首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.  相似文献   

2.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

3.
Forest edges have numerous implications for structure and function of forest ecosystems. Previous studies on edge quantity have used broad classifications. However, edge influence is driven by the contrast in vegetation structure between adjoining ecosystems, and thus we need detailed site-specific data to assess the role of edges in forests. We studied the variability of sharp edges in 28 boreal landscapes (4 km × 4 km) across an 830 km gradient throughout northern Sweden. Our objectives were: (1) to compare the length of natural and created edges, (2) to classify edges in detail by edge origin, maintenance and forest attributes, and (3) to examine relationships between length of edge and landscape variables. Data were collected using stereo-interpretation of high spatial resolution colour infrared aerial photographs, in combination with line intersect sampling and plots. The length of edge varied from 12 to 102 m ha−1 among landscapes, with an overall mean of 54 m ha−1. Created edges dominated most landscapes (mean 33 m ha−1) and had greater variability than natural edges (mean 21 m ha−1). Maintained edges (e.g. roads, agricultural land) were more abundant than regenerating edges caused by logging. Thirty percent of total edges adjoined narrow linear features. Seventy percent adjoined wider patches and showed high variability (35 classes). Overall, high-contrast edges towards mature forest dominated, i.e. ones that may experience strong edge influence. The amount of edge increased with percent of landscape affected by disturbance, and decreased with latitude and elevation. This study shows that edges are both abundant and highly variable in boreal forests and that forestry is the main driver behind edge creation. Detailed classification of edges based on site-specific forest and patch attributes may help to estimate edge influence at landscape level, and can guide experimental design for examining the impact of edges on structure and function of forest ecosystems.  相似文献   

4.
Factors causing variation in fine root biomass in forest ecosystems   总被引:4,自引:0,他引:4  
Fine roots form one of the most significant components contributing to carbon cycling in forest ecosystems. We study here the effect of variation in root diameter classes, sampling depth and the inclusion of understorey vegetation root biomass in fine root biomass (FRB) estimates. The FRB estimates for different forest biomes are updated using a database of 512 forest stands compiled from the literature. We also investigate the relationships between environmental or forest stand variables and fine root biomass (≤2 mm in diameter) at the stand (g m−2) and tree level (g tree−1). The FRB estimates extrapolated for the whole rooting depth were 526 ± 321 g m−2, 775 ± 474 g m−2 and 776 ± 518 g m−2 for boreal, temperate and tropical forests, respectively, and were 26-67% higher than those based on the original sampling depths used. We found significant positive correlations between ≤1 and ≤2 mm diameter roots and between ≤2 and ≤5 mm roots. The FRB estimates, standardized to the ≤2 mm diameter class, were 34-60% higher and 25-29% smaller than those standardized to the ≤1 mm and ≤5 mm diameter classes, respectively. The FRB of the understorey vegetation accounted for 31% of the total FRB in boreal forests and 20% in temperate forests. The results indicate that environmental factors (latitude, mean annual precipitation, elevation, temperature) or forest stand factors (life form, age, basal area, density) can not explain a significant amount of the variation in the total FRB and a maximum of 30% that in the FRB of trees at the stand level, whereas the mean basal area of the forest stand can explain 49% of the total FRB and 79% of the FRB of trees at the tree level.  相似文献   

5.

