首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.  相似文献   

2.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

3.
We tested three theories predicting the timing of bud burst in mature birch (Betula pendula Roth) trees utilizing a 60-year phenological time series together with meteorological temperature observations. Predictions of the timing of bud burst based on light conditions in addition to temperature were more accurate than predictions based on dormancy development and temperature (prediction standard error of 2.4 days versus 4.3 days). The signal from light conditions, represented by fixed calendar date, determined the start of bud ontogenesis rather than dormancy release. We suggest that models developed to predict the timing of bud burst be utilized in the analysis of plant responses to climate change and of climate change itself.  相似文献   

4.
Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.  相似文献   

5.
Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 degrees C; once chilled, temperatures > 5 degrees C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine whether terminal buds of trees in cooler microsites, which receive less heat forcing, develop more slowly than those in warmer microsites. For three years we monitored terminal bud development in young saplings as well as soil and air temperatures on large, replicated plots in a harvest unit; plots differed in microclimate based on amount of harvest residue and shade from neighboring stands. In two of three years, trees on cooler microsites broke bud 2 to 4 days earlier than those on warmer microsites, despite receiving less heat forcing from March to May each year. A simple sequential model did not predict cooler sites having earlier bud burst nor did it correctly predict the order of bud burst across the three years. We modified the basic heat-forcing model to initialize, or reset to zero, the accumulation of heat units whenever significant freezing temperature events (> or = 3 degree-hours day(-1) < 0 degrees C) occurred; this modified model correctly predicted the sequence of bud burst across years. Soil temperature alone or in combination with air temperature did not improve our predictions of bud burst. Past models of bud burst have relied heavily on data from controlled experiments with simple temperature patterns; analysis of more variable temperature patterns from our 3-year field trial, however, indicated that simple models of bud burst are inaccurate. More complex models that incorporate chilling hours, heat forcing, photoperiod and the occurrence of freeze events in the spring may be needed to predict effects of future silvicultural treatments as well to interpret the implications of climate-change scenarios. Developing and testing new models will require data from both field and controlled-environment experiments.  相似文献   

6.
According to prevailing theory, air temperature is the main environmental factor regulating the timing of bud burst of boreal and temperate trees. Air temperature has a dual role in this regulation. First, after the cessation of growth in autumn, prolonged exposure to chilling causes rest completion, i.e., removes the physiological growth-arresting conditions inside the bud. After rest completion, prolonged exposure to warm conditions causes ontogenetic development leading to bud burst or flowering. During the past three decades, several simulation models based on chilling and forcing have been developed and tested. In recent modeling studies of the timing of bud burst in mature trees, the simpler thermal-time models that assume forcing starts on a fixed date in the spring have outperformed the chilling-forcing models. We hypothesize that this discrepancy may be due to some element missing from the chilling-forcing models. We tested two new model formulations by introducing reversing, temperature-driven elements that precede forcing and by fitting the models to seven historical time series of data of flowering and leaf bud burst of common boreal tree species. In these tests, both of the new models were generally more accurate in predicting the timing of bud burst than a classical chilling-forcing model, but less accurate than the simple thermal-time model. We therefore conclude that besides chilling, other environmental factors are involved in the regulation of the timing of bud burst. Further work is needed to determine if the regulatory factors derive from air temperature or from some other environmental condition such as changes in light conditions, like day length or night length.  相似文献   

7.
Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 degrees C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.  相似文献   

