首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jack pine and trembling aspen are boreal tree species that are found growing either in naturally regenerated mono-specific stands, or in mixed-wood stands. We conducted a field survey and a manipulative field study to test the productivity-diversity hypothesis, which predicts that mixed-wood stands are more likely to occur on fertile soils, or following fertilization. We surveyed 44 mixed-wood stands and found 43 of these occurring on fertile clay deposits, and only one occurring on a nutrient poor till deposit. By contrast, the area surveyed comprised 45% clay and 55% till deposits. In a second study, we conducted a five year fertilization and brushing trial in a recently burned area dominated by jack pine saplings with patches of regenerating trembling aspen. Fertilization without brushing improved the growth and recruitment of aspen stems, but had no effect on jack pine growth and recruitment. Fertilization + brushing increased the growth of jack pine. Brushing the aspen, with or without fertilization, resulted in higher recruitment of jack pine. We conclude that soil fertility controls the mixing of jack pine with trembling aspen, that fertilization increases the likelihood of encroachment of aspen into areas formerly dominated by jack pine, and that brushing along with fertilization is necessary to promote jack pine growth.  相似文献   

2.
Fire suppression over the last century has increased conifer expansion and dominance in aspen-conifer forests, which appears to be a driving force behind aspen decline in some areas. The primary objective of this study was to examine how increasing conifer dominance affects aspen regeneration vigor following the return of fire. The influence of physiographic features and herbivory on aspen regeneration vigor were also examined. The study was conducted in the Sanford fire complex located in the Dixie National Forest in southern Utah, USA, where more than 31,000 hectares burned in the summer of 2002. Seven years after the burn (at 66 locations) we measured aspen regeneration density and height as response variables and former stand composition and density (the burned trees were still standing), soil characteristics, slope, aspect and presence or absence of herbivory as independent variables. Aspen regeneration (root suckering) densities ranged from <500 to 228,000 stems/hectare with an average of 37,000 stems/hectare. Post-fire aspen regeneration density was most strongly correlated with pre-fire stand successional status (as measured by stand composition and species abundance), with percent conifer abundance (R2 = −0.55) and overstory aspen density (R2 = + 0.50) being the most important. Average aspen suckering densities ranged from approximately 60,000 stems/hectare in what were relatively pure aspen stands (>90% aspen) to less than 5000 stems/hectare in stands where conifer abundance was greater than 90%. Soil C, N, and P showed positive correlations (R2 = 0.07 to 0.17) with aspen regeneration vigor, while soil texture had a relatively weak influence on sucker regeneration. Aspen regeneration densities were 15% lower on north facing aspects compared to east, west and south facing aspects with slope steepness showing no correlation with regeneration vigor. Regeneration density was significantly lower (8%) at sites with evidence of herbivory versus sites where herbivory was absent. Overall, the aspen regeneration response in the Sanford fire complex was strong despite high wildlife densities, which may be related to disturbance size. Where the maintenance of aspen is desired in the landscape we recommend promoting fire when the percentage of overstory conifer stems is greater than 80% or overstory aspen density is less than 200 overstory stems/hectare.  相似文献   

3.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39 year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

4.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39-year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

5.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

6.
To facilitate ecosystem-specific management of juvenile mixtures of lodgepole pine (Pinus contorta Dougl. Ex Loud. Var. latifolia Engelm.) and trembling aspen (Populus tremuloides Michx.) in south-central British Columbia, we compared the characteristics of pine–aspen competition between a moist sub-boreal spruce and a dry interior Douglas-fir ecosystem. A total of 252 lodgepole pine and their neighbourhoods were examined across four untreated stands, each of which was sampled three times between ages 12 and 24 years. Pine diameter and height decreased with increasing density of trembling aspen at least as tall as the target pine (tall aspen) in both ecosystems. Regression analysis was used to examine the ability of tall aspen density and four competition indices (CIs) to predict pine size. Tall aspen density, which is easily assessed in the field, accounted for 63% and 69% of the variation in pine diameter and height in 20–24 year-old stands, respectively. The most successful competition index, based on the basal diameter ratio (BDR) of trembling aspen to pine accounted for, respectively, 78% and 73% of the variation. In the same stands, R2 values were 1–5% lower when tall aspen density and BDR at age 15–19 years were used to predict size of 20–24-year-old pine.  相似文献   

