首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An experiment was conducted to determine the effects of high vs low body condition scores (BCS) produced by restricted feeding on reproductive characteristics, hormonal secretion, and leptin concentrations in mares during the autumnal transition and winter anovulatory period. Mares with BCS of 6.5 to 8.0 were maintained on pasture and/or grass hay, and starting in September, were full fed or restricted to produce BCS of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) by December. All but one mare with high BCS continued to ovulate or have follicular activity during the winter, whereas mares with low BCS went reproductively quiescent. Plasma leptin concentrations varied widely before the onset of restriction, even though all mares were in good body condition. During the experiment, leptin concentrations gradually decreased (P < 0.0001) over time in both groups, but were higher (P < 0.009) in mares with high vs low BCS after 6 wk of restriction, regardless of initial concentration. No differences (P > 0.1) between groups were detected for plasma concentrations of LH, FSH, TSH, GH, glucose, or insulin in samples collected weekly; in contrast, plasma prolactin concentrations were higher (P < 0.02) in mares with high BCS, but also decreased over time (P < 0.008). Plasma IGF-I concentrations tended (P = 0.1) to be greater in mares with high vs low BCS. The prolactin response to sulpiride injection on January 7 did not differ (P > 0.1) between groups. During 12 h of frequent blood sampling on January 12, LH concentrations were higher (P < 0.0001), whereas GH concentrations (P < 0.0001) and response to secretagogue (EP51389; P < 0.03) were lower in mares with high BCS. On January 19, the LH response to GnRH was higher (P < 0.02) in mares with high BCS; the prolactin response to TRH also was higher (P < 0.01) in mares with high BCS. In conclusion, nutrient restriction resulting in low BCS in mares resulted in a profound seasonal anovulatory period that was accompanied by lower leptin, IGF-I, and prolactin concentrations. All but one mare with high BCS continued to cycle throughout the winter or had significant follicular activity on the ovaries. Although leptin concentrations on average are very low in mares with low BCS and higher in well-fed mares, there is a wide variation in concentrations among well-fed mares, indicating that some other factor(s) may determine leptin concentrations under conditions of high BCS.  相似文献   

2.
Previous observations from this laboratory indicated that horses with high BCS could have resting plasma leptin concentrations ranging from low (1 to 5 ng/mL) to very high (10 to 50 ng/mL). To study the possible interactions of leptin secretion with other endocrine systems, BCS and plasma leptin concentrations were measured on 36 mares and 18 geldings. From mares and geldings that had a mean BCS of at least 7.5, five with the lowest (low leptin) and five with the highest (high leptin) leptin concentrations were selected. Jugular blood samples were collected twice daily for 3 d from the 20 selected horses to determine average resting hormone concentrations. Over the next 12 d, glucose infusion, injection of thyrotropin-releasing hormone (TRH), exercise, and dexamethasone treatment were used to perturb various hormonal systems. By design, horses selected for high leptin had greater (P < 0.0001) leptin concentrations than horses selected for low leptin (14.1 vs. 2.8 +/- 0.92 ng/mL, respectively). In addition, mares had greater (P = 0.008) leptin concentrations than geldings. Horses selected for high leptin had lower (P = 0.027) concentrations of GH but higher (P = 0.0005) concentrations of insulin and thriiodothyronine (T3) than those selected for low leptin. Mares had greater (P = 0.0006) concentrations of cortisol than geldings. There was no difference (P > 0.10) in concentrations of IGF-1, prolactin, or thyroid-stimulating hormone (TSH). Horses selected for high leptin had a greater (P = 0.0365) insulin response to i.v. glucose infusion than horses selected for low leptin. Mares had a greater (P = 0.0006) TSH response and tended (P = 0.088) to have a greater prolactin response to TRH than geldings; the T3 response was greater (P = 0.047) in horses selected for high leptin. The leptin (P = 0.0057), insulin (P < 0.0001), and glucose (P = 0.0063) responses to dexamethasone were greater in horses selected for high leptin than in those selected for low leptin. In addition, mares had a greater (P < 0.0001) glucose response to dexamethasone than geldings. Cortisol concentrations were decreased (P = 0.029) by dexamethasone equally in all groups. In conclusion, differences in insulin, T3, and GH associated with high vs. low leptin concentrations indicate a likely interaction of these systems with leptin secretion in horses and serve as a starting point for future study of the cause-and-effect nature of the interactions.  相似文献   

