首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight calves between 16 and 18 weeks of age that were seronegative to bovine viral diarrhea virus (BVDV), bovine leucosis virus and bovine immunodeficiency-like virus were infected (day 0) intranasally with the type 2 noncytopathogenic Canadian 24515 field isolate of BVDV in order to evaluate the effect of BVDV infection on certain clinical, hematological and immunological parameters. All virus-exposed animals developed fever and showed a significant (P < 0.05, 0.01 or 0.001) drop in the number of circulating leucocytes (neutrophils, lymphocytes and monocytes) by day 3 or 5 post-exposure (PE), which continued to the end of the experiment at day 12 PE. BVDV was consistently isolated from the peripheral blood buffy coat cells from day 5 PE, and also from selected tissues (spleen, thymus, mesenteric and submaxillary lymph nodes, small intestine, lungs and thyroid gland) that were collected at the time of euthanasia of the animals at day 12 PE. Diminished significant (P < 0.05) percentages of peripheral blood mononuclear cells (PBMCs) expressing at their surface either B7 and MHC II molecules were observed in virus-exposed calves at days 7, 10 and/or 12 PE, when compared to virus-nonexposed control calves (n = 5). However, no changes in the percentages of PBMCs expressing either B4 or MHC I molecules were observed throughout the experiment. Finally, a significant (P < 0.05 or 0.01) enhanced phagocytic capability of the PBMCs, as analyzed by flow cytometry, was observed in virus-exposed animals at days 3, 5, 7, 10 and 12 PE, when compared to control calves. These results demonstrated the virulence of the 24515 isolate of BVDV in 4 to 4.5 month-old calves, and suggest that type 2 BVDV infection in calves is associated with dysregulation of certain immunological functions.  相似文献   

2.
The aim of the experiment was to study whether bovine herpesvirus 1 (BHV1) marker vaccine batches known to be contaminated with bovine virus diarrhoea virus (BVDV) type 1 could cause BVD in cattle. For this purpose, four groups of cattle were used. The first group (n = 4 calves, the positive control group), was vaccinated with vaccine from a batch contaminated with BVDV type 2. The second group (n = 4 calves, the negative control group), was vaccinated with vaccine from a batch that was not contaminated with BVDV. The third group (n = 39 calves), was vaccinated with a vaccine from one of four batches contaminated with BVDV type 1 (seronegative experimental group). The fourth group (n = 6 seropositive heifers), was vaccinated with a vaccine from one of three batches known to be contaminated with BVDV type 1. All cattle were vaccinated with an overdose of the BHV1 marker vaccine. At the start of the experiment, all calves except those from group 4 were seronegative for BVDV and BHV1. The calves from group 4 had antibodies against BVDV, were BVDV-free and seronegative to BHV1. After vaccination, the positive control calves became severely ill, had fever for several days, and BVDV was isolated from nasal swabs and white blood cells. In addition, these calves produced antibodies to BVDV and BHV1. No difference in clinical scores of the other groups was seen, nor were BVDV or BVDV-specific antibody responses detected in these calves; however, they did produce antibodies against BHV1. The remainder of each vaccine vial used was examined for the presence of infectious BVDV in cell culture. From none of the vials was BVDV isolated after three subsequent passages. This indicates that BVDV was either absent from the vials or was present in too low an amount to be isolated. Thus vaccination of calves with vaccines from BHV1 marker vaccine batches contaminated with BVDV type 1 did not result in BVDV infections.  相似文献   

3.
4.
OBJECTIVE: To evaluate platelet aggregation responses in calves experimentally infected with a thrombocytopenia-inducing type II bovine viral diarrhea virus (BVDV) isolate (BVDV 890). ANIMALS: 9 neonatal male Holstein calves. PROCEDURE: 5 calves were inoculated with BVDV 890, and 4 were used as controls. Platelet aggregation studies and attempts to isolate BVDV from platelets were performed 2 days before, the day of, and every 2 days for 12 days after inoculation. Platelet function was assessed by means of optical aggregometry, using adenosine diphosphate and platelet-activating factor as agonists. Bovine viral diarrhea virus was isolated from purified platelet preparations by use of an immunoperoxidase monolayer assay. RESULTS: Maximum percentage aggregation and slope of the aggregation curve decreased over time in calves infected with BVDV. Bovine viral diarrhea virus was not isolated from platelets from control calves, but it was isolated from infected calves from 4 through 12 days after inoculation. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that platelet function may be depressed in calves infected with type II BVDV. Although the mechanism for altered platelet function was not determined, it likely involved an increase in the percentage of aged platelets in the circulation, a direct virus-platelet interaction, or an indirect virus-platelet interaction. Platelet dysfunction, in addition to thrombocytopenia, may contribute to the hemorrhagic syndrome associated with acute type II BVDV infection in calves.  相似文献   

