首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract – There has been little investigation of the winter ecology of adult trout during winter, especially in regard to concealment behavior. We compared day vs night underwater counts of adult rainbow trout and brook trout from four streams. At water temperatures between 1°C and 9°C, daytime counts accounted for 44% and 16% of nighttime snorkeling counts for rainbow trout and brook trout adults, respectively. As winter progressed, nighttime counts declined more so for brook trout than rainbow trout, but the decline was not significant for either species. Nocturnalism of both species was higher in streams with colder water temperatures. We observed few fish within concealment structure; however, by electrofishing concealment habitat during the day, we captured 10 times more adult trout than we counted immediately beforehand by snorkeling. Adult trout were concealed in cobble-boulder substrate and woody debris during the day. Note  相似文献   

2.
Withdrawal of water from streams and groundwater is increasing in Midwestern North America and is a potential threat to coldwater fishes. We examined the effects of summer water withdrawals on brook trout Salvelinus fontinalis populations and water warming rates by diverting 50–90% of summer baseflow from a 602‐m treatment zone (TZ) in a groundwater‐influenced Michigan stream during 1991–1998. We compared density of brook trout in fall, and spring‐to‐fall growth and survival of brook trout, between the TZ and an adjacent reference zone (RZ) whose flows were not altered. Flow reductions had no significant effects on the density of brook trout in fall or spring‐to‐fall survival of brook trout. However, spring‐to‐fall growth of brook trout in the TZ declined significantly when 75% flow reductions occurred. Cold upstream temperatures and the relatively short study reach kept thermal habitat conditions excellent for brook trout in the TZ throughout the dewatering experiments. These findings suggest that brook trout can tolerate some seasonal loss of physical habitat if temperature conditions remain suitable. In summer 1999, we experimentally assessed the influence of flow reduction on the warming rate through the TZ by diverting from 0% to 90% of flow around the TZ in 3‐ or 4‐day trials on a randomised schedule. Average daily temperature increased exponentially as stream flows declined from normal summer levels. Our findings suggest the risk of trout habitat loss from dewatering is potentially large and proportional to the magnitude of withdrawal, especially as thermal conditions approach critical levels for trout.  相似文献   

3.
We monitored water chemistry and populations of brook trout (Salvelinus fontinalis) and mottled sculpins (Cottus bairdi) in 5 streams and some tributaries to determine how the severity of acidic episodes (low pH and high Al) influenced density and distribution of these species. Among streams, Linn Run had the lowest pH (4.8) and highest concentrations of total dissolved Al (>400 μg-l?1) during periods of high discharge. Densities of brook trout and mottled sculpins were low in Linn Run, but high in tributaries, where pH (6.5) and Al (30 μg-l?1) remained well below lethal levels. Among the other streams, brook trout density was highest where the acidic episodes were least severe and the density of age-0 brook trout was lowest when precipitation during the early months of the year was above normal. Immigration of brook trout from downstream areas maintained populations in the stream segments subjected to severe episodes. Mottled sculpins were not found in streams with severe episodes.  相似文献   

4.
Seasonal patterns in growth, survival and movement of brook trout Salvelinus fontinalis were monitored in two southeastern Minnesota streams divided into study reaches based on brown trout Salmo trutta abundance. We estimated survival and movement while testing for effects of stream reach and time using a multistrata Cormack–Jolly–Seber model in Program MARK. Multistrata models were analysed for three age groups (age‐0, age‐1 and age‐2+) to estimate apparent survival, capture probability and movement. Survival varied by time period, but not brown trout abundance and was lower during flood events. Age‐0 brook trout emigrated from reaches with low brown trout abundance, whereas adult brook trout emigrated from downstream brown trout‐dominated reaches. Growth was highest in spring and summer and did not differ across streams or reaches for the youngest age classes. For age‐2+ brook trout, however, growth was lower in reaches where brown trout were abundant. Interspecific interactions can be age or size dependent; our results show evidence for adult interactions, but not for age‐0. Our results suggest that brook trout can be limited by both environmental and brown trout interactions that can vary by season and life stage.  相似文献   