7.
Although the removal or addition of understory vegetation has been an important forest management practice in forest plantations, the effects of this management practice on soil respiration are unclear. The overall objective of this study was to measure and model soil respiration and its components in a mixed forest plantation with native species in south China and to assess the effects of understory species management on soil respiration and on the contribution of root respiration (Rr) to total soil respiration (Rs). An experiment was conducted in a plantation containing a mixture of 30 native tree species and in which understory plants had been removed or replaced by Cassia alata Linn. The four treatments were the control (Control), C. alata addition (CA), understory removal (UR) and understory removal with C. alata addition (UR + CA). Trenched subplots were used to quantify Rr by comparing Rs outside the 1-m2 trenched subplots (plants and roots present) and inside the trenched subplots (plants and roots absent) in each treatment. Annual soil respiration were modeled using the values measured for Rs, soil temperature and soil moisture. Our results indicate that understory removal reduced Rs rate and soil moisture but increased soil temperature. Regression models revealed that soil temperature was the main factor and soil moisture was secondary. Understory manipulations and trenching increased the temperature sensitivity of Rs. Annual Rs for the Control, CA, UR and UR + CA treatments averaged 594, 718, 557 and 608 g C m−2 yr−1, respectively. UR decreased annual Rs by 6%, but CA increased Rs by about 21%. Our results also indicate that management of understory species increased the contribution of Rr to Rs.  相似文献   

8.
We used manual cutting to manipulate trembling aspen (Populus tremuloides Michx.) density and spatial arrangement in relation to crop lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) on two sites in contrasting dry, cool to cold ecosystems of south-central British Columbia. In the dry, cool interior Douglas-fir ecosystem (IDFdk3), we reduced the density of tall aspen (aspen at least as tall as target pine) to 0 (broadcast removal), 1000, 2500, or 4000 stems/ha when the planted lodgepole pine was 6 years old. Eight years later, pine height/diameter ratio (HDR) was significantly lower in the broadcast removal and 1000 stem/ha treatments than in the control. There were no other significant growth responses and pine survival and vigour were good regardless of treatment. In contrast, in a dry, cold sub-boreal pine spruce ecosystem (SBPSxc) where treatments were applied at a stand age of 11 years, naturally regenerated lodgepole pine stem diameter increased significantly in the broadcast removal treatment relative to the untreated control within 2 years. After 4 years, HDR had declined significantly relative to the control where tall aspen density was ≤1000 stems/ha. There were no significant pine responses where 2500 tall aspen stems/ha were retained or where tall aspen were removed only within a 1-m radius around pine. The greater difference in height (height differential) between aspen and pine at the SBPSxc than the IDFdk3 site may partly explain the differing response of lodgepole pine to treatment. Trends of decreasing sucker density with increasing aspen retention were evident at both sites, but differences were significant (p ≤ 0.05) only at the SBPSxc site.  相似文献   

9.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

10.
The Forest Inventory and Analysis (FIA) unit of the U.S. Forest Service has collected, compiled, and made available plot data from three measurement periods (identified as 1977, 1990, and 2003, respectively) within Minnesota. Yet little if any research has compared the relative utility of these datasets for developing empirical yield models. This paper compares these and other subdatasets in the context of fitting a basal area (B) yield model to plot data from the aspen (Populus tremuloides Michx.) forest type. In addition, several models and fitting methods are compared for their applicability and stability over time. Results suggest that the three parent datasets, along with their subdatasets, provide very similar three parameter B yield model prediction capability, but as model complexity increases, variability in coefficient estimates increases between datasets. The absence of data for older aspen stands and the inherent noise within B data prevented the exact determination of an overall best model. However, the model B = b1Sb2(1 − exp( − b3A)) with site index (S) and stand age (A) as predictors was found consistently among the highest in precision and stability. Additionally, nonlinear least squares and nonlinear mixed-effects fitting procedures produced similar model fits, but the latter is preferred for its potential to improve model projections. The results indicate little practical difference between datasets from different time periods and different sizes when used for fitting the models. Additionally, these results will likely extend to other states or regions with similar remeasurement data on aspen and other forest types, thus facilitating the development of other ecological models focused on forest management.  相似文献   