Foliar responses of subalpine fir [Abies lasiocarpa (Hook.) Nutt.] to thinning were studied in a 35-yr-old mixed stand of paper birch (Betula papyrifera Marsh.) and conifers. The stand regenerated naturally after a wildfire with a canopy dominated by paper birch (average height 9.8 m) and an understorey dominated by subalpine fir (average height 1.6 m). The stand was thinned to four densities of birch: 0, 600 and 1200 stems ha-1 and control (unthinned at 2300-6400 stems ha-1) in the autumn of 1995. The understorey conifers, mainly subalpine fir, were thinned to 1200 stems ha-1. The study used a completely randomized split-plot design. Three sample trees were systematically selected from each treatment replicate and each tree stratum (upper, intermediate and lower understorey). One-year-old and older age class needles were collected from one south-facing branch within the fifth whorl from the tree top. Thinning of paper birch significantly (p <0.001) increased leaf area and dry weight per 100 needles for intermediate and short trees except in the 0 birch treatment. Understorey subalpine fir trees in 600 stems ha1 birch (T3) had the largest leaf area and leaf dry weight per 100 1-yr-old needles. Specific leaf area (SLA) decreased from unthinned (T1) to 0 birch (T4). Lower understorey trees had the largest SLA. One-year-old needles had significantly higher N, P and K concentrations in all the thinning treatments. These responses are consistent with the shade tolerance of subalpine fir. The results suggest that when managing a paper birch-conifers mixed-wood forest it may be of benefit to understorey conifers to leave a birch canopy as a nursing crop.  相似文献   

6.
Despite widespread use of intensive vegetation control (VC) in forest management, the effects of VC on allocation of biomass and nutrients between young trees and competing vegetation are not well understood. On three Pacific Northwest sites differing in productivity, soil parent material, and understory vegetation community, we evaluated year-5 effects of presence/absence of 5 years of VC on allocation of aboveground biomass and nitrogen (N) between planted Douglas-fir (Pseudotsuga menziesii var. menziesii) and competing vegetation. Equations for predicting bole, branch, foliar, and total dry weights based on stem diameter at a height of 15 cm and total tree height did not differ significantly among sites or by presence or absence of VC. This contrasts with previous research, using diameter at breast height rather than at 15 cm, which found that separate equations were warranted for trees with and without competing vegetation. Estimated whole-tree biomass among the six site/VC combinations ranged from 0.8 to 7.5 Mg ha−1, and increases in tree biomass associated with VC ranged from 62% to 173% among sites. Among the three sites, there were positive, linear relationships between soil total N content to a depth of 60 cm and both N content of aboveground vegetation (trees plus competing vegetation) and Douglas-fir foliar N concentration. Tree N content increased by 8.4, 8.2, and 40.0 kg N ha−1 with VC at the three sites, whereas competing vegetation N content decreased with VC by 0.9, 18.8, and 32.0 kg N ha−1, respectively, at the same sites. Thus, VC did not lead to a direct compensatory tradeoff between aboveground N content of trees and other vegetation. However, soil N content was linearly related to N accumulation and plant growth across the three sites. In addition to differences in N availability among sites, the effect of VC on the redistribution of resources among trees and competing vegetation also was influenced by vegetation community composition and efficacy of VC treatments.  相似文献   

7.
Large tree species have a disproportional influence on the structure and functioning of tropical forests, but the forces affecting their long-term persistence in human-dominated landscapes remain poorly understood. Here we test the hypothesis that aging forest edges and small fragments (3.4–295.7 ha) are greatly impoverished in terms of species richness and abundance of large trees in comparison to core areas of forest interior. The study was conducted in a hyper-fragmented landscape of the Atlantic forest, northeast Brazil. Large tree species were quantified by recording all trees (DBH ≥ 10 cm) within fifty-eight 0.1-ha plots distributed in three forest habitats: small forest fragments (n = 28), forest edges (n = 10), and primary forest interior areas within an exceptional large forest remnant (n = 20). Large tree species and their stems ≥10 cm DBH were reduced by half in forest edges and fragments. Moreover, these edge-affected habitats almost lacked large-stemmed trees altogether (0.24 ± 0.27% of all stems sampled), and very tall trees were completely absent from forest edges. In contrast, large trees contributed to over 1.5% of the whole stand in forest interior plots (2.9 ± 2.8%). Habitats also differed in terms of tree architecture: relative to their DBH trees were on average 30% shorter in small fragments and forest edges. Finally, an indicator species analysis yielded an ecological group of 12 large tree species that were significantly associated with forest interior plots, but were completely missing from edge-affected habitats. Our results suggest a persistent and substantial impoverishment of the large-tree stand, including the structural collapse of forest emergent layer, in aging, hyper-fragmented landscapes.  相似文献   