5.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

6.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


7.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

8.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

9.
Neutralising serum antibodies against bovine virus diarrhoea virus (BVDV) were monitored for three years in 35 cattle that were infected with the virus as calves; 24 of the calves were inoculated intramuscularly or intranasally, and 11 contracted the infection naturally. All the experimentally infected calves seroconverted within 14 to 28 days after inoculation, and all the animals still had high serum levels of antibodies to BVDV three years after infection. Determinations of antibody levels in milk and blood samples excluded the possibility that the calves had been reinfected with BVDV during the study.  相似文献   

10.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in 2 groups of stocker calves with acute respiratory disease. Both studies used calves assembled after purchase from auction markets by an order buyer and transported to feedyards, where they were held for approximately 30 d. In 1 study, the calves were mixed with fresh ranch calves from a single ranch. During the studies, at day 0 and at weekly intervals, blood was collected for viral antibody testing and virus isolation from peripheral blood leukocytes (PBLs), and nasal swabs were taken for virus isolation. Samples from sick calves were also collected. Serum was tested for antibodies to bovine herpesvirus-1 (BHV-1), BVDV1a, 1b, and 2, parainfluenza 3 virus (PI3V), and bovine respiratory syncytial virus (BRSV). The lungs from the calves that died during the studies were examined histopathologically, and viral and bacterial isolation was performed on lung homogenates. BVDV was isolated from calves in both studies; the predominant biotype was noncytopathic (NCP). Differential polymerase chain reaction (PCR) and nucleic acid sequencing showed the predominant subtype to be BVDV1b in both studies. In 1999, NCP BVDV1b was detected in numerous samples over time from 1 persistently infected calf; the calf did not seroconvert to BVDV1a or BVDV2. In both studies, BVDV was isolated from the serum, PBLs, and nasal swabs of the calves, and in the 1999 study, it was isolated from lung tissue at necropsy. BVDV was demonstrated serologically and by virus isolation to be a contributing factor in respiratory disease. It was isolated more frequently from sick calves than healthy calves, by both pen and total number of calves. BVDV1a and BVDV2 seroconversions were related to sickness in selected pens and total number of calves. In the 1999 study, BVDV-infected calves were treated longer than noninfected calves (5.643 vs 4.639 d; P = 0.0902). There was a limited number of BVDV1a isolates and, with BVDV1b used in the virus neutralization test for antibodies in seroconverting calves' serum, BVDV1b titers were higher than BVDV1a titers. This study indicates that BVDV1 strains are involved in acute respiratory disease of calves with pneumonic Mannheimia haemolytica and Pasteurella multocida disease. The BVDV2 antibodies may be due to cross-reactions, as typing of the BVDV strains revealed BVDV1b or 1a but not BVDV2. The BVDV1b subtype has considerable implications, as, with 1 exception, all vaccines licensed in the United States contain BVDV1a, a strain with different antigenic properties. BVDV1b potentially could infect BVDV1a-vaccinated calves.  相似文献   

11.
OBJECTIVE: To determine the effect of maternally derived antibodies on induction of protective immune responses against bovine viral diarrhea virus (BVDV) type II in young calves vaccinated with a modified-live bovine viral diarrhea virus (BVDV) type I vaccine. DESIGN: Blinded controlled challenge study. ANIMALS: 24 neonatal Holstein and Holstein-cross calves that were deprived of maternal colostrum and fed pooled colostrum that contained a high concentration of (n = 6) or no (18) antibodies to BVDV. PROCEDURE: At 10 to 14 days of age, 6 seropositive and 6 seronegative calves were given a combination vaccine containing modified-live BVDV type I. All calves were kept in isolation for 4.5 months. Six calves of the remaining 12 untreated calves were vaccinated with the same combination vaccine at approximately 4 months of age. Three weeks later, all calves were challenged intranasally with a virulent BVDV type II. RESULTS: Seronegative unvaccinated calves and seropositive calves that were vaccinated at 2 weeks of age developed severe disease, and 4 calves in each of these groups required euthanasia. Seronegative calves that were vaccinated at 2 weeks or 4 months of age developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that a single dose of a modified-live BVDV type-I vaccine given at 10 to 14 days of age can protect susceptible young calves from virulent BVDV type II infection for at least 4 months, but high concentrations of BVDV-specific maternally derived antibodies can block the induction of the response.  相似文献   