5.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

6.
Understanding resident fish population responses to restored connectivity would enhance decision-making on dam removal and fish passage. Since such evaluations are limited in the Great Lakes region of North America, we compared abundance, survival, and growth of resident brook trout and brown trout between sets of Michigan streams where populations were or were not interacting with salmonid species that might be present if connectivity existed. We analysed data from 34 electrofishing index sites to compare resident trout populations between streams without versus with Great Lakes access (and migratory Pacific salmonids), and brook trout populations in Great Lakes inaccessible (land-locked) streams where brown trout were present versus absent. Great Lakes accessibility effects on fish density became increasingly positive for older age groups of brown trout while generally negative for all age classes of brook trout. Brown trout had consistently negative effects on brook trout density in land-locked streams. Increased connectivity had significant effects on annual survival for only one of seven trout age classes modelled, while intraspecific density-dependent effects on survival were significant in six models. Significant intraspecific effects on resident trout growth occurred for seven of eleven age classes examined. Negative interspecific effects of Great Lakes access on resident trout growth were most noticeable for age-0 and age-1 resident trout, age classes that likely compete with juvenile Pacific salmonids. Our findings provide a more robust understanding of how Great Lakes connectivity affects resident trout populations, highlighting negative influences of brown trout on brook trout and intraspecific density-dependent effects.  相似文献   

7.
Howell PJ, Dunham JB, Sankovich PM. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA.
Ecology of Freshwater Fish 2010: 19: 96–106. This article is a US Government work and is in the public domain in the USA Abstract – Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7‐day average daily maximum (7DADM) temperatures of tagged fish were 16–18 °C and potentially as high as 21 °C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18–25 °C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7–14 °C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11–18 °C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species.  相似文献   

8.
Abstract Seasonal habitat use by over-yearling and under-yearling brook trout, Salvelinus fontinalis (Mitchill), was examined in a second-order stream in north-central Pennsylvania, USA. The habitat occupied by brook trout and available habitat were determined in a 0.5-km stream reach during the spring, summer and autumn of 1989 and the spring and summer of 1990. Cover, depth, substrate and velocity were quantified from over 2000 observations of individual brook trout. Habitat used by under-yearling brook trout was more uniform between seasons and years than that used by over-yearling brook trout. Over-yearling brook trout occupied areas with more cover and greater depth than did under-yearling brook trout, suggesting ontogenetic shifts in these variables. Differences for velocity and substrate were not as great as those for cover and depth. The selection of areas with low water velocities governed trout habitat use in spring, whereas cover and depth were the most important habitat variables in summer and autumn. Principal component analysis showed that available habitat and trout habitat centroids diverged most in spring, indicating that habitat selection by brook trout may be greatest at this time.  相似文献   

9.
Understanding how changes in stream temperature affect survival and growth of coldwater fishes, including brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss), is important for conserving coldwater stream fisheries in a changing climate. However, some contemporary stream temperature models assume spatially uniform (i.e. unrealistic) air–stream temperature relationships or demand hydrometeorological predictors (e.g. solar radiation and convection) that are expensive and often impractical for fisheries managers to measure. As such, we produced a relatively cost-effective, management-relevant modelling approach for predicting effects of changes in air temperature, precipitation and groundwater inputs on stream temperature and, consequently, the survival and growth of brown trout and rainbow trout in Michigan, USA. We found that precipitation- and groundwater-corrected stream temperature models (mean adjusted R2 = .77, range = 0.65–0.88) performed better than linear air–stream temperature models (mean adjusted R2 = .59, range = 0.21–0.80). Stream temperature was projected to increase by 0.07–3.88°C (1%–22%) with simulated changes in air temperature, precipitation and groundwater inputs. The greatest warming was predicted for surface runoff-dominated sites with limited groundwater-driven thermal buffering, where thermal habitat suitability for salmonid survival and growth declined 20%–40%. However, groundwater-dominated sites may not be immune to temperature warming, especially if groundwater temperature increases or groundwater inputs decline in a changing climate. Our modelling approach provides a reliable, cost-effective method for predicting effects of climate change on brown trout and rainbow trout survival and growth, allowing for strategic management actions to increase the thermal resilience and sustainability of salmonid populations (e.g. groundwater conservation and riparian/watershed rehabilitation).  相似文献   

10.
Wood in streams functions as fish habitat, but relationships between fish abundance (or size) and large wood in streams are not consistent. One possible reason for variable relationships between fish and wood in streams is that the association of fish with wood habitat may depend on ecological context such as large‐scale geomorphology. We studied the relationship between salmonid assemblages and large wood jams (LWJ) in four settings that differed geomorphically at the scale of the stream corridor along a tributary to Lake Superior in old‐growth conifer–hardwood forest in northern Michigan. The focal fish species of this study were brook trout (Salvelinus fontinalis), which were wild in the stream. Relocation efforts for coaster brook trout (an adfluvial life history variant of brook trout) were ongoing in the study stream. We measured fish abundance and length in pairs of pools of similar size and substrate, but varying in the presence of LWJ; this allowed us to evaluate associations of fish simply with the presence of LWJ rather than with other channel or flow‐shaping functions of LWJ. The length of Oncorhynchus spp. and young introduced brook trout was not strongly correlated with LWJ presence; however, the presence of LWJ in pools was positively correlated with larger wild brook trout. We also found that the correspondence of LWJ with the abundance of salmonids appears to be moderated by the presence of alternative habitat in this relatively natural, old‐growth forest stream.  相似文献   