3.
Aging has been associated with declines in somatotropin and IGF-I levels as well as declines in immune function. To determine the effects of age and whether ST administration could reverse immunosenescence in horses, eight young and eight aged female standardbred horses were given 10 mg/d recombinant equine somatotropin (eST) or vehicle buffer for 49 d. Plasma IGF-I concentrations in both age groups were higher in eST-treated animals (P < 0.001), and higher in young eST-treated mares than in aged eST-treated mares during wk 4 to 7 (P < 0.001). There was a trend toward lower monocyte and granulocyte numbers (P = 0.07) in mares treated with eST. Aged mares treated with eST had lower lymphocyte numbers (P < 0.005). The percentage of CD4+ lymphocytes was higher in aged mares (P < 0.001), and the percentage of CD8+ lymphocytes was higher in young mares (P < 0.01). Lymphocyte proliferation in response to concanavalin A, phytohemagglutinin, and pokeweed mitogen was not lower in aged mares (P = 0.17, 0.17, and 0.13 respectively). Aged mares treated with eST showed a lower peak primary antibody response to keyhole limpet hemocyanin (P < 0.05). Young mares treated with eST showed a higher peak primary antibody response to keyhole limpet hemocyanin (P < 0.05). Like other species, horses exhibit similar signs of age-related declines in various immune parameters, but those of aging were not reversed with eST treatment.  相似文献   

4.
The effects of exogenous equine somatotropin (eST) administration on ovarian activity and plasma hormone levels were evaluated on horse and pony mares. The objectives of this study were to determine the effects of eST on follicular development and circulating concentrations of leutinizing hormone (LH), estradiol, progesterone, and insulin-like growth factor I (IGF-I) in cyclic horse and pony mares. Sixteen mares received daily injections (i.m.) of eST at a concentration of 25 micrograms/kg body weight on either Days 6 through 12 (Treatment A) or 13 through 19 (Treatment B) postovulation. In addition, contemporary mares were similarly given the carrier vehicle and served as controls (Treatments C and D). Blood samples were collected at 24-hr intervals and ultrasonographic evaluations were performed on the ovaries of each mare at 48-hr intervals beginning on the first day of treatment and ending either on the day of ovulation or 5 d postovulation. Circulating levels of insulin-like growth factor-I (IGF-I) were increased in treated mares by Day 3 post-treatment (P < 0.05). Also, mares in Treatment B exhibited a decrease in plasma estradiol concentrations (P < 0.05) when compared with control mares on Days 1 through 5 postovulation of the post-treated estrous cycle. In addition, circulating leutinizing hormone levels were different for mares in Treatment A compared with controls on Days--8 through--1 pre-ovulation (P < 0.05). All follicles present on the ovaries of each mare were measured and placed into one of five categories based on their diameter. Neither the mean number of follicles per size category > or = 8 mm in diameter nor the mean follicular diameter within each size category differed among treatment and control mares. However, eST treatment significantly increased the number of follicles < or = 7 mm on the ovaries of mares treated early in the estrous cycle when compared with control mares on Days 3 and 7 post-treatment and at the onset of standing estrus.  相似文献   

5.
Five experiments were performed to evaluate the effects of dexamethasone (DEX), gender, and testosterone on plasma leptin concentrations in horses. In experiment 1, plasma leptin, insulin, glucose, and IGF-1 concentrations were increased (P < 0.01) in stallions following five daily injections of DEX (125 microg/kg BW). In experiment 2, leptin concentrations increased (P < 0.01) in mares, geldings, and stallions following a single injection of DEX, and the response was greater (P < 0.01) in mares and geldings than in stallions. The gender effect was confounded by differences in body condition scores and diet; however, based on stepwise regression analysis, both BCS and gender were significant sources of variation in the best fit model for pre-DEX leptin concentrations (R(2) = 0.65) and for maximum leptin response to DEX (R(2) = 0.75). In experiment 3, in which mares and stallions were pair-matched based on age and body condition and fed similar diets, mares again had higher (P < 0.01) leptin concentrations than stallions after DEX treatment as used in experiment 2. In experiment 4, there was no difference (P > 0.1) in plasma leptin response in mares following four single-injection doses of DEX from 15.6 to 125 microg/kg BW. In experiment 5, treatment of mares with testosterone propionate every other day for 5 days did not alter (P > 0.1) plasma leptin concentrations or the leptin response to DEX. In conclusion, multiple injections of DEX increase leptin concentrations in stallions, as does a single injection in mares (as low as 15.6 microg/kg BW), geldings and stallions. The greater leptin levels observed in mares and geldings relative to stallions were due partially to their greater body condition and partially to the presence of hyperleptinemic individuals; however, even after accounting for body condition and diet, mares still had greater leptin concentrations than stallions after DEX administration. Elevation of testosterone levels in mares for approximately 10 days did not alter leptin concentrations in mares.  相似文献   