8.
Large and severe wildfires are now widespread in the Mediterranean Basin. Fire severity is important to ecosystem properties and processes and to forest management but it has been neglected by wildland fire research in Europe. In this study, we compare fire severity between maritime pine (PS) woodland and other forest (OF) types, identify other variables influent on fire severity, and describe its variation. We sampled contiguous, paired stands of PS and OF cover types – including deciduous and evergreen broadleaves and short-needled mountain conifers – that burned under very high to extreme fire danger in northwestern Portugal. Data on stand characteristics and fire severity metrics were collected in plots along transects perpendicular to the PS–OF boundary. Fire severity was rated in separate for the tree canopy, understorey vegetation and forest floor layers, and then an average (composite) fire severity rating was calculated. Fire intensity inferred from stem char height (adjusted for the effects of other factors) was highest in PS, followed by deciduous broadleaved woodland and short-needled conifer forest. With a few exceptions, all fire severity ratings were significantly different between PS and OF at all sites. Most fire severity metrics and ratings were correlated. The distance for fire severity minimization did not differ between OF types (median = 21 m). Variation in composite fire severity was accounted for by a classification tree (R2 = 0.44) based on cover type (contributing with 51% to the overall explanation), stand variables, aspect, distance to the PS–OF edge and fire spread pattern. Except for a more immediate decline in deciduous broadleaves, fire severity rating was not affected by OF type and tended to decrease in more mature stands and moister aspects. The fire severity moderation from PS to OF was compounded by a dominant pattern of down slope fire propagation into moister topographical positions, exacerbating the fuel effect implicit in the cover type change. The results are consistent with fire hazard and fire incidence studies and support conventional knowledge that advocates the expansion of broadleaved deciduous or evergreen forest as a means to achieve more fire-resilient ecosystems and landscapes.  相似文献   

9.
The production and turnover of fine roots (diameter ?2 mm) contributes significantly to carbon cycling in forest ecosystems. We compiled an up-to-date global database covering 186 stands from the literature and estimated fine root production (FRP) and fine root turnover (FRT) for boreal, temperate and tropical forests in order to study the relationships between FRP or FRT and environmental and stand variables. FRP for all plants (trees + understorey) was 311 ± 259 (n = 39), 428 ± 375 (n = 71) and 596 ± 478 g m−2 a−1 (n = 32) in the boreal, temperate and tropical forests, respectively, and the corresponding annual FRT rates were 0.77 ± 0.70, 1.21 ± 1.04 and 1.44 ± 0.76, respectively. When the FRP and FRT of trees were estimated separately for boreal and temperate forests the differences between the two biomes were insignificant. The mean FRP of trees for the two biomes combined was 306 ± 240 g m−2 a−1 (n = 86) and the annual FRT was 1.31 ± 1.43. Fine root biomass (FRB) was the most significant factor explaining the variation in FRP, and more so at the tree level than at the stand level, explaining 53% of the variation in FRP for trees at the tree level. The corresponding proportions at the stand level were 21% for all plants and 12% for trees. Latitude, mean annual temperature and annual precipitation each explained <20% of the variation in FRP or FRT. Fine root production and FRT estimates are highly dependent on the species included in the sampling, the sampling depth and the methods used for estimating FRP or calculating FRT. The results indicate that the variation in FRP on a global scale can be explained to a higher degree if we focus on tree roots separately from the roots of the understorey vegetation and on FRP at the tree level instead of FRP at the stand level or on FRT.  相似文献   