11.
Abstract  This study investigated the effects of low summer discharge on habitat, prey use and prey availability for age 1 brook trout, Salvelinus fontinalis (Mitchill), in two small streams in Massachusetts, USA. Stream discharge declined substantially from June to August, with corresponding decreases in microhabitat depth and velocity; but fish habitat preferences were consistent throughout the summer, with fish selecting deep, low current velocity locations. Invertebrate drift rate, drift density and trout stomach fullness were significantly greater in June than August samples. Diets were dominated by aquatic-derived prey (chironomid larvae and adult blackflies) in June, but terrestrial invertebrates were the most frequent diet items in August. Consistent occupancy of low-velocity, deep microhabitats with low invertebrate flux rates indicated that, despite variation in habitat and prey conditions, trout adopted a habitat-use strategy of minimising risks and energy costs rather than maximising forage gain. This observation is consistent with, and provides a potential explanation for, the low summer growth rates of brook trout observed in small streams.  相似文献   

12.
Abstract— Due to species introductions, brook charr (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) occur together in many North American streams and typically exhibit a pattern of distribution in which brook charr numerically dominate headwaters and rainbow trout dominate downstream reaches. It has been suggested that 1) the two species compete or 2) the two species do not compete because they are differentially adapted to environmental conditions found in upstream and downstream zones. We assessed whether there were differences in growth and macrohabitat (pool, run and riffle) selection of brook charr and rainbow trout in upper, middle and lower stream zones of a small Pennsylvania stream. Brook charr and rainbow trout placed in replicate paired enclosures set in upstream and downstream reaches showed no significant differences in growth and survival rates upstream, but brook charr had significantly greater growth rates than rainbow trout downstream. Enclosed fish and free-ranging fish both had negative growth rates during the summer. Enclosed fish lost significantly less weight than free-ranging fish. Instantaneous growth rates of free-ranging adult brook charr and rainbow trout from May to August were negative for both species in all stream zones. Underwater observations of adult brook charr and rainbow trout showed both species occurred significantly more often in pool macrohabitats than expected on the basis of macrohabitat availability, except for rainbow trout in the upstream zone. The proportion of pool macrohabitat was not significantly different among stream zones. Brook charr do not appear to be better adapted to upstream environments in Powdermill Run based on growth, survival and macrohabitat selection during summer. Negative biotic interactions acting along with differential environmental adaptations may explain the pattern of distribution of brook charr and rainbow trout in streams, but long-term transplant experiments with additional life stages will be necessary to examine this hypothesis.  相似文献   