6.
Two experiments compared the efficacies of different treatment frequencies for recombinant equine somatotropin (eST). In Experiment 1, five geldings received daily injections of eST at 20 microg/kg of body weight, and five received every-other-day injections at 40 microg/kg of body weight, for a total of 30 days. Plasma glucose (P=0.0001), insulin (P=0.0135), and non-esterified fatty acid (NEFA, P=0.0001) concentrations increased, and plasma urea nitrogen (PUN) concentrations decreased (P=0.0001), in both groups, and only minor differences (P<0.05) occurred between the two groups. Insulin-like growth factor-I (IGF-I) concentrations increased (P=0.0001) in both groups over time, and were higher (P<0.05) after day 2 in geldings treated daily. Endogenous somatotropin (ST) response to secretagogue was inhibited (P<0.05) in geldings receiving daily injections relative to those receiving every-other-day injections. In Experiment 2, 16 geldings were allotted to four groups of four. A control group received daily saline injections, and the other three groups received eST at 20 microg/kg of body weight daily as a single injection, two injections (every 12h), or four injections (every 6h), for a total of 14 days. Plasma IGF-I and insulin concentrations increased (P<0.05) in all groups receiving eST, with the responses being proportional to injection frequency. In contrast, PUN concentrations decreased (P<0.05) in all groups equally. In conclusion, the efficacy of daily versus every-other-day injections of eST depends upon the response to be measured, and for IGF-I concentrations, the every-other-day regimen was not acceptable. Injection frequencies greater than once daily were more efficacious for IGF-I and insulin concentrations, but not for PUN concentrations. Thus, the optimum injection regimen for any new application for eST cannot simply be inferred from other biological responses, and will need to be determined empirically.  相似文献   

7.
The objective of this study was to determine the relationships among plasma concentrations of leptin, insulin, and IGF-I with dynamic changes in body condition scores (BCS) in heifers. Nineteen Zebu-Brown Swiss crossbred heifers, 24 to 30 mo old, weighing 322 +/- 9 kg, and with an initial BCS of 2.6 +/- 0.11 (range = 1 to 9) were used. Heifers were fed 60% of their maintenance requirements until they reached a BCS of < or = 2. Heifers were then maintained at that level for 25 d, after which they were fed to gain 1 kg of body weight daily until a BCS of 6 was reached. Heifers were weighed weekly and BCS was measured every 2 wk. Plasma samples were collected twice weekly, and leptin and insulin were determined by RIA. An immunoradiometric assay was used to measure IGF-I from one sample every 2 wk. Plasma concentrations of leptin were positively correlated during nutritional restriction (NR) and weight gain (WG) periods with BCS (r = 0.47 for NR, and r = 0.83 for WG; P < 0.01) and body weight (r = 0.40 for NR, and r = 0.78 for WG; P < 0.01). Plasma concentrations of leptin decreased during nutritional restriction (P < 0.01) as BCS decreased. During weight gain, leptin concentration increased at BCS 3 and thereafter for each integer change in the BCS. Regression analysis showed that changes in body weight affect leptin concentrations within a given BCS. There was a decrease in IGF-I as BCS declined (P < 0.01). During weight gain, by contrast, IGF-I increased significantly (P < 0.01) with every unit change in body condition up to BCS of 4 and plateaued thereafter. Insulin concentrations did not change during nutritional restriction when BCS decreased from 3 to 1. However, once the diet was improved, there was a large increase in insulin concentrations in heifers with BCS 1 (P < 0.01). Among heifers of BCS 2 and 3, insulin did not differ and was lower than in heifers of BCS 1 (P < 0.01). Insulin increased (P < 0.01) among heifers at BCS 4 to 6. Leptin was positively correlated (P < 0.01) with both IGF-I (r = 0.34 for NR, and r = 0.36 for WG) and insulin (r = 0.18 for WG). Insulin was correlated with IGF-I (r = 0.60; P < 0.01). During nutritional restriction, insulin did not correlate with leptin (r = -0.05), BCS (r = -0.03), or IGF-I (r = 0.07). It was concluded that leptin serves as a dynamic indicator of body condition in heifers, as well as an indicator of nutritional status.  相似文献   

8.
Pregnant Angus x Hereford cows (n = 73) were used to determine the effects of amount of nutrient intake and BCS on concentrations of IGF-I, insulin, leptin, and thyroxine in plasma. At 2 to 4 mo of gestation, cows were blocked by BCS and assigned to one of four nutritional treatments: high (H = a 50% concentrate diet fed ad libitum in a drylot) or adequate native grass pastures and one of three amounts of a 40% CP supplement each day (M = moderate, 1.6 kg; L = low, 1.1 kg; or VL = very low, 0.5 kg; as-fed basis). After 110 d of treatment, all cows grazed dormant native grass pasture and received 1.6 kg/d of a 40% CP supplement. At 68, 109, and 123 d of treatment, cows were gathered, and plasma samples were collected by tail venipuncture (fed sample). After 18 h without feed and water, a second plasma sample was collected (fasted sample). At 109 d of treatment, BCS was greatest (P < 0.05) for H cows, similar for M and L cows, and least for VL cows. Concentrations of insulin and leptin were greater (P < 0.05) for H cows than for M and VL cows at 68 and 109 d, but similar for all groups at 123 d. Thyroxine in plasma was greatest (P < 0.05) for H cows at 68 d and similar for cows on all treatments at 123 d. Concentrations of IGF-I, insulin, and leptin in fed and fasted cows were positively correlated with BCS at 109 d. Body condition was predictive of concentrations of IGF-I, insulin, and leptin when cows had different nutrient intakes, but BCS accounted for less than 12% of the variation in plasma concentrations of IGF-I, insulin, and leptin when nutrient intake was the same for all cows. We conclude that amount of nutrient intake has a greater influence than body energy reserves on IGF-I, insulin, and leptin concentrations in the plasma of gestating beef cows.  相似文献   