8.
Needle development and shoot growth were studied in 14- and 20-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.) planted on an oligotrophic peat and fertilized with N, P and K (control), N and P (-K), N and K (-P) or unfertilized (-NPK). Shoot extension, needle number, and the size and number of needle cells were observed throughout the season. Beginning with bud burst in early May, needle growth continued for nine weeks in the control treatment. Needle growth in the mineral deficiency treatments terminated at the same time as in the controls, although it did not begin until up to three weeks later than in the control trees. Needles developed acropetally along the shoot, with basal needles completing their development first. Cell division in needles of control trees lasted about 3 weeks, with cell expansion continuing for a further 3 weeks. Initial mean cell cycle times were shortest for proximal needles following bud burst, but lengthened as the season progressed. Cell number increased from 6600 in the primordia to 200 000 in mature needles. Final needle dimensions and cell number varied according to the position of the needle on the shoot. The largest needles with the most cells were near the middle of the shoot. Relative to the controls, all mineral deficiency treatments reduced shoot length, bud and needle dimensions, and needle cell number, particularly the -P treatment. Potassium and P deficiency treatments reduced primordial cell number by up to 42%, whereas final mean cell size was 30% greater in the -P treatment, 17% greater in the -NPK treatment, but 14% smaller in the -K treatment. Mean cell size was constant for needles at all positions in any particular treatment at any time, so that final needle size was determined by cell number alone. Needle dry weight/fresh weight ratio continued to increase until early August, with significantly higher ratios in the -K and -P treatments than in the controls.  相似文献   

9.
对5年生和7年生青海云杉苗进行了不同方式的修剪,同时用不同的生长调节剂对其主干和侧枝上的芽进行了处理,发现除去青海云杉顶芽,能够促进苗木侧芽和隐芽的生长发育,提高侧芽的抽枝率,增加新枝的生长量.不同种类的生长调节剂和修剪方式对青海云杉芽的生长发育影响效果显著不同,去顶芽修剪的效果优于纺锤形修剪和篱式修剪,对于7年生苗,主干上仅留3个饱满芽的强度修剪能明显地减少主干上的芽数,使抽枝数也随之减少,处理效果最差.去顶芽能够明显的增加当年新梢数量和长于6 cm的新梢总长度,同时还能增加当年新梢上冬芽数.6BA对青海云杉芽和枝条的生长发育有较好的促进作用,抽枝宝在各个修剪处理中表现均最差,甚至在一定程度上抑制了青海云杉芽的萌发和延长生长.修剪和生长调节剂处理对5年生苗侧枝芽抽枝数影响均极显著,而对7年生苗的影响却不显著;修剪和生长调节剂的交互作用明显地影响了对7年生苗的处理效果,而对5年生苗的影响不显著.去顶芽后再用6BA涂抹青海云杉苗上的保留芽,能有效地促进青海云杉保留芽的生长发育,有利于形成更多枝条,对青海云杉采穗圃苗的处理效果最佳,强度修剪和用抽枝宝抹芽不适于青海云杉采穗圃苗的培育.  相似文献   

10.
We used long-term in situ (15)N labeling of the soil to investigate the contribution of the two main nitrogen (N) sources (N uptake versus N reserves) to sun shoot growth from bud burst to full leaf expansion in 50-year-old sessile oaks. Recovery of (15)N by growing compartments (leaves, twigs and buds) and presence of (15)N in phloem sap were checked weekly. During the first 2 weeks following bud burst, remobilized N contributed ~90% of total N in growing leaves and twigs. Nitrogen uptake from the soil started concomitantly with N remobilization but contributed only slightly to bud burst. However, the fraction of total N due to N uptake increased markedly once bud burst had occurred, reaching 27% in fully expanded leaves and 18% in developed twigs. In phloem sap, the (15)N label appeared a few days after the beginning of labeling and increased until the end of bud burst, and then decreased at full leaf expansion in June. Of all the shoot compartments, leaves attracted most of the absorbed N, which accounted for 68% of new N in shoots, whereas twigs and new buds accounted for only 28 and 3%, respectively. New N allocated to leaves increased from unfolding to full expansion as total N concentration in the leaves decreased. Our results underline the crucial role played by stored N in rapid leaf growth and in the sustained growth of oak trees. Any factors that reduce N storage in autumn may therefore impair spring shoot growth.  相似文献   