10.
Bark beetles are notorious pests of natural and planted forests causing extensive damage. These insects depend on dead or weakened trees but can switch to healthy trees during an outbreak as mass-attacks allow the beetle to overwhelm tree defences. Climatic events like windstorms are known to favour bark beetle outbreaks because they create a large number of breeding sites, i.e., weakened trees and for this reason, windthrown timber is generally preventively harvested and removed. In December 1999, the southwest of France was struck by a devastating windstorm that felled more that 27 million m3of timber. This event offered the opportunity to study large-scale spatial pattern of trees attacked by the bark beetle Ips sexdentatus and its relationship with the spatial location of pine logs that were temporally stored in piles along stand edges during the post-storm process of fallen tree removal. The study was undertaken in a pure maritime pine forest of 1300 ha in 2001 and 2002. We developed a landscape approach based on a GIS and a complete inventory of attacked trees. During this study more than 70% of the investigated stands had at least one tree attacked by I. sexdentatus  . Spatial aggregation prevailed in stands with n≥15n15 attacked trees. Patches of attacked trees were identified using a kernel estimation procedure coupled with randomization tests. Attacked trees formed patches of 500–700 m2 on average which displayed a clumped spatial distribution. Log piles stemming from the sanitation removals were mainly distributed along the large access roads and showed an aggregated spatial pattern as well. The spatial relationship between patches of attacked trees and log pile storage areas was analyzed by means of the Ripley’s statistic that revealed a strong association at the scale of the studied forest. Our results indicated that bark beetle attacks were facilitated in the vicinity of areas where pine logs were stored. The spatial extent of this relationship was >1000 m. Similar results were obtained in 2001 and 2002 despite differences in the number and spatial distribution of attacked trees. The presence of a strong “facilitation effect” suggests that log piles should be removed quickly in order to prevent outbreaks of bark beetles.  相似文献   

11.
Mixed forest, containing a eucalypt overstorey and an understorey of rainforest tree species, accounts for approximately 20% (195,000 ha) of Tasmania's wet eucalypt forest. In wood production areas it is typically clearfelled, burnt and then sown with eucalypt seed. This management removes virtually all standing seed sources within the coupe, so that recolonisation of coupes by rainforest tree species depends largely on seed sources located at the coupe edges. We quantified the influence of mature mixed forest edges on rainforest regeneration following clearfelling by modelling the change in the density of the regeneration of the four dominant rainforest tree species (Nothofagus cunninghamii, Atherosperma moschatum, Phyllocladus aspleniifolius and Eucryphia lucida) with increasing distance from forest edge. We also assessed the influence on rainforest tree regeneration of prevailing wind direction, age of regeneration, characteristics of the mature edge vegetation and of the competing regenerating vegetation within the coupe. Distance from edge and age of coupe were highly significant (p < 0.01) effects in each of the species models. We found that the abundance of regeneration declined with increasing distance from edge for all four rainforest tree species, and with the exception of A. moschatum regeneration, increased with coupe age up to the age of 15 years. The abundance of N. cunninghamii and E. lucida, which are species with restricted seed dispersal, declined most steeply with increasing distance from the edge. A. moschatum, which is a species with the potential for long distance seed dispersal by wind, was more abundant than N. cunninghamii and E. lucida at distances greater than 20 m from coupe edges. More than 500 seedlings ha−1 were present at all distances from coupe edge for P. aspleniifolius, reflecting its capacity to germinate after disturbance from soil-stored and bird-dispersed seed. There were no significant differences in seedling density upwind or downwind of coupe edges, although the potential for dense regeneration of N. cunninghamii and E. lucida and for long distance dispersal of A. moschatum appeared to be greatest downwind of edges. Other variables that significantly affected the abundance of regeneration were the height of rainforest tree species in the edge vegetation (N. cunninghamii model), the cover of rainforest tree species in the edge vegetation (A. moschatum model) and the cover of competing eucalypt regeneration within the coupe (P. aspleniifolius model). The proportion of rainforest tree species that regenerated vegetatively was small (3.1%). We concluded that management which maintains mature mixed forest edges, or patches of mature forest within coupes, is likely to result in greater levels of rainforest regeneration and a more rapid shift towards pre-harvest composition following logging. We use our results to demonstrate that variable retention harvesting systems, such as aggregated retention or stripfelling, which reduce the distance to rainforest seed source, would result in a greater abundance of rainforest regeneration over a larger proportion of the coupe than current clearfell, burn and sow silviculture.  相似文献   