12.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

13.
Altered platelet function has been reported in calves experimentally infected with type II bovine viral diarrhea virus (BVDV). The purpose of the present study was to further evaluate the ability of BVDV isolates to alter platelet function and to examine for the presence of a virus-platelet interaction during BVDV infection. Colostrum-deprived Holstein calves were obtained immediately after birth, housed in isolation, and assigned to 1 of 4 groups (1 control and 3 treatment groups). Control calves (n = 4) were sham inoculated, while calves in the infected groups (n = 4 for each group) were inoculated by intranasal instillation with 10(7) TCID50 of either BVDV 890 (type II), BVDV 7937 (type II), or BVDV TGAN (type I). Whole blood was collected prior to inoculation (day 0) and on days 4, 6, 8, 10, and 12 after inoculation for platelet function testing by optical aggregometry by using adenosine diphosphate and platelet activating factor. The maximum percentage aggregation and the slope of the aggregation curve decreased over time in BVDV-infected calves; however, statistically significant differences (Freidman repeated measures ANOVA on ranks, P < 0.05) were only observed in calves infected with the type II BVDV isolates. Bovine viral diarrhea virus was not isolated from control calves, but was isolated from all calves infected with both type II BVDV isolates from days 4 through 12 after inoculation. In calves infected with type I BVDV, virus was isolated from 1 of 4 calves on days 4 and 12 after inoculation and from all calves on days 6 and 8 after inoculation. Altered platelet function was observed in calves infected with both type II BVDV isolates, but was not observed in calves infected with type I BVDV. Altered platelet function may be important as a difference in virulence between type I and type II BVDV infection.  相似文献   

14.
OBJECTIVE: To determine whether passively acquired antibodies prevent development of a protective immune response to live virus in calves. ANIMALS: 18 calves. PROCEDURES: Calves were caught immediately after birth and tested free of bovine viral diarrhea virus (BVDV) and serum antibodies against BVDV. Within 48 hours, 12 calves were fed colostrum that contained antibodies against BVDV and 6 calves received BVDV antibody free milk replacer. Three milk replacer fed and 6 colostrum fed calves were exposed to virulent BVDV2-1373 at 2 to 5 weeks of life when passively acquired serum antibody titers were high. After serum antibody titers against BVDV had decayed to undetectable concentrations (at 7 to 9 months of age), the 3 remaining milk replacer fed calves, 6 colostrum fed calves previously exposed to BVDV2-1373, and 6 colostrum fed calves that had not been exposed to the virus were inoculated with BVDV2-1373. RESULTS: Passively acquired antibodies prevented clinical disease in inoculated colostrum fed calves at 2 to 5 weeks of life. Serum antibody titers did not increase in these calves following virus inoculation, and serum antibody titers decayed at the same rate as in noninoculated colostrum fed calves. Inoculated colostrum fed calves were still protected from clinical disease after serum antibody titers had decayed to nondetectable concentrations. Same age colostrum fed calves that had not been previously exposed to the virus were not protected. CONCLUSIONS AND CLINICAL RELEVANCE: A protective immune response was mounted in calves with passive immunity, but was not reflected by serum antibodies titers. This finding has implications for evaluating vaccine efficacy and immune status.  相似文献   

15.
The objective of this study was to demonstrate the efficacy of a modified-live virus (MLV) vaccine in protecting fetuses from infection with type 1 or type 2 Bovine viral diarrhea virus (BVDV) when pregnant heifers were challenged at approximately 170 d of gestation with noncytopathic field isolates. The 83 pregnant heifers had been bred naturally 4 wk after vaccination. Fetuses were collected 60 d after BVDV type 2 challenge, and newborn calves were collected before colostrum intake after BVDV type 1 challenge. Protection was determined by measuring the serum neutralizing (SN) antibody response in the fetus or calf and by virus isolation from thymus, lung, spleen, and kidney tissue samples. There was a measurable SN antibody response to BVDV in all the fetuses and calves of the control heifers, which had received a placebo vaccine. However, only 4 of 22 calves and 7 of the 28 fetuses of the MLV-vaccinated heifers demonstrated SN antibody after BVDV challenge. Type 1 BVDV was isolated from tissue samples of 5 of the 12 calves of control heifers and none of 22 calves of the MLV-vaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated from tissue samples of 17 of the 18 fetuses of the control heifers and 2 of the 28 fetuses of the MLV-vaccinated heifers challenged with type 2 BVDV. The results of this study demonstrate that the MLV vaccine reduces the fetal infection rate by at least 82% for BVDV type 1 and by 75% for BVDV type 2 when heifers are exposed to highly fetotrophic BVDV at 170 d of gestation.  相似文献   

