首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Northern wetlands are critically important to global change because of their role in modulating atmospheric concentrations of greenhouse gases, especially CO2 and CH4. At present, continuous observations for CO2 and CH4 fluxes from northern wetlands in Asia are still very limited. In this paper, two growing season measurements for CO2 flux by eddy covariance technique and CH4 flux by static chamber technique were conducted in 2004 and 2005, at a permanently inundated marsh in the Sanjiang Plain, northeastern China. The seasonal variations of CO2 exchange and CH4 flux and the environmental controls on them were investigated. During the growing seasons, large variations in net ecosystem CO2 exchange (NEE) and gross ecosystem productivity (GEP) were observed with the range of −4.0 to 2.2 (where negative exchange is a gain of carbon from the atmosphere) and 0-7.6 g C m−2 d−1, respectively. Ecosystem respiration (RE) displayed relatively smooth seasonal pattern with the range of 0.8-4.2 g C m−2 d−1. More than 70% of the total GEP was consumed by respiration, which resulted in a net CO2 uptake of 143 ± 9.8 and 100 ± 9.2 g C m−2 for the marsh over the growing seasons of 2004 and 2005, respectively. A significant portion of the accumulated NEE-C was lost by CH4 emission during the growing seasons, indicating the great potential of CH4 emission from the inundated marsh. Air temperature and leaf area index jointly affected the seasonal variation of GEP and the seasonal dynamic of RE was mainly controlled by soil temperature and leaf area index. Soil temperature also exerted the dominant influence over variation of CH4 flux while no significant relationship was found between CH4 emission and water table level. The close relationships between carbon fluxes and temperature can provide insights into the response of marsh carbon exchange to a changing climate. Future long term flux measurements over the freshwater marsh ecosystems are undoubtedly necessary.  相似文献   

2.
In order to assess the capacity of the boreal forest ecosystem to intercept atmospheric carbon over a period of years, a climate-driven growth model (FinnFor, process-based) was applied to calculate the seasonal and inter-annual variability of net ecosystem CO2 exchange (NEE) and component carbon fluxes (gross primary production - GPP and total ecosystem respiration - TER) against a 10-year (1999-2008) period of eddy covariance (EC) measurements in a Scots pine (Pinus sylvestris L.) stand in Eastern Finland. Furthermore, the role of climatic factors, leaf area index (LAI) and physiological responses of trees regarding the ecosystem carbon fixation processes were evaluated. An hourly time-step was used to simulate the carbon exchange based on measured tree/stand characteristics and meteorological input for the experimental site, and the dynamic LAI was used throughout the 10-year simulations. The model predicted well the annual course of NEE compared to the measured values for most of the years, with the development of LAI (2.4-3.3 m2 m−2, as simulated). The simulated NEE over the study period shows that, on average, 62% of the variation refers to daily and 88% to monthly measured NEE. Both modeled and measured daily NEE showed similar responses to the temperature, photosynthetically active radiation and vapor pressure deficit during the growing seasons. In the simulation, the annual amount of GPP varied from 720.8 to 910.4 g C m−2 with a mean value of 825.3 g C m−2, and the annual mean TER/GPP ratio was 0.79, close to the measured value. Carbon efflux from the forest floor was the dominant contributor to the forest ecosystem respiration. The inter-annual variation of GPP mostly corresponded to the development of LAI, temperature sum and total incoming radiation over the 10-year simulation period. It was suggested that the process-based model could be applied to study the carbon processes for natural and management-induced dynamics of Scots pine forest ecosystem over longer periods across a wider climate gradient in the boreal zone.  相似文献   