9.
Objectives were to determine effects of lasalocid on reproductive performance and serum concentrations of leptin and IGF-I, and to correlate concentrations of leptin and IGF-I with reproductive performance of beef cows. Forty-one purebred, multiparous Brahman cows were blocked to control (C; n = 20) or lasalocid (L; n = 21) treatments by BW, BCS, and predicted calving date. Treatment began 21 d before expected calving. Cows were each fed 1.4 kg daily of an 11:1 corn:soybean meal supplement, with the L group receiving 200 mg of lasalocid/cow daily. Cows and calves were weighed, and cow BCS was assessed at calving and at 28-d intervals thereafter. Blood samples were collected weekly precalving, at parturition, and twice weekly thereafter. Sterile marker bulls were maintained with cows for estrous detection. Six days after estrus, ovaries were evaluated for corpus luteum formation, and blood samples from d 6, 7, and 8 after estrus were collected. Serum samples were assayed for progesterone (P4), IGF-I, and leptin concentration. Progesterone concentrations > 1 ng/mL were considered indicative of a functional corpus luteum. Treatment ended after completion of a normal estrous cycle, and cows removed from treatment were placed with a fertile bull equipped with a chinball marker. There were no treatment differences in calving date, calf sex, cow BW, BCS, calf BW, calf ADG, or in serum concentrations of P4, IGF-I, or leptin. Prepartum cow ADG was increased (P < 0.01) in L cows and tended (P < 0.011) to be increased from calving to d 56 after calving in L cows. Postpartum interval (PPI) was not affected by treatment; however, a greater percentage (P < 0.05) of L cows conceived by 90 d after calving (43% L vs. 15% C). First-service conception rate tended (P < 0.08) to be greater in L vs. C cows (68 vs. 40%), but pregnancy rate was not different (P < 0.12; 86% for L vs. 65% for C). There were no treatment differences (P > 0.18) for serum IGF-I concentrations. At calving, leptin was positively correlated with IGF-I (P < 0.04; r = 0.32), BCS (P < 0.06; r = 0.29), and cow BW (P < 0.02; r = 0.36), and was negatively correlated with PPI (P < 0.06; r = -0.29). These results provide evidence that feeding an ionophore before calving and during the postpartum period may increase the number of cows that rebreed to maintain a yearly calving interval. Cows with higher concentrations of leptin postpartum may exhibit shorter PPI.  相似文献   

10.
The aim of this study was to characterize concentrations of leptin, IGF-I, and thyroid stimulating hormone (TSH) in the blood serum of mares pre-and postpartum, in the milk serum of mares postpartum, and in the blood serum of their foals. Nine pregnant Quarter Horse mares and their offspring were used in this study. Once weekly between 1000 and 1200 h for 2 wk before their predicted parturition date, mares were weighed, assigned a BCS, and blood was sampled via jugular venipuncture. Within 2 h of parturition and before the foals nursed (d 0), blood samples were obtained from the mares and foals, and a milk sample was collected from the mares. Blood from the foals and blood and milk from the mares were collected again at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 12, 19, 26, 33, and 61 d postpartum. Mares and foals also were weighed and assigned a BCS on d 0, 5, 12, 19, 26, 33, and 61. Additionally, on d 5, 33, and 61, ultrasound images of fat depth and area of the LM immediately cranial to and parallel with the last rib on the left side of the foals were measured to characterize changes in fat depth and LM area over time. There were no changes in mare blood concentrations TSH (P = 0.15), nor were there any changes in foal blood concentrations of leptin (P = 0.54) or TSH (P = 0.10) during the trial period. Mare blood concentrations of IGF-I tended to change over time (P = 0.07), whereas leptin changed over time (P < 0.001), initially decreasing and then remaining relatively stable after d 5. Foal blood concentrations of IGF-I increased initially, peaked at d 19, and stabilized thereafter (P < 0.001). Milk concentrations of leptin and TSH were greatest on d 0 and decreased over time (P < 0.007), reaching nadir concentrations at d 61. Milk concentrations of IGF-I also changed over time (P = 0.02), being greatest on d 0 and undetectable by d 12. There was no difference in BCS (P = 0.94) in mares over time, but there was a difference between pre- and postpartum BW (P < 0.001) due to foaling. However, no differences were detected in pre- (P = 0.70) or postpartum BW (P = 0.76) of mares over time. Mean ultrasonic fat depth and LM area increased (P < 0.04) as the foals aged, as did BCS and BW (P < 0.001). Recognizing changes in metabolic hormones surrounding the time of parturition in the mare and foal provides a basis for further determination of the role, if any, these hormones play in the milk, as well as in the neonate.  相似文献   