13.
Abstract– Habitat is important in determining stream carrying capacity and population density in young Atlantic salmon and brown trout. We review stream habitat selection studies and relate results to variable and interacting abiotic and biotic factors. The importance of spatial and temporal scales are often overlooked. Different physical variables may influence fish position choice at different spatial scales. Temporally variable water flows and temperatures are pervasive environmental factors in streams that affect behavior and habitat selection. The more frequently measured abiotic variables are water depth, water velocity (or stream gradient), substrate particle size, and cover. Summer daytime, feeding habitats of Atlantic salmon are size structured. Larger parr (>7 cm) have a wider spatial niche than small parr. Selected snout water velocities are consistently low (3–25 cm. s?1). Mean (or surface) water velocities are in the preferred range of 30–50 cm. s?1, and usually in combination with coarse substratum (16–256 mm). However, salmon parr demonstrate flexibility with respect to preferred water velocity, depending on fish size, intra- and interspecific competition, and predation risk. Water depth is less important, except in small streams. In large rivers and lakes a variety of water depths are used by salmon parr. Summer daytime, feeding habitat of brown trout is also characterized by a narrow selection of low snout water velocities. Habitat use is size-structured, which appears to be mainly a result of intraspecific competition. The small trout parr (<7 cm) are abundant in the shallow swift stream areas (<20–30 cm depths, 10–50 cm. s?1 water velocities) with cobble substrates. The larger trout have increasingly strong preferences for deep-slow stream areas, in particular pools. Water depth is considered the most important habitat variable for brown trout. Spatial niche overlap is considerable where the two species are sympatric, although young Atlantic salmon tend to be distributed more in the faster flowing and shallow habitats compared with trout. Habitat use by salmon is restricted through interspecific competition with the more aggressive brown trout (interactive segregation). However, subtle innate differences in behavior at an early stage also indicate selective segregation. Seasonal changes in habitat use related to water temperatures occur in both species. In winter, they have a stronger preference for cover and shelter, and may seek shelter in the streambed and/or deeper water. At low temperatures (higher latitudes), there are also marked shifts in habitat use during day and night as the fish become nocturnal. Passive sheltering in the substrate or aggregating in deep-slow stream areas is the typical daytime behavior. While active at night, the fish move to more exposed holding positions primarily on but also above the substrate. Diurnal changes in habitat use take place also in summer; brown trout may utilize a wider spatial niche at night with more fish occupying the shallow-slow stream areas. Brown trout and young Atlantic salmon also exhibit a flexible response to variability in streamflows, wherein habitat selection may change considerably. Important topics in need of further research include: influence of spatial measurement scale, effects of temporal and spatial variability in habitat conditions on habitat selection, effects of interactive competition and trophic interactions (predation risk) on habitat selection, influence of extreme natural events on habitat selection use or suitability (floods, ice formation and jams, droughts), and individual variation in habitat use or behavior.  相似文献   

14.
Dam removals allow fish to access habitats that may provide ecological benefits and risks, but the extent of fish movements through former dam sites has not been thoroughly evaluated for many species. We installed stationary PIT antennas in 2016 and 2017 to evaluate movements and survival of brook trout Salvelinus fontinalis in the West Branch of the Wolf River (WBWR) in central Wisconsin following removal of two dams and channel modifications designed to promote fish movement. These changes provided access to lacustrine habitats that might provide suitable winter habitat or act as ecological sinks. We used multistate models to estimate transition probabilities between river sections, to determine whether brook trout: (a) moved between multiple river sections and (b) entered lacustrine habitats as seasonal refuges, but eventually returned to lotic habitat. We also used a Cormack-Jolly-Seber model to evaluate whether apparent survival of brook trout in the WBWR was comparable to other populations. Few fish moved among river sections or used lacustrine habitat (<5% of tagged fish); most brook trout remained in sections where they were initially tagged, potentially due to quality habitat located throughout the river. Like other studies, brook trout in the WBWR appear to experience high mortality based on low number of detections, few physical recaptures and an estimated eight-month apparent survival rate of 0.27. In scenarios where fish can already access suitable habitat, removal of dams may not result in substantial increases in fish movement and colonisation of newly accessible habitat may not occur immediately.  相似文献   

15.
Bull trout, Salvelinus confluentus (Suckley), populations are declining in many streams of North America and are listed under the Endangered Species Act in the United States. Many small populations are isolated in fragmented habitats where spawning conditions and success are not well understood. Factors affecting habitats selected for redds by spawning bull trout and redd habitat characteristics within Gold Creek, a headwater stream in the Yakima River within the Columbia River basin, Washington State, USA, were evaluated. Most spawning (>80% of the redds) occurred in upstream habitats after dewatering of downstream channels isolated fish. Habitats were selected or avoided in proportions different to their availability. For example, most bull trout selected pools and glides and avoided riffles despite the latter being more readily available. Although preferences suggest influences of prolonged fish entrapment, site fidelity could be important. A habitat with redds commonly contained abundant cover, gravel substratum and higher stream flows. The major factors influencing habitat selection by spawning fish and their persistence in streams of the Yakima and Columbia River regions include entrapment of fish by dewatering of channels and geographical isolation by dams. The goal of the US Government's recovery plan is ‘to ensure the long‐term persistence of self‐sustaining bull trout populations’. Recovery plans linked to provisions for protecting and conserving bull trout populations and their habitats were recommended. Landscape approaches are needed that provide networks of refuge habitats and greater connectivity between populations. Concurrent recovery efforts are encouraged to focus on protecting small populations and minimizing dangers of hybridization.  相似文献   

