in these forest systems may persist for more than 10 years.  相似文献   

    15.
    Mechanical mastication is increasingly prescribed for wildfire mitigation, yet little is known about the ecological impacts of this fuels treatment. Mastication shreds trees into woodchips as an alternative to tree thinning and burning the resulting slash, which can create soil disturbances that favor exotic plants. Previous research on mastication has not simultaneously considered both the responses of soil organisms and understory plant communities. We compared mastication to slash pile burning (both 6-months and 2.5-years post-treatment) and untreated controls in pinyon–juniper (Pinus edulisJuniperus osteosperma) woodland and measured soil properties, arbuscular mycorrhizal fungi (AMF) and understory plant composition. Our results showed that slash pile burns had severely degraded soil properties and low AMF abundance and richness compared to untreated or mastication plots. Pile burns were dominated by exotic plant species and had approximately 6× less understory plant abundance and richness than untreated plots. Only two variables differed between mastication and untreated plots 6-months post-treatment: mastication had lower soil temperature and higher soil moisture. Mastication plots 2.5-years post-treatment had more plant cover and richness than untreated plots or pile burns, although non-native Bromus tectorum cover was also greater and AMF spore richness was lower than untreated plots. The structural equation model (SEM) we developed showed that plant cover strongly influenced AMF abundance (0.50) and both plant cover (0.36) and AMF (0.31) positively influenced soil stability. In the short-term, mastication is a preferable method as it creates fewer disturbances than pile burning; however long-term impacts of mastication need further study as this practice could affect native plant communities. Our results suggest that the manner in which woody debris is treated following tree thinning has an important influence on soil stability and native plant biodiversity.  相似文献   

    16.
    The effects of limestone (2.0 and 4.0 Mg ha−1) on chemical properties of soil, nutrient concentrations of needles and growth of Scots pine (Pinus sylvestris L.) transplants were investigated on three reforestation areas on infertile acidic sites in southern Finland. The limestone was applied either on the soil surface (unploughed plots) or was mixed into the topsoil (ploughed plots). All the treatments were replicated four times. Surface broadcast of lime elevated the pH in the organic layer and in the 0-10 cm layer of mineral soil. The increase in the pH of the organic layer after 21 years was, on average, 0.7 and 1.1 pH units, with a dose of lime 2 and 4 Mg ha−1, respectively. On the ploughed plots, the pH in the uppermost 0-10 cm soil layer was 0.4-0.5 units higher than on the corresponding unlimed plots. Both doses of lime significantly increased the amount of exchangeable Ca and the base saturation (BS) in the topsoil on the ploughed plots, and the amount of exchangeable Ca and Mg, as well as the base saturation (BS) in the organic layer + the 0-10 cm layer of mineral soil on the unploughed plots. Regardless of the techniques used for application of lime, after 21 growing seasons the Ca and Mg concentrations in needles were significantly higher on the limed plots than on the controls. In needles, the Ca/Mn ratio was the best indicator for measuring the response to liming. Only on the unploughed plots did liming increase stand volume and dominant diameter of pines. Intensive disc ploughing produced significantly more stems and increased both stand volume and the dominant height of pines compared to unploughed plots.  相似文献   

    17.
    Maritime pine (Pinus pinaster Ait.) is the tree species most affected by wildfire in the Iberian Peninsula. Prediction of the probability of fire-injured tree mortality is critical for management of burned areas, evaluation of the ecological and economic impact of wildfire and prescribed fire planning and application. Pine bark beetles (Scolytidae) frequently attack burned maritime pine stands and cause extensive post-fire mortality throughout the Iberian Peninsula. In the present study, maritime pine trees were monitored for three years following 14 wildfires in four ecotypes in Spain (11 fires in Galicia (Galician ecotype - NW Spain), one fire in Portillo (Meseta-Castellana ecotype - Central Spain), one fire in Rodenal (Rodenal ecotype - Central Spain), and one fire in Genalguacil (Sierra Bermeja ecotype - SW Spain)). Data on tree attributes, crown and bole injury, ground fire severity, Ips sp. presence and tree survival were obtained by examining 3085 trees. Logistic regression models for predicting the probability of delayed maritime pine mortality were developed by use of generalized estimated equations (GEE). An ample range of response to fire damage in mortality was evident among the four ecotypes and different models were fitted for each. The most important variables for predicting tree mortality were total crown volume damaged, presence of Ips sp. attack and cambium kill rating. The results highlight the extensive presence of Ips sp. in burned maritime pine forests and its importance in tree mortality process, the ample range of response of P. pinaster, in terms of post-fire mortality, as well as the need to develop site specific mortality models for the different ecotypes of this species following fire.  相似文献   