11.
Previous research from our laboratory showed that approximately one third of obese, nonfoaling mares displayed a condition of hyperleptinemia coupled with hyperinsulinemia that resembled type 2 diabetes in humans. The current study was performed to evaluate the prevalence of the hyperleptinemic syndrome in lactating mares and its possible impact on their rebreeding success. Additionally, we investigated possible relationships between leptin levels in lactating versus nonlactating mares. In experiment 1, jugular blood samples were collected from 198 lactating mares on two occasions approximately 2 weeks apart. The mares resided on eight farms in Louisiana; breeds included Thoroughbred (n = 86), Quarter Horse (n = 71), Warmblood (n = 24), and draft-type (n = 17). Body condition scores (BCS) were measured at the time of blood sampling; plasma samples were assessed for leptin and progesterone concentrations. Reproductive and medical histories, as well as feeding regimens, were compiled on each mare. Based on our previous reports and examination of the current data, a mare was considered hyperleptinemic if her plasma samples contained greater than10 ng/mL leptin; normal was considered 6.0 ng/mL or less; mares with levels above 6.0 and 10 ng/mL or greater were classified as intermediate. Overall mean leptin concentration was 4.7 ng/mL, and average BCS was 5.5. After analysis, 24 mares were classified as hyperleptinemic (12%), 138 were classified as normal (70%), and 36 were classified as intermediate (18%). Leptin concentrations were affected by BCS (P = .08), with higher concentrations in mares with higher body condition; however, there were hyperleptinemic mares with BCS of 4 to 5.5. Feeding regimen affected leptin concentrations (P < .01), with mares on pasture full-time having the highest concentrations. There was no effect of breed, mare age, number of years the mare had been bred, number of live foals, progesterone concentrations, or last foaling date on leptin concentrations. Rebreeding success averaged 81% overall and was not affected by leptin classification. In experiment 2, nonfoaling mares kept on pasture had mean leptin concentrations of 7.0 ng/mL; 8 of 31 mares (26%) displayed hyperleptinemia. Mean leptin concentration was correlated with BCS (R2 = 0.65; P < .02) but was not affected by age of the mare. It was concluded that the hyperleptinemic condition occurs in lactating broodmares, even at BCS as low as 4. The overall incidence appears to be lower in broodmares than in nonfoaling mares, likely because of their lower BCS in general and the energy demands of lactation. Hyperleptinemia did not affect rebreeding success at the end of the breeding season.  相似文献   

12.
In experiment 1, nine light horse geldings (three 3 x 3 Latin squares) received dexamethasone (DEX; 125 microg/kg BW, i.m.), glucose (0.2 g/kg BW, i.v.), or nothing (control) once per day for 4 days. DEX increased (P < 0.001) glucose, insulin, and leptin concentrations and resulted in a delayed increase (P < 0.001) in IGF-I concentrations. In experiment 2, mares were similarly treated with DEX (n = 6) or vehicle (n = 6). DEX again increased (P < 0.01) glucose, insulin, and leptin concentrations; the delayed elevation in IGF-I concentrations occurred on day 10, 12, and 19, relative to the first day of treatment. In experiment 3, six light horse geldings received either 200 IU of adrenocorticotropin (ACTH) i.m. or vehicle twice daily for 4 days. ACTH increased (P < 0.001) cortisol concentrations. Further, ACTH resulted in increases (P < 0.01) glucose, insulin, and leptin concentrations. In experiment 4, plasma samples from four light horse stallions that were fed 6-n-propyl-2-thiouracil (PTU) at 6 mg/kg BW for 60 days to induce hypothyroidism were compared to samples from control stallions. On day 52, stallions receiving PTU had lower concentrations of thyroxine (P < 0.05) and triiodothyronine (P < 0.01) and higher (P < 0.01) concentrations of TSH. Leptin concentrations were higher (P < 0.01) in PTU-fed stallions from day 10 through 52. In conclusion, circulating concentrations of leptin in horses was increased by administering DEX. Treatment with ACTH increased cortisol and resulted in lesser increases in leptin, glucose, and insulin. In addition, PTU feeding results in lesser increases in leptin concentrations.  相似文献   