11.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

12.
We compared different potential indicators of nitrogen (N) availability across 50 beech forests growing on a wide range of soils in northeastern France. Among the 50 sites measured, high elevation acidic soils had the highest potential net N mineralization in the A horizon (PNM0–5 cm), while low elevation neutral and calcareous soils had the lowest (PNM0–5 cm). We found that (PNM0–5 cm) was negatively correlated with soil pH (R2 = 0.47***) and positively correlated with microbial C/N (R2 = 0.34***). However, when high elevation sites were excluded from analyses, the relationship between PNM0–5 cm and soil pH as well as microbial C/N became weaker (R2 = 0.23*** for both variables). We found no relationship between PNM0–5 cm and organic N concentration, soil C/N, or vegetation-based indices for N availability (Ellenberg N and Ecoplant C/N). Bivariate linear regression analyses showed that 69% of the variability in percent nitrification (%Nitrif) was explained by both soil pH (0–5 cm) and soil C/N. Percent nitrification was strongly correlated with vegetation-based indices for N availability. The Ellenberg N and R (pH index) values together explained 74% of the variation in %Nitrif. No relationship was found between %Nitrif and soil δ15N (natural abundance in 15N). Of the 76 plant species evaluated, the probability of presence of 61 plant species was significantly correlated with %Nitrif while the probability of presence of 27 plant species only was correlated with PNM0–5 cm. From these results, we believe that the use of plant community composition or the combination of soil pH and C/N are robust indicators of N availability.  相似文献   

13.
Season of harvest has often been suggested as a driver for the erratic success of aspen (Populus tremuloides) sucker regeneration, partially due to root carbohydrate reserves and soil conditions at the time of harvest. A field experiment in western Manitoba, Canada, assessed root suckering and root carbohydrates of aspen in response to season of harvest and machine traffic. Six sites (120 m × 120 m) were selected within two large mature aspen stands slated for summer harvest. Plots (50 m × 50 m) were hand-felled (without machine traffic) in mid-summer, late summer, winter, and one plot was left uncut as a control. Season of cut with no traffic had no effect on sucker density, height or leaf dry mass per sucker. During the dormant season, root starch reserves were highest in the winter cut plots, however, just prior to suckering, this difference in carbohydrate reserves among the three seasons of harvest disappeared and by the end of the first growing season root reserves in all three seasons of cut had recovered to near control levels. Adjacent plots that were conventionally harvested in the summer and impacted by logging traffic had similar sucker densities but had 19% less height growth of suckers and 29% less leaf dry mass per sucker compared to suckers in plots harvested at the same time without traffic. After one growing season, root carbohydrate levels were similar whether or not machine traffic was used; however, the reduction in leaf dry mass in plots with machine traffic could have negative implications for carbohydrate accumulation and growth. The study suggests that the phenological state of the mature aspen plays a very small role in aspen regeneration and that harvesting practices and site conditions are likely the main drivers of aspen regeneration success.  相似文献   