11.
Annual cycles of change in bud morphology, bud burst ability, abscisic acid (ABA) concentration, and starch and water content were studied in mid-crown terminal buds of short shoots and underground basal buds of Betula pubescens Ehrh. In particular, we investigated the roles of ABA and bud water content in the regulation of bud growth. Basal buds differed morphologically from terminal buds of short shoots in that their leaf initials did not develop into embryonic foliage leaves and their total size did not increase significantly during summer. Bud burst ability, measured by forcing detached short shoots and stumps under controlled conditions, was maintained in the basal buds throughout the year, whereas the terminal buds of short shoots remained dormant until October, thereafter their bud burst ability increased gradually and reached a maximum in March-April. The ABA concentration of the basal buds was relatively constant throughout the sampling period (1-3 micro g g(DW) (-1)), whereas that of the terminal buds of short shoots, which was much higher (5-10 micro g g(DW) (-1)), showed a distinct seasonal cycle with a maximum from August to November. Bud ABA concentration decreased during the first 10 days of forcing, especially in basal buds. In both bud types, the amount of starch increased toward the autumn, declined in November, and was negligible in the terminal buds of short shoots between January and March, but in April, the amount was high again in both bud types. Water content varied characteristically in both bud types, although more distinctly in the terminal buds of short shoots, with an increase in spring before bud burst and a decrease during the summer until September. The significant morphological and physiological differences between the mid-crown terminal buds of short shoots and the underground basal buds may partly explain the characteristic growth habit of the basal buds and their development into coppice shoots after cutting the tree. The results also indicate a role for ABA in maintaining dormancy of the terminal buds of short shoots and emphasize the relationship between tissue water status and ABA concentration.  相似文献   

12.
We examined the effects of several photoperiod and temperature regimes imposed during the winter-spring period on the timing of bud burst in rooted cuttings of Norway spruce (Picea abies (L.) Karst.) grown in a greenhouse in Finland. The treatments were initiated in November and December after the cuttings had been exposed to natural chilling and freezing events. Irrespective of the treatments applied, time to bud burst decreased with increased duration of previous exposure to natural chilling and freezing events. Fluctuating day/night temperatures and continuous lengthening of the photoperiod hastened bud burst. Shortening the photoperiod delayed bud burst, suggesting that little or no ontogenetic development toward bud burst takes place during mild periods before the winter solstice. In the case of climatic warming, this phenomenon may prevent the premature onset of growth that has been predicted by computer simulations with models that only consider temperature regulation of bud burst.  相似文献   

13.
Rousi M  Heinonen J 《Tree physiology》2007,27(7):1019-1025
Within-population variation in phenology of boreal trees indicates their adaptability to climatic variations. Although interannual variations in date of bud burst have been widely discussed, little is known about within-population variation, the key determinants for this variation and the effects of this variation on estimates of trends in bud burst date. Over a period of nine years, we monitored timing of bud burst daily in 30 mature white birch (Betula pendula Roth) trees in a naturally regenerated stand. Our results revealed not only large interannual variation but also considerable intraannual variation among individual trees in date of bud burst, the maximum within-population variation being four weeks. Bud burst can be accurately predicted by the date when a threshold value of temperature sum in spring is reached (base temperature +5 degrees C). Based on this temperature sum and past temperature records, we estimated the trend in date of bud burst. The linear trend estimate based on the years 1926-2005 is an advancement of 1.2 days per decade (95% confidence interval, +/- 0.7 days), which is much less than that predicted by time series based on coarser time intervals. We conclude that, because of large interannual differences, and large annual within-population variations in bud burst, estimates of bud burst date based on measurements made over a period of only a few decades are unreliable.  相似文献   