13.
Obesity has become of great concern to all equine community from both veterinary and welfare points of view. For estimating obesity markers of brood mares, 17 mares with body conditions were subjected to blood sampling and ultrasound examination to measure rump fat for 6 consecutive weeks. Body length (L), girth (G), and height (H) were measured to estimate body weight (BW), body fat %, body fat mass (BFM) and body mass index (BMI). Mares were classified into three groups according to body condition score (BCS) and rump fat thickness (RF). Overweight mares (O) had BCS >7 and RF >7 mm, moderate (M) had BCS and RF >3 to ≤7, and emaciated (E) had BCS and RF ≤ 3 mm. Glucose, triglycerides, nitric oxide (NO), insulin, insulin-like growth factor-I (IGF-1), leptin, ovarian hormones, and thyroid hormones were measured. Results revealed that BCS, G, L, L × G × H, BW, RF, fat %, and BFM correlated significantly (P < .0001) with body condition. Tetraiodothyronine concentrations of E mares were significantly high (P = .04), but triiodothyronine concentrations tended (P = .07) to be low. Insulin (P = .06) and IGF-1 (P = .07) concentrations tended to be high in O mares. Moderate mares had the highest leptin concentrations (P = .007), but E mares had the lowest P4 concentrations (P = .01). Overweight mares had nonsignificantly high glucose, NO, and triglycerides. In conclusion, back fat and morphometric measurements are the easiest and simple assessment of overweight and obesity. Obese and overweight mares showed slight hyperinsulinemia, hypertriglyceridemia, and hyperglycemia. Hyperleptinemia alone is not indicative of obesity.  相似文献   

14.
We previously reported that a rise in plasma leptin concentrations followed the rise in insulin and glucose in meal-fed horses, whereas horses maintained on pasture had little fluctuations in hormonal patterns. We have also described a hyperleptinemic-hyperinsulinemic condition that occurs in about 30% of our light horse mares of high body condition maintained on pasture. The present experiment was designed to 1) study the effect of 3 common feeding-housing regimens on leptin and other metabolic hormones in mares and 2) determine whether the hyperleptinemic condition interacted with these regimens. Six light horse mares with high body condition (average score = 7) were assigned to 2 simultaneous 3 x 3 Latin squares, 1 with normal mares (leptin = 0.1 to 6 ng/mL) and 1 with mares displaying hyperleptinemia (>10 ng/mL). Three feeding-housing regimens were compared: ad libitum pasture, ad libitum native grass hay in an outdoor paddock, and single morning feedings of a pelleted concentrate and hay at 0700 in a barn. Five days of acclimation to the feeding regimens were followed by a 36-h period of hourly blood collection to characterize the hormonal characteristics. Leptin concentrations were elevated (P < 0.001) in mares predetermined to be hyperleptinemic compared with normal mares, regardless of the feeding regimen. Leptin was greatest (P < 0.01) in mares on pasture and least in mares fed hay. Variations over time (P < 0.01) were present for all hormones and metabolites studied. Glucose and insulin concentrations were greatest (P < 0.01) in mares on pasture, with meal-fed mares exhibiting an immediate rise in plasma concentrations of both after feeding. Mares on hay had low and constant concentrations of glucose, insulin, and leptin, with no apparent fluctuations. Cortisol, prolactin, and IGF-I did not differ with leptin status, whereas GH differed due to feeding-housing regimen (P < 0.02); there was also an interaction of leptin status and feeding-housing regimen for GH concentrations (P = 0.094). It was concluded that 1) estimates of hormonal secretion in horses based on frequent sampling, depending upon the hormone in question, can be profoundly affected by the feeding-housing regimens, and 2) the hyperleptinemic condition persists under differing conditions of feeding-housing.  相似文献   

15.
This experiment assessed the effects of 12 mo of daily treatment of young horses with recombinant equine somatotropin (eST) on 1) carcass and internal organ traits at necropsy and 2) residual effects in live horses for 60 d after cessation of treatment. Seven horses received eST daily at 20 microg/kg BW; seven others received vehicle (controls). Four horses from each group were killed at the end of treatment. There were few effects of eST treatment on hematologic assessments or histopathologic evaluations of internal organs. Treatment with eST increased the weights of the right adrenal gland (P = 0.090), left (P = 0.085) and right (P = 0.013) kidneys, liver (P = 0.012), tended to inrease the weights of pancreas (P = 0.082), spleen (P = 0.008), and heart (P = 0.102), and decreased (P = 0.032) somatotropin (ST) content in the adenohypophysis. Loin-eye area at the 10th rib was also greater (P = 0.01) in eST-treated horses than in controls. There was no difference (P > 0.15) between groups in left adrenal, brain, parathyroid glands, or thyroid gland weights or in 10th-rib fat thickness. In the remaining two control and three eST-treated horses (one control horse died), plasma IGF-I concentrations were higher (P = 0.001) in treated animals through d 6 after cessation of treatment and then dropped precipitously. Insulin concentrations in treated animals tended to be elevated (P = 0.08) only on d 0. There was a treatment x day interaction (P = 0.04) for plasma urea nitrogen levels, which increased in treated horses. A decrease (P < 0.05) in BW in the treated animals was observed by 21 d after treatment. There was no difference (P > 0.15) in insulin or glucose response to glucose tolerance tests given on d 0 through 60 after cessation of treatment. Overall ST response to secretagogue was reduced (P < 0.05) in eST-treated horses compared with controls. In summary, long-term treatment of growing horses with eST decreased endogenous ST response to secretagogue and increased plasma IGF-I concentrations and many internal organ weights but had little effect on hematologic or histopathologic characteristics at necropsy. The effects on IGF-I concentrations were lost within 6 d, and BW in treated horses decreased within 3 wk after cessation of treatment.  相似文献   