3.
Climate models predict drier conditions in the next decades in the Mediterranean basin. Given the importance of soil CO2 efflux in the global carbon balance and the important role of soil monoterpene and volatile organic compounds (VOCs) in soil ecology, we aimed to study the effects of the predicted drought on soil CO2, monoterpenes and other VOC exchange rates and their seasonal and interannual variations. We decreased soil water availability in a Mediterranean holm oak forest soil by means of an experimental drought system performed since 1999 to the present. Measurements of soil gas exchange were carried out with IRGA, GC and PTR-MS techniques during two annual campaigns of contrasting precipitation. Soil respiration was twice higher the wet year than the dry year (2.27±0.26 and 1.05±0.15, respectively), and varied seasonally from 3.76±0.85 μmol m−2 s−1 in spring, to 0.13±0.01 μmol m−2 s−1 in summer. These results highlight the strong interannual and interseasonal variation in CO2 efflux in Mediterranean ecosystems. The drought treatment produced a significant soil respiration reduction in drought plots in the wet sampling period. This reduction was even higher in wet springs (43% average reduction). These results show (1) that soil moisture is the main factor driving seasonal and interannual variations in soil respiration and (2) that the response of soil respiration to increased temperature is constrained by soil moisture. The results also show an additional control of soil CO2 efflux by physiology and phenology of trees and animals. Soil monoterpene exchange rates ranged from −0.01 to 0.004 nmol m−2 s−1, thus the contribution of this Mediterranean holm oak forest soil to the total monoterpenes atmospheric budget seems to be very low. Responses of individual monoterpenes and VOCs to the drought treatment were different depending on the compound. This suggests that the effect of soil moisture reduction in the monoterpenes and VOC exchange rates seems to be dependent on monoterpene and VOC type. In general, soil monoterpene and other VOC exchange rates were not correlated with soil CO2 efflux. In all cases, only a low proportion of variance was explained by the soil moisture changes, since almost all VOCs increased their emission rates in summer 2005, probably due to the effect of high soil temperature. Results indicate thus that physical and biological processes in soil are controlling soil VOC exchange but further research is needed on how these factors interact to produce the observed VOCs exchange responses.  相似文献   

4.
Quantifying carbon dioxide (CO2) fluxes in terrestrial ecosystems is critical for better understanding of global carbon cycling and observed changes in climate. This study examined year-round temporal variations of CO2 fluxes in two biennial crop rotations during 4 year of corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production. We monitored CO2 fluxes using eddy-covariance (EC) and soil chambers in adjacent production fields near Ames, Iowa. Under the non-limiting soil water availability conditions predominant in these fields, diel and seasonal variations of CO2 fluxes were mostly controlled by ambient temperature and available light. Air temperature explained up to 81% of the variability of soil respiratory losses during fallow periods. In contrast, with full-developed canopies, available light was the main driver of daytime CO2 uptake for both crops. Furthermore, a combined additive effect of both available light and temperature on enhanced CO2 uptake was identified only for corn. Moreover, diurnal hysteresis of net CO2 uptake with available light was also found for both crops with consistently greater CO2 uptake in the mornings than afternoons perhaps primarily owing to delay in peak of soil respiration relative to the time of maximum plant photosynthesis. Annual cumulative CO2 exchange was mainly determined by crop species with consistently greater net uptake for corn and near neutral exchange for soybean (−466 ± 38 and −13 ± 39 g C m−2 year−1). Concomitantly, within growing seasons, CO2 sink periods were approximately 106 days for corn and 90 days for soybean, and peak rates of CO2 uptake were roughly 1.7-fold higher for corn than soybean. Apparent changes in soil organic carbon estimated after accounting for grain carbon removal suggested soil carbon depletion following soybean years and neutral carbon balance for corn. Overall, results suggest changes in land use and cropping systems have a substantial impact on dynamics of CO2 exchange.  相似文献   

5.
This paper reports on results from eddy covariance measurements of carbon uptake and evapotranspiration in the eucalypt site of Espirra in Southern Portugal (38°38′N, 8°36′W). This site was included in the “Carboeurope” European network and is part of a 300 ha eucalypt forest, with about 1100 trees ha−1, intensively managed as a coppice for pulp production and characterized by a 12-month annual growing period. The climate is of Mediterranean type with a long term (1961-1990) annual average precipitation of 709 mm and an annual average air temperature of 15.90 °C. During the measurement period (2002-2009) two main events took place, which changed the annual sink pattern of the forest: a drought period of two years (2004-2005) and a tree felling (October and November 2006). We analyzed the daily, seasonal and inter-annual variation of carbon uptake and evapotranspiration, and their relationships with the events and the variability of the main meteorological variables. Before the felling, annual net ecosystem exchange (NEE) increased from −865.56 g C m−2 in 2002 to −356.64 g C m−2 in 2005 together with a deep decrease in rainfall from 748 mm in 2002 to 378.58 mm and 396.64 mm in 2004 and 2005, respectively. For the same period, seasonal patterns of carbon uptake showed maximum values in April and decreased in July-August. The eucalypt stand recovered its carbon sink ability since June 2007 and had a NEE of −209.01 g C m−2 in 2009. After the felling, the carbon uptake occurred from mid-February to mid-October, following an almost opposite pattern than that of the trees in the term of their productive cycle. A quantitative approach using generalized estimating equations (GEEs) was made for the period before the felling to relate monthly NEE and GPP with accumulated photosynthetic active radiation, water vapour pressure and precipitation. In conclusion, our study showed the relevant effects of water stress and anthropogenic interventions in the daily, seasonal and annual patterns of carbon uptake, under a context of good environmental conditions for carbon sequestration.  相似文献   