14.
The exotic invasive insect, hemlock woolly adelgid (Adelges tsugae Annand), is causing mortality in eastern hemlocks (Tsuga canadensis [L.] Carr.) throughout the eastern U.S. Because hemlocks produce dense shade, and are being replaced by hardwood species that produce less shade, their loss may increase understory light levels. In the southern Appalachians, increases in light could increase stream temperatures, threatening species such as brook trout (Salvelinus fontinalis). We studied changes in light and stream temperature with eastern hemlock decline at a headwater southern Appalachian brook trout stream. Our results indicate that stream light levels have increased significantly with adelgid infestation. Leaf-on light levels are currently significantly higher (P < 0.02) in plots containing high basal areas of hemlock (mean global site factor (GSF)(SE) = 0.267(0.01)) compared with plots containing no hemlock (mean GSF(SE) = 0.261(0.01)), suggesting that increases in light have occurred with hemlock decline. The Normalized Difference Vegetation Index (NDVI), a remotely sensed metric of vegetation density, decreased with hemlock decline from 2001 to 2008. In 2001, NDVI showed no relationship (R2 = 0.003; F = 0.14; P = 0.71) with hemlock basal area, but by 2008, there was a significant negative relationship (R2 = 0.352; F = 19.55; P < 0.001) between NDVI and hemlock basal area. A gap experiment showed that light levels may increase by up to 64.7% more (mean increase in GSF = 27.5%) as hemlocks fall, creating gaps in the canopy. However, stream temperatures did not increase with hemlock decline during the study period, and we found that ground water inputs have a stronger influence on water temperature than light levels at this site. Linear regression showed a significant negative relationship between water temperature and proximity to ground water sources (R2 = 0.451; F = 13.14; P = 0.002), but no relationship between water temperature and light levels (R2 < 0.02; P > 0.05). In addition, by comparing light levels between plots containing hemlock and those containing only hardwoods, we found that if hemlocks are replaced by hardwoods, light levels under an all-hardwood canopy (mean GSF(SE) = 0.240(0.005)) are unlikely to be higher than they are under the current forest (mean GSF(SE) = 0.254(0.007)). These results suggest that loss of hemlock along southern Appalachian headwater streams could have short-term impacts on light levels, but that long-term changes in light levels, increases in water temperature, and adverse effects on brook trout may be unlikely.  相似文献   

15.
The influence of herbaceous and woody vegetation control, either singly or in combination, on leaf gas exchange, water status, and nutrient relations of planted eastern white pine (Pinus strobus L.) seedlings was examined in a central Ontario clearcut over four consecutive growing seasons (GSs). Net carbon assimilation (An), leaf conductance to water vapour (Gwv), water use efficiency (WUE), and midday leaf water potential (ψm) were measured periodically during the second to fourth GSs of vegetation control treatments, while leaf nutrient relations were examined in GS five. Leaf An and Gwv were reduced (p ≤ 0.05) in the presence of herbaceous vegetation in GS two, by both herbaceous and woody vegetation in GS three, and only by woody vegetation (largely trembling aspen (Populus tremuloides Michx.)) in GS four. Leaf WUE was increased (p ≤ 0.05) in all three GSs in which herbaceous vegetation control was applied and where woody vegetation provided partial shading of planted white pine. Leaf water status was comparatively less responsive to vegetation control treatments, but leaf ψm was increased (p ≤ 0.05) in the presence of woody vegetation in GSs two and four, likely due to shading and reduced atmospheric evaporative demand of the white pine seedling environment. Within a given GS, the effects of vegetation control on An, Gwv, and ψm were strongly linked to treatment-induced changes in total vegetative cover, and light and soil moisture availability. Seedling height, diameter, and volume growth rates were positively correlated with An and WUE in GSs two and three, but less so in GS four. Vector analysis suggested that herbaceous competition induced foliar N, P, and K deficiencies in five-year-old white pine seedlings while competition from aspen resulted in foliar Ca deficiency.  相似文献   

16.
Species choice is potentially an important management decision for increasing carbon stocks in forest ecosystems. The substitution of a slow-growing hardwood species (Quercus petraea) by a fast-growing conifer plantation (Pinus nigra subsp. laricio) was studied in central France. Simulations of carbon stocks in tree biomass were conducted using stand growth models Fagacées for sessile oak and PNL for Corsican pine. The changes in soil carbon were assessed using the Century model and data from two European soil monitoring networks: 16 km × 16 km grid and RENECOFOR. Carbon in wood products was assessed with life cycle analysis and lifespan of final products. However, only carbon stocks and their variation were accounted for: effects of energy-consuming materials or fossil fuel substitution are excluded from the analysis. To compare the growth of these two types of forest stands, an important part of the study was to assess the productivity of both species at the same site, using National Forest Inventory data.  相似文献   