16.
The influences of body condition score (BCS) at calving and postpartum nutrition on endocrine and ovarian functions, and reproductive performance, were determined by randomly allocating thin (mean BCS = 4.4 +/- 0.1) or moderate condition (mean BCS = 5.1 +/- 0.1) Angus x Hereford primiparous cows to receive one of two nutritional treatments after calving. Cows were fed to gain either 0.45 kg/d (M, n = 17) or 0.90 kg/d (H, n = 17) for the first 71 +/- 3 d postpartum. All cows were then fed the M diet until 21 d after the first estrus. A replication (yr 2; M, n = 25; H, n = 23) was also used to evaluate reproductive characteristics. Concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were quantified in plasma samples collected weekly during treatment and during 7 wk before the first estrus. Estrous behavior was detected by radiotelemetry, and luteal activity was determined based on concentrations of progesterone in plasma. All cows were bred by AI between 14 and 20 h after onset of estrus, and pregnancy was assessed at 35 to 55 d after AI by ultrasonography. Cows that calved with a BCS of 4 or 5 had similar endocrine function and reproductive performance at the first estrus. During treatment, H cows gained BW and increased BCS (P < 0.01), and had greater (P < 0.05) concentrations of IGF-I, leptin, insulin, glucose, and thyroxine in plasma than M cows. However, during the 7 wk before the first estrus, plasma concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were not affected by time. Cows previously on the H treatment had a shorter (P < 0.01) interval to first postpartum estrus and ovulation, and a larger dominant follicle (P < 0.01) at first estrus, than M cows, but duration of estrus and the number of mounts received were not influenced by nutrient intake. Pregnancy rate at the first estrus was greater (P < 0.03) for H (76%, n = 38) than for M (58%, n = 33) cows. Increased nutrient intake after calving stimulated secretion of anabolic hormones, promoted fat deposition, shortened the postpartum interval to estrus, and increased pregnancy rate at the first estrus. Concentrations of IGF-I and leptin in plasma were constant during 7 wk before the first estrus, indicating that acute changes in these hormones are not associated with the resumption of ovarian function in primiparous beef cows.  相似文献   

17.
Leptin is a protein hormone produced by adipose tissue that influences hypothalamic mechanisms regulating appetite and energy balance. In species tested thus far, including horses, concentrations of leptin increase as animal fat mass increases. The variables and mechanisms that influence the secretion of leptin are not well known, nor is it known in equine species how the secretion of leptin is influenced by acute alterations in energy balance, circadian patterns, and/or reproductive competence. Our objectives were to determine in horses: 1) whether plasma concentrations of leptin are secreted in a circadian and/or a pulsatile pattern; 2) whether a 48-h period of feed restriction would alter plasma concentrations of leptin, growth hormone, or insulin; and 3) whether ovariectomy and/or a melatonin implant would affect leptin. In Exp. 1, mares exposed to ambient photoperiod of visible light (11 h, 33 min to 11 h, 38 min), received treatments consisting of a 48-h feed restriction (RES) or 48 h of alfalfa hay fed ad libitum (FED). Mares were maintained in a dry lot before sampling and were tethered to a rail during sampling. Analyses revealed that leptin was not secreted in a pulsatile manner, and that mean leptin concentrations were greater (P < 0.001) in FED vs. RES mares (17.20 +/- 0.41 vs. 7.29 +/- 0.41 ng/mL). Plasma growth hormone was pulsatile, and mean concentrations were greater in RES than FED mares (2.15 +/- 0.31 vs. 1.08 +/- 0.31 ng/mL; P = 0.05). Circadian patterns of leptin secretion were observed, but only in FED mares (15.39 +/- 0.58 ng/mL for morning vs. 19.00 +/- 0.58 ng/mL for evening; P < 0.001). In Exp. 2, mares that were ovariectomized or intact received either a s.c. melatonin implant or a sham implant. Thereafter, blood was sampled at weekly intervals at 1000 and 1700. Concentrations of leptin in samples collected at 1700 were greater (P < 0.001) than in those collected at 1000 (28.24 +/- 1.7 vs. 22.07 +/- 1.7 ng/mL). Neither ovariectomy nor chronic treatment with melatonin affected plasma concentrations of leptin or the circadian pattern of secretion. These data provide evidence that plasma leptin concentrations in the equine are sensitive to acute changes in nutritional status and vary in a circadian pattern that is sensitive to fasting but not to melatonin treatment or ovariectomy.  相似文献   