    18.
    Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak (Quercus frainetto Ten.) forest. The research focused on microbial soil parameters (microbial soil respiration (RSM), soil microbial biomass carbon (Cmic) and metabolic quotient (qCO2) and chemical topsoil properties (soil acidity (pH), electrical conductivity (EC), carbon (C), nitrogen (N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters (C/N ratio, soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K. The mean annual C/N ratio was significantly higher in the burned plots (28.5:1) than in the control plots (27.0:1). The mean annual Cmic (0.6 mg g?1) was significantly lower although qCO2 (2.5 µg CO2–C mg Cmic h?1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2 showed significant differences.  相似文献   

    19.
    Knowledge of the germination characteristics of Pinus species can help in the understanding, prediction and management of the regeneration of pine forests. In the Canary Islands, several exotic pines (Pinus halepensis L. and Pinus pinea L.) were planted with Pinus canariensis Chr. Sm. Ex DC, the only native pine species, and there is now an interest in controlling these exotic species to restore the original forest. The main objective of the present study is to determine the germination response of P. canariensis, P. halepensis and P. pinea to different light regimes (darkness and light/darkness), thermal shocks and the presence of inhibitory substances from the leaves and litter of P. canariensis. P. halepensis seeds showed the highest viability and germination rate. Darkness accelerated P. halepensis germination, while exudates accelerated P. canariensis germination. Only treatments of 200 °C for 5 min and 300 °C for 5 min significantly decreased the germination of all three pine species. In the absence of strong differences in germination among species after treatments, the key for fire management or prescribed burning in this case may be the sprouting ability of P. canariensis. A possible management strategy to control the two obligate seeder exotic species could be to use one intense prescribed fire followed by a low-intensity prescribed fire after seed bank germination in the field, so in this way, only P. canariensis could resprout after fire and it would eliminate only the exotic pines in a mixed stand.  相似文献   

    20.
    Bark beetle infestation is a well-known cause of historical low-level disturbance in southwestern ponderosa pine forests, but recent fire exclusion and increased tree densities have enabled large-scale bark beetle outbreaks with unknown consequences for ecosystem function. Uninfested and beetle-infested plots (n = 10 pairs of plots on two aspects) of ponderosa pine were compared over one growing season in the Sierra Ancha Experimental Forest, AZ to determine whether infestation was correlated with differences in carbon (C) and nitrogen (N) pools and fluxes in aboveground biomass and soils. Infested plots had at least 80% of the overstory ponderosa pine trees attacked by bark beetles within 2 years of our measurements. Both uninfested and infested plots stored ∼9 kg C m−2 in aboveground tree biomass, but infested plots held 60% of this aboveground tree biomass in dead trees, compared to 5% in uninfested plots. We hypothesized that decreased belowground C allocation following beetle-induced tree mortality would alter soil respiration rates, but this hypothesis was not supported; throughout the growing season, soil respiration in infested plots was similar to uninfested plots. In contrast, several results supported the hypothesis that premature needlefall from infested trees provided a pulse of low C:N needlefall that altered soil N cycling. The C:N mass ratio of pine needlefall in infested plots (∼45) was lower than uninfested plots (∼95) throughout the growing season. Mineral soils from infested plots had greater laboratory net nitrification rates and field resin bag ammonium accumulation than uninfested plots. As bark beetle outbreaks become increasingly prevalent in western landscapes, longer-term biogeochemical studies on interactions with other disturbances (e.g. fire, harvesting, etc.) will be required to predict changes in ecosystem structure and function.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号