12.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

13.
14.
This paper estimates the difference in stand biomass due to shorter and lighter trees in southwest (SW) and southern Amazonia (SA) compared to trees in dense forests in central Amazonia (CA). Forest biomass values used to estimate carbon emissions from deforestation throughout, Brazilian Amazonia will be affected by any differences between CA forests and those in the “arc of deforestation” where clearing activity is concentrated along the southern edge of the Amazon forest. At 12 sites (in the Brazilian states of Amazonas, Acre, Mato Grosso and Pará) 763 trees were felled and measurements were made of total height and of stem diameter. In CA dense forest, trees are taller at any given diameter than those in SW bamboo-dominated open, SW bamboo-free dense forest and SA open forests. Compared to CA, the three forest types in the arc of deforestation occur on more fertile soils, experience a longer dry season and/or are disturbed by climbing bamboos that cause frequent crown damage. Observed relationships between diameter and height were consistent with the argument that allometric scaling exponents vary in forests on different substrates or with different levels of natural disturbance. Using biomass equations based only on diameter, the reductions in stand biomass due to shorter tree height alone were 11.0, 6.2 and 3.6%, respectively, in the three forest types in the arc of deforestation. A prior study had shown these forest types to have less dense wood than CA dense forest. When tree height and wood density effects were considered jointly, total downward corrections to estimates of stand biomass were 39, 22 and 16%, respectively. Downward corrections to biomass in these forests were 76 Mg ha−1 (∼21.5 Mg ha−1 from the height effect alone), 65 Mg ha−1 (18.5 Mg ha−1 from height), and 45 Mg. ha−1 (10.3 Mg ha−1 from height). Hence, biomass stock and carbon emissions are overestimated when allometric relationships from dense forest are applied to SW or SA forest types. Biomass and emissions estimates in Brazil's National Communication under the United Nations Framework Convention on Climate Change require downward corrections for both wood density and tree height.  相似文献   

15.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

16.
Selective logging is an important socio-economic activity in the Congo Basin but one with associated environmental costs, some of which are avoidable through the use of reduced-impact logging (RIL) practices. With increased global concerns about biodiversity losses and emissions of carbon from forest in the region, more information is needed about the effects of logging on forest structure, composition, and carbon balance. We assessed the consequences of low-intensity RIL on above-ground biomass and tree species richness in a 50 ha area in northwestern Gabon. We assessed logging impacts principally in 10 randomly located 1-ha plots in which all trees ?10 cm dbh were measured, identified to species, marked, and tagged prior to harvesting. After logging, damage to these trees was recorded as being due to felling or skidding (i.e., log yarding) and skid trails were mapped in the entire 50-ha study area. Allometric equations based on tree diameter and wood density were used to transform tree diameter into biomass.Logging was light with only 0.82 trees (8.11 m3) per hectare extracted. For each tree felled, an average of 11 trees ?10 cm dbh suffered crown, bole, or root damage. Skid trails covered 2.8% of the soil surface and skidding logs to the roadside caused damage to an average of 15.6 trees ?10 cm dbh per hectare. No effect of logging was observed on tree species richness and pre-logging above-ground forest biomass (420.4 Mg ha−1) declined by only 8.1% (34.2 Mg ha−1). We conclude from these data that with harvest planning, worker training in RIL techniques, and low logging intensities, substantial carbon stocks and tree species richness were retained in this selectively logged forest in Gabon.  相似文献   