17.
Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar nutrients and loblolly pine growth are examined on mineral and organic sites on the North Carolina Lower Coastal Plain. Treatments include leaving forest slash on the surface and flat planting (control); V-shear and bedding (conventional), mulch forest slash followed by bedding (strip mulch) and mulch forest slash and till into the soil followed by bedding (strip mulch till). After eight years, mulching and/or tillage did not have a significant impact (p > 0.05) on soil bulk density or soil chemical properties (pH, cation exchange capacity, soil nutrients). Additionally, neither tree foliar nutrients nor stand volume were significantly impacted. However, significant effects were observed for soil phosphorus contents and stand volume between the control plots and the other treatment plots. For example, the mean stand volumes on the mineral site were 24.49 ± 1.28, 38.16 ± 2.90, 44.59 ± 3.07 and 46.96 ± 2.74 m3 ha−1 for the control, conventional, strip mulch and strip mulch till plots. These observations are more likely due to the effect of bedding rather than mulching or tillage of the forest slash. These results are consistent for the mineral and the organic sites. Considering the greater expense to install the mulch and tillage treatments, the lack of a treatment effect on soil carbon and nutrient stocks and tree growth does not justify these treatments on these sites.  相似文献   

18.
Scolytids have been studied more than any other group of forest insects, but most investigations have been restricted to only a few pest species. This bias hampers our understanding of variation in abundance and pest status. Even the simple question whether the abundance of scolytids can predicted by the same independent variables as their pest status is still a matter of debate. To explore this issue, we estimated their abundance using non-attracting flight-interception traps set in a wide range of forests across Czech Republic, Germany, and France. Pest status was taken from current literature. As independent variables, we considered host range, host abundance, and several traits of the considered species in linear models using generalized least squares with a correlation structure derived from the phylogenetic tree of the beetles. Host range was calculated as the root phylogenetic diversity index. The variation in the abundance across scolytids was well explained by resource-related parameters (R2 = 0.53). In contrast to abundance, the pest status was significantly related to species-specific traits, such as body size and maximum number of generations. However, the explained variance was much lower (R2 = 0.19). Although our analysis showed that abundance and pest score follow different patterns, we stress the importance of monitoring all species using non-selective traps. Considering the increasing global trade and the rapidly changing climate, such a broad ecological monitoring is necessary to detect new interactions and/or invading species that may influence our forests ecosystems.  相似文献   

19.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

20.
Quantitative information on the relationships between site quality and plantation productivity (dominated by the exotic species Pinus radiata) is required to achieve goals for sustainable forest production. Soil quality is a key component of site quality. A nationwide study of soil quality measurements is reported for 35 representative forest sites, covering a wide range of climatic and edaphic conditions found throughout New Zealand's plantation forest estate, representing most of the soils used for plantation forestry in New Zealand. The objectives of the study were to find the most important soil properties that discriminated among eight New Zealand Soil Orders and determine relationships between Soil Orders and early tree growth rates for P. radiata and Cupressus lusitanica. Soil physical and chemical properties were measured to identify key soil indicators of soil quality related to tree productivity. Tree growth was measured after four years on small plots planted at very high stand density (40 000 stems ha−1). A factorial design was used to examine the influence of three factors on tree productivity: two species, P. radiata D. Don (ectomycorrhizal) and C. lusitanica Miller (endomycorrhizal); with and without fertilizer; and low or high disturbance (soil compaction and/or topsoil scalping by machinery). Carbon content, Phosphorus (P) retention, and soil physical properties that index the degree of soil compactness were strongly correlated to Soil Order. These properties are similar to soil quality factors that correlated with tree growth. Discriminant analyses of soil quality parameters by Soil Order clustered soils based on P retention (phosphate absorption capacity), subsoil Carbon (C), and subsoil air capacity (volume % of voids at 10 kPa matric potential). Allophanic Soils and Podzols clustered (from plots of first versus second canonical variates) separately from the other Soil Orders, which were somewhat clustered on the second variate within a broad clustering on the first variate. Soil Orders were ranked for tree growth rates for both species: pumice Andisols > Inceptisols > tephric Andisols > Entisols > Ultisols > Spodosols (NZ classification: for P. radiata is Pumice > Brown > Pallic > Allophanic > Recent > Raw > Ultic > Podzol and for C. lusitanica Pumice > Pallic > Allophanic > Brown > Raw > Ultic > Recent > Podzol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号