18.
Fourteen foals between 4 and 4.5 mo of age were used to determine the effects of 12 mo of daily treatment with equine somatotropin (eST) on growth, metabolic, and hormonal characteristics. The foals were paired by sex, type, and lineage, and one of each pair was administered eST daily at 20 microg/kg of BW. Body weights, body measurements, and assessments of glucose tolerance and feedback effects on endogenous somatotropin (ST) secretion were made routinely. Treatment with eST did not alter (P > 0.10) BW, height at withers, length of body, widths of chest and rump, heart girth, length of head, front or rear cannon lengths, front or rear cannon circumferences, gaskin circumference, or skin thickness, even though plasma IGF-I concentrations were doubled (P = 0.012). Glucose concentrations were higher (P = 0.03) in treated horses before glucose infusion; there was no difference (P > 0.10) in the glucose response to infusion. The insulin response to glucose infusion in the treated horses was generally higher (P = 0.0069) than in controls. Endogenous ST secretion in response to a ST secretagogue was reduced (P = 0.0001) in foals treated with eST in all months. The prolactin and thyroid-stimulating hormone responses to thyrotropin-releasing hormone on June 1 were not affected (P > 0.10) by treatment. In conclusion, daily treatment of growing horses with eST for 12 mo at the recommended dose altered the hormonal and metabolic characteristics known to be affected by ST but did not alter the growth characteristics of the animals.  相似文献   

19.
Circulating concentrations of leptin and IGF-I, leptin gene expression, and serum binding of [126I]ovine leptin in cattle during pubertal development, as well as leptin gene expression and circulating concentrations of leptin during the estrous cycle and different calendar seasons, were investigated. Multivariate regression analysis was utilized to evaluate temporal changes in BW, leptin mRNA, and serum concentrations of IGF-I and leptin normalized to the week of puberty (Exp. 1). Body weight accounted for most of the variation associated with the onset of puberty in the full regression model (R2 = 0.99; P < 0.01). However, serum leptin was closely related to changes in BW (r = 0.85; P < 0.02) and in the absence of BW was most predictive of pubertal onset (r2 = 0.73; P < 0.01). Mean concentrations of leptin increased (P < 0.0001) linearly from 16 wk before until the wk of pubertal ovulation in yearling heifers reaching sexual maturation from early spring to midsummer. Leptin mRNA transformed to a percent of the value at puberty increased (P < 0.02) as puberty approached, but serum leptin and leptin mRNA values were not well correlated. We found no evidence of leptin-binding proteins in serum of developing heifers. Combined mean serum concentrations of IGF-I (ng/mL) during periods III and IV (-9 wk to wk of puberty; 216.6 +/- 9) were 21% higher (P < 0.0001) than combined mean concentrations of IGF-I during periods I and II (-19 to wk of puberty; 193 +/- 10). In mature heifers and cows (Exp. 2), serum leptin tended to decrease (P = 0.10) during the late luteal/early follicular phase of the estrous cycle, which corresponded to a reduction (P < 0.03) in adipocyte leptin gene expression. In mature ovariectomized cows, serum concentrations of leptin increased (P < 0.001) by 34% from early winter to the summer solstice and remained unchanged throughout the remainder of the year (Exp. 3). Results from these studies indicate that marked increases in both circulating leptin and leptin gene expression occur in developing heifers during pubertal development and are associated with increases in serum IGF-I and BW. Seasonal effects on circulating leptin observed in mature cows from winter to summer could also plausibly account for a portion of the prepubertal rise in serum leptin observed in heifers.  相似文献   

20.
This study tested the hypothesis that grain and intravenous dextrose challenges would alter plasma concentrations of active ghrelin, adiponectin, leptin, glucose, insulin, and cortisol in Standardbred mares. To deliver 0.5 g of glucose (dextrose solution for the intravenous test)/kg of BW, mares received intravenous dextrose (50% solution) or oral grain administration in 2 trials. In response to the oral grain challenge, plasma glucose and insulin concentrations increased (P < 0.001) by 56 and 802%, respectively. Plasma ghrelin concentration initially decreased (P < 0.001) by 40%, then subsequently increased (P < 0.05) from its nadir by 259%. Plasma leptin concentration decreased (P = 0.002) 17% compared with baseline. There was no change (P = 0.34) in plasma adiponectin concentration in response to oral grain challenge; however, plasma cortisol concentrations decreased (P < 0.001) by 24%. In response to the intravenous dextrose challenge, plasma glucose and insulin concentrations increased (P < 0.001) by 432 and 395%, respectively. Plasma active ghrelin concentration initially decreased (P < 0.001) by 56%, then subsequently increased (P < 0.001) from its nadir by 314%. Plasma leptin concentration also increased (P < 0.001) by 33% compared with baseline. There was no change (P = 0.18) in plasma adiponectin concentration throughout the dextrose challenge. Plasma cortisol concentration increased (P = 0.027) by 20%. Hence, oral grain and intravenous nutrient challenges have the ability to alter variables potentially related to energy metabolism in mares, with acute changes in glucose and insulin possibly modulating changes in ghrelin and leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号