16.
Eight colostrum-deprived calves aged 8-12 weeks were inoculated intranasally with a non-cytopathic strain of bovine viral diarrhoea virus (BVDV) genotype-1 and the effects on the hepatic immune response were studied. Two calves were sacrificed at each of 3, 6, 9 and 14 days post-inoculation (dpi) and two uninoculated animals were used as negative controls. BVDV was detected in hepatic macrophages and monocytes from 3 to 14dpi and in Küpffer cells (KCs) from 6 to 14dpi. Increases in the numbers of MAC387(+) KCs and monocytes, but not interstitial macrophages, differentiated by morphological features, were evident in the liver following inoculation with BVDV. There was a substantial increase in the number of monocytes positive for tumour necrosis factor (TNF)-α, but only small increases in the numbers of TNF-α(+) KCs and interstitial macrophages and interleukin (IL)-6(+) monocytes, KCs and interstitial macrophages. There was an increase in the number of interstitial CD3(+) T lymphocytes in the liver, but no substantial changes in the numbers of circulating CD3(+) T lymphocytes, interstitial or circulating CD4(+) or CD8(+) T lymphocytes, or CD79αcy(+) B lymphocytes. Serum haptoglobin and serum amyloid A increased transiently at 12dpi. Upregulation of some pro-inflammatory cytokines by hepatic macrophages is evident in subclinical acute BVDV type 1 infection in calves.  相似文献   

17.
The relationship between bovine viral diarrhea virus (BVDV) infection and thrombocytopenia was studied in 18 veal calves experimentally infected with BVDV. All calves were free of BVDV, and 13 calves were free of serum neutralizing antibodies to BVDV before virus inoculation. Calves were inoculated at approximately 10 days of age, and platelet counts were monitored over a period of several weeks. Ten additional calves housed in close proximity were kept as uninoculated controls. A profound decrease in platelet counts by 3 to 11 days after inoculation was seen in all calves that had neutralizing antibody titers less than 1:32 before infection. Severe thrombocytopenia (less than 5,000 platelets/microliter) was seen in 12 calves, 11 of which also developed hemorrhages. Necropsy findings in 3 severely thrombocytopenic calves that died included multiple hemorrhages throughout the body. Calves that recovered had increased platelet counts, and in most instances, a corresponding increase in neutralizing antibody titers to BVDV. At 11 days after inoculation, BVDV was detected on platelets by use of immunofluorescence, but evidence of surface-bound immunoglobulin was not found. The results suggest that a nonimmunoglobulin-mediated method of platelet destruction or sequestration develops as a sequela to BVDV infection.  相似文献   

18.
The cytopathic (CP) TVM-2 strain of bovine viral diarrhea virus (BVDV) induced in calves a severe disease, characterized by the clinical picture which is usually reported for the acute primary infection observed under natural conditions. In contrast, the calves inoculated with a different biotype of BVDV, the non-cytopathic (NCP) New York-1 strain, remained clinically normal with the only evidence of virus replication in these calves being the recovery of the virus from their pharyngeal swabbings and blood and also the detection of specific neutralizing antibody in their serums. When calves were immunosuppressed with dexamethasone (DMS), they underwent an overt systemic disease of such a severity that in most of the cases it ended with the death of the animals. This result was obtained with either the CP and the NCP strain of BVDV. Finally, the mixed infection that was obtained in the calves with the CP and the NCP BVDV did not result in any particular unexpected pathological situation. It was speculated that the immunosuppressive activity of BVDV could be a property peculiar to certain isolates of the virus.  相似文献   

19.
Diarrhea, erosions and ulcers of the oral mucosa, with conjunctival and nasal discharges, were observed in six calves inoculated with a mixture of two laboratory cytopathic reference strains of bovine viral diarrhea virus (BVDV)-Oregon C24 V and NADL. The clinical picture was accompanied by biphasic body temperature elevation, transient leukopenia and a decrease in the number of lymphocytes. High dose of viruses and multiple routes of inoculation promoted the development of clinical and hematological changes typical for BVDV infection although laboratory strains were used.  相似文献   

20.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号