16.
Ontario supports a vast fisheries resource with an abundance of lakes, rivers and streams. A landscape approach to management informed by a broad‐scale monitoring programme has been initiated to assess the status of fisheries within lakes. However, not all species are assessed by this programme, and there is no provincial monitoring of species inhabiting rivers and streams. As such, changes in the status of a species such as brook trout, Salvelinus fontinalis (Mitchill), could be entirely missed. Brook trout is a highly valued and sought after species by anglers within the province, but there are concerns the species is declining. Given the paucity of broad, empirical data, the status and trends of brook trout across the province have been based on expert opinion at multiple local scales. In 2016, a online questionnaire was sent to brook trout experts to determine status, stressors, management approaches and assess risks (magnitude and probability) to lake and river/stream populations in different geographic areas of Ontario. A Bayesian network was used to analyse responses and develop a risk assessment based on expert opinion for brook trout at multiple scales within the province.  相似文献   

17.
Abstract –  We studied the impact of two exotic salmonid species (brook trout, Salvelinus fontinalis and rainbow trout, Oncorhynchus mykiss ) on native brown trout ( Salmo trutta fario ) habitat, growth and survival. Habitat selection and vertical distribution between young-of-the-year of the three species were examined in a stream aquarium under different sympatric and allopatric combinations. In addition, similar species combinations were introduced in a Pyrenean mountain stream (southwest France) in order to extend laboratory results to growth and apparent survival. Both laboratory and field results indicated that rainbow trout significantly affected native brown trout habitat selection and apparent survival. On the contrary, brown trout habitat, growth and apparent survival were hardly affected by brook trout. These results support the idea that rainbow trout negatively influence native brown trout, and that competition could influence the outcome of fish biological invasions in freshwater ecosystems.  相似文献   

18.
Abstract – We studied diel microhabitat use at the focal point of age‐0 bull trout, Salvelinus confluentus, in Indian Creek, Washington during mid‐summer and fall of 1997. Microhabitat variables included water depth and velocity, distance from the stream bottom, habitat and refuge use, substrate type, and substrate embeddedness. Age‐0 fish were located over fines and gravel substrates in shallow, low‐velocity water near stream margins, but were located in shallower water at night. Bull trout were highly associated with loose substrate, and used the substrate interstices for refuge cover. Diurnal bull trout counts decreased and no age‐0 fish were observed after 15 September at water temperatures below 6.1 °C. Nocturnal counts remained relatively constant throughout the study. Our results suggest that age‐0 bull trout surveys be conducted at night when summer water temperatures begin to decline.  相似文献   

19.
Abstract – In-stream habitat was measured and trout density was estimated in Merrick Brook (105 habitat units) and the Tankerhoosen River (135 habitat units), Connecticut to determine relationships between habitat use of brook trout Salvelinus fontinalis and brown trout Salmo trutta and woody debris. In each habitat unit, woody debris was inventoried, and length, width, depth, area, width : depth ratio and undercut bank area were estimated. Trout abundance was estimated by snorkeling. Multiple regression was used to test relationships between trout density and principal components describing habitat unit variables. In Merrick Brook, habitat unit size and shape explained most of the variability in density of brook trout (<130 and ≥130 mm) and brown trout (<150 mm) among habitat units, although principle components describing large woody debris or fine woody debris contributed significantly to variations in density of brook trout (≥130 mm) and brown trout (<150 and ≥150 mm). In the Tankerhoosen River, fine woody debris explained most of the variability in density of brook trout (<130 and ≥130 mm), followed by habitat unit size and shape. Both large woody debris and fine woody debris contributed significantly to variations in density of brown trout (≥150 mm). These results suggest that woody debris is an important component of wild trout habitat above that provided by habitat unit shape and size alone.  相似文献   

20.
Abstract  Proper interpretation of measures used to describe fish populations requires knowledge of the measure's inherent spatial and temporal variation. Proportional stock density (PSD), the ratio of 'quality-length' fish to 'stock-length' fish multiplied by 100, is commonly used as a measure of population size structure; PSD values range from 0 to 100. Spatial and temporal variation in brook trout, Salvelinus fontinalis (Mitchill), and brown trout Salmo trutta L., PSD scores in Wisconsin are described and tested to determine if variation differed by stream order and ecoregion. Neither stream order nor ecoregion significantly affected variation of PSD scores. The mean standard deviation of PSD scores over time at a site was 12.49 for brook trout populations and 12.95 for brown trout populations. The mean standard deviation of PSD scores between sites in the same stream was 15.07 for brook trout populations and 12.50 for brown trout populations. Sampling frequency required to characterise a PSD score of a single population of trout in Wisconsin streams with a degree of precision equal to the amount of observed temporal variation is approximately 14 sites for brook trout and 20 sites for brown trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号