17.
Semiarid woodlands dominated by Prosopis caldenia thrive at the dry edge of the Argentinean Pampas. Deforestation and increased precipitation have driven sustained water table level rise in the region that are likely to affect the dynamics of remnant woody vegetation patches. Here we analyze the effect of climate and groundwater level on the establishment, growth and death of P. caldenia located on lowland (current water table <0.5 m deep) and upland (current water table 8 m deep) positions within rolling sandy landscape. Standard dendrochronological techniques were applied on 98 cross sections and cores of P. caldenia trees. Results allowed us to estimated that trees in the lowland established a few years earlier than in the upland (1929 vs. 1936) and died between 1991 and 2002, while trees in higher positions are still alive. As a result of a faster growth in the lowland, maximum mean basal area increment took place earlier (1950s vs. 1990s) and achieved a higher mean value than in the upland (41.63 vs. 37.41 mm2). While mean annual chronologies were not associated across stands, an opposite highly significant association was found for the mean growth trends suggesting long-term effects of water table depths on growth. We found a different association between mean annual growth and climate, with lowland trees showing a negative response to precipitation before and during the growing season, and upland trees displaying a positive response to summer rainfall inputs. Temperature at the end of the growing season had a positive effect in the lowland whereas temperature during the growing season had a positive effect in the upland. These results show how groundwater can induce diverging sensitivity of forest growth and survival to climate variability, enhancing growth at optimum depths (2-8 m in our study) but depressing it or even killing trees when it approaches the surface (<2 m in our study). Groundwater dynamic should be considered in forest management and conservation strategies in semiarid woodlands in Central Argentina.  相似文献   

18.
While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ~50% greater for edge than interior trees, compared with ~200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.  相似文献   

19.
Silvicultural approaches at forest plantations with wider initial tree spacing have created potential for increased understory vegetation growth in response to increased light and greater nutrient resources. In consequence understory vegetation can fill a more important role in forest ecosystems, especially in interactions (competition or facilitation) between understorey vegetation and forests trees that might affect tree growth and nutrition. Considerable research has been carried out on plant interference. However, the experimental designs used in these studies vary from one study to another, and from species to species depending on the aims, objectives and practicalities of the studies. Thus there is no optimum design for competition experiments. This review discusses designs available in studying plant interferences in a glasshouse, particularly the effects of below-ground interaction of understorey vegetation and forest trees.  相似文献   

20.
Leave patches, uncut areas in a harvested forest, may conserve herbaceous layer species that decline after forest clearcutting. They may also serve to maintain source populations for the recolonization of the harvest area. The main objective of this study is to characterize the short-term response of the herbaceous layer to clearcut harvesting disturbance within and adjacent to leave patches. Four experimental 1 ha patches and two uncut references were established. Within each patch or reference, belts of five 1 m2 quadrats were placed at 50 m and 5 m outside the patch, at 0 m (edge), and at 25 m, 35 m, and 50 m (centre) inside. These belts of quadrats were replicated at all four aspects (North, South, East, and West). Ground vegetation was sampled yearly for 1 year before harvest and 3 years after harvest in the experimental patches and for 2 consecutive years in the references. Some common residual species declined significantly in the clearcuts, but remained stable inside the patches in the short term (3 years after harvest). Overall species composition changed little in the patch interior and edge after harvest. Colonizing species (those that appeared in quadrats after harvest) in the patch exterior were predominantly early-seral species, whereas colonizers in the patch interior tended to be shade-tolerant forest species. Species were grouped a priori based on two habitat preferences (amounts of canopy cover and disturbed substrate). Species characteristic of a habitat with closed canopy and undisturbed substrates that decreased significantly over time in the patch exterior were negatively correlated with the amount of exposed mineral soil and open canopy. Species characteristic of a habitat with open canopy and disturbed substrates that increased significantly at the patch exterior showed a positive correlation with the amount of exposed mineral soil and open canopy. No species’ habitat preference groups declined significantly in the patch interior or edge over time. Based on species’ responses to forest operations, it appears that at least the common forest species are maintained in the short term within leave patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号