14.
15.
Bud flushing is very important for the survival and growth of trees, a phenomenon matched each year with the annual course of temperature and the timing of bud flushing in the spring. Essentially it represents a serious ecological and evolutionary tradeoff between survival and growth. The most suitable timing of bud burst permits trees to begin growth sufficiently early to take advantage of favorable spring conditions, but late enough to decrease the risks of tissue damage from late frost. In the present study bud burst spring phenology of poplar (Populus tremula and P. tremuloides) from eight different provenances, originating from Europe and the USA, was observed during March and April, 2009. The experimental plot was located at Solling, Germany (51°44′0″ N, 9°36′0″ E). A six stage subjective scoring system of bud burst phenology was used to identify the phenological stages of the seedlings, where each plant was observed twice a week. The aim of the study was to predict phenotypic variation in poplar, originating from regions between 42° and 60° N latitude, growing in similar environments. Timing of bud flushing of poplar was recorded. It was found that seedlings of provenance 3, which originated from 42.35° N latitude, started and completed flushing significantly earlier than those of other provenances, while seedlings of provenance 5, originating from 54.29° N latitude, started flushing very late and only a few plants reached top scoring at the end of the experimental period. Analysis of variance showed statistically highly significant differences (p < 0.05) in bud flushing among the provenances. The correlation between scoring and flushing periods was very strong within provenances although the flushing pattern differed among provenances (origin of the planted seedlings). Bud flushing showed a negative correlation with the origin of the planted seedlings. Given the field experience gained with this experiment, it is recommended that seedlings from provenances 5 and 8 could be used for future plantations where late frost may be a problem for the young shoots of seedlings.  相似文献   

16.
Han Q  Kabeya D  Iio A  Kakubari Y 《Tree physiology》2008,28(8):1269-1276
In Fagus, full-mast seeding years are invariably followed by at least one non-mast year. Both flower and leaf primordia develop during the summer within the same winter buds. Flower bud initiation occurs when the N content of developing seeds is increasing rapidly. We hypothesized that competition for nitrogen (N) between developing seeds and buds limits flower primordium formation in mast years and, hence, limits seed production in years following mast years. We tested this hypothesis in three Fagus crenata Blume forests at elevations of 550, 900 and 1500 m. Bud N concentration (N con), amount of N per bud (N bud) and dry mass per bud (DM) were compared between a mast year (2005) and the following non-mast year (2006), and between winter buds containing both leaf and flower primoridia (BF), which were formed during the non-mast year, and winter buds containing leaf primordia only (BL), which were formed in both mast and non-mast years. In addition, leaf numbers per shoot corresponding to the analyzed buds were counted, and the effect of masting on litter production was analyzed by quantifying the amounts of litter that fell in the years 2004 to 2007. The dry mass and N content of BF formed in 2006 by trees at both 550 and 1500 m were 2.1-3.4-fold higher than the corresponding amounts in BL, although the numbers of leaves per current-year shoot in 2007 that developed from the two bud types in the same individuals did not differ significantly. These results indicate that more N and carbohydrate are expended in producing BF than in producing BL. The amount of litter from reproductive organs produced in the mast year was similar to the amount of leaf litter at 900 and 1500 m, but three times as much at 550 m. Leaf numbers per shoot were significantly lower at all elevations in the mast year than in the non-mast years (and the amount of leaf litter at 550 and 1500 m tended to be lower in the mast year than in the non-mast years. In conclusion, preferential allocation of resources to seeds in the mast year reduced the availability of resources for flower primordium formation, and this may have accounted for the poor seed production in the following non-mast year.  相似文献   

17.
In order to assess the genetics of fall cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), shoot cuttings were collected in October from saplings (9-year-old trees) of open-pollinated families in two progeny tests in each of two breeding zones in Washington, one in the Coast range (80 families) and one on the west slope of the Cascade Mountains (89 families). Samples from over 5500 trees were subjected to artificial freezing and visually evaluated for needle, stem and bud tissue injury. The extent to which cold injury is genetically related to tree height and shoot phenology (timing of bud burst and bud set) was also evaluated.

Significant family variation was found for all cold hardiness traits; however, individual heritability estimates were relatively low (ranging from 0.09 to 0.22). Significant family-by-test site interaction was detected for needle injury in the Cascade breeding zone, but not in the coastal zone. Genetic correlations (rA) among needle, stem and bud tissues for cold damage were weak (0.16 ≤ rA ≤ 0.58) indicating that genes controlling fall hardening are somewhat different for different tissues. Timing of bud burst and bud set were only weakly correlated with cold injury (rA ≤ 0.49). Thus, bud phenology is a poor predictor of fall cold hardiness in this species. There was no consistent relationship between tree height and cold injury in the coastal zone. In the Cascade zone, taller trees appeared to be more susceptible to cold injury, but the association was weak (mean rA = 0.38, range 0.20 – 0.72).  相似文献   


18.
We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.  相似文献   

19.
Abstract

The aim of this study was to analyse how the growth onset and shoot elongation of seedlings differ in field conditions in Finland for 20 Russian larch provenances and five comparison entries, and if they could be explained by the geographic and climatic conditions of the provenance origins. In this work, the Dahurian larch (Larix gmelinii Rupr.) provenances had the earliest growth onset and the northern Siberian larches (Larix sibirica Ledeb.) slightly earlier bud burst. The temperature sum and latitude of the provenances explained the differences in shoot elongation. The time needed for shoot elongation and the temperature sum needed to obtain 50% of total shoot elongation were quite equal in the years 2008 and 2009 (larger difference with the 90% level). The growth cessation was affected by photoperiod regardless of provenance. However, it was affected in the southern provenances also by declining temperatures in autumn. The final height was in 2009 largest in southern Dahurian larches. Despite our findings, the use of seed sources of domesticated Raivola origin is the safest choice for regeneration in Finland. We should still study more in detail the performance of other provenances and their adaptation capacity and suitability to Finnish forestry.  相似文献   

20.
Jonsson TH 《Tree physiology》2006,26(7):905-914
At coastal sites, trees are exposed to marine aerosols that may cause foliar necrosis and shoot dieback, which can result in deformed crowns and contorted stems. A six-year study of leaf primordia in terminal buds of black cottonwood trees (Populus trichocarpa Torr. & Gray) on Heimaey Island off the south coast of Iceland was undertaken to elucidate the physiological events associated with salt-deposition-related bud failure. Leaf and bud lengths, dry mass, water content and chloride concentrations were monitored and related to four phenological stages: (1) bud set; (2) dormancy induction; (3) dormancy release; and (4) bud break. The trees set buds in July and shed their leaves by late September. Leaf primordia generally stopped growing by September 10 +/- 22 days and attained midwinter water content in late September. Leaf growth commenced in the terminal buds by March 2 +/- 16 days, but mean dates of bud swelling and bud break were April 29 +/- 19 and May 10 +/- 12 days. In summer and until November, chloride concentrations in leaf primordia were low, but increasing. Chloride concentrations remained stable from December to February, even though the dormant trees were exposed to large amounts of marine aerosols. In February and March, three events occurred more or less simultaneously: (1) leaf extension growth commenced; (2) chloride concentration surged in the leaf primordia; and (3) the leaf primordia began to hydrate. Following dormancy release, growth and hydration of leaf primordia were negatively related to chloride concentration in the leaf primordia, with inhibition of leaf growth, tissue hydration and chloride acquisition occurring at a chloride concentration threshold estimated at 7.3 mg Cl- g(-1) tissue water. Necrosis of leaf primordia was observed above 14 mg Cl- g(-1) tissue water. Growth and hydration of leaves at bud break in mid-May was explained by a three-parameter logistic model of chloride concentration in leaf primordia at the end of March. By mid-May, 90% of all buds remained non-necrotic, but only 56% the terminal buds had broken. Salt alone explained the observed growth suppression of leaf primordia in the buds and the resultant failure of terminal buds to break by mid-May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号