6.
The ecosystem fluxes of mass and energy were quantified for a riparian cottonwood (Populus fremontii S. Watson) stand, and the daily and seasonal courses of evapotranspiration, CO2 flux, and canopy conductance were described, using eddy covariance. The ecosystem-level evapotranspiration results are consistent with those of other riparian studies; high vapor pressure deficit and increased groundwater depth resulted in reduced canopy conductance, and the annual cumulative evapotranspiration of 1095 mm was more than double the magnitude of precipitation. In addition, the cottonwood forest was a strong sink of CO2, absorbing 310 g C m−2 from the atmosphere in the first 365 days of the study. On weekly to annual time scales, hydrology was strongly linked with the net atmosphere-ecosystem exchange of CO2, with ecosystem productivity greatest when groundwater depth was ∼2 m below the ground surface. Increases in groundwater depth beyond the depth of 2 m corresponded with decreased CO2 uptake and evapotranspiration. Saturated soils caused by flooding and shallow groundwater depths also resulted in reduced ecosystem fluxes of CO2 and water.  相似文献   

7.
Here we present results from a field experiment in a sub-arctic wetland near Abisko, northern Sweden, where the permafrost is currently disintegrating with significant vegetation changes as a result. During one growing season we investigated the fluxes of CO2 and CH4 and how they were affected by ecosystem properties, i.e., composition of species that are currently expanding in the area (Carex rotundata, Eriophorum vaginatum and Eriophorum angustifolium), dissolved CH4 in the pore water, substrate availability for methane producing bacteria, water table depth, active layer, temperature, etc. We found that the measured gas fluxes over the season ranged between: CH4 0.2 and 36.1 mg CH4 m−2 h−1, Net Ecosystem Exchange (NEE) −1000 and 1250 mg CO2 m−2 h−1 (negative values meaning a sink of atmospheric CO2) and dark respiration 110 and 1700 mg CO2 m−2 h−1. We found that NEE, photosynthetic rate and CH4 emission were affected by the species composition. Multiple stepwise regressions indicated that the primary explanatory variables for NEE was photosynthetic rate and for respiration and photosynthesis biomass of green leaves. The primary explanatory variables for CH4 emissions were depth of the water table, concentration of organic acid carbon and biomass of green leaves. The negative correlations between pore water concentration and emission of CH4 and the concentrations of organic acid, amino acid and carbohydrate carbon indicated that these compounds or their fermentation by-products were substrates for CH4 formation. Furthermore, calculation of the radiative forcing of the species expanding in the area as a direct result of permafrost degradation and a change in hydrology indicate that the studied mire may act as an increasing source of radiative forcing in future.  相似文献   

8.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

9.
We investigated the daily exchange of CO2 between undisturbed Larix gmelinii (Rupr.) Rupr. forest and the atmosphere at a remote Siberian site during July and August of 1993. Our goal was to measure and partition total CO2 exchanges into aboveground and belowground components by measuring forest and understory eddy and storage fluxes and then to determine the relationships between the environmental factors and these observations of ecosystem metabolism. Maximum net CO2 uptake of the forest ecosystem was extremely low compared to the forests elsewhere, reaching a peak of only ∼5 μmol m−2 s−1 late in the morning. Net ecosystem CO2 uptake increased with increasing photosynthetically active photon flux density (PPFD) and decreased as the atmospheric water vapor saturation deficit (D) increased. Daytime ecosystem CO2 uptake increased immediately after rain and declined sharply after about six days of drought. Ecosystem respiration at night averaged ∼2.4 μmol m−2 s−1 with about 40% of this coming from the forest floor (roots and heterotrophs). The relationship between the understory eddy flux and soil temperature at 5 cm followed an Arrhenius model, increasing exponentially with temperature (Q10∼2.3) so that on hot summer afternoons the ecosystem became a source of CO2. Tree canopy CO2 exchange was calculated as the difference between above and below canopy eddy flux. Canopy uptake saturated at ∼6 μmol CO2 m−2 s−1 for a PPFD above 500 μmol m−2 s−1 and decreased with increasing D. The optimal stomatal control model of Mäkelä et al. (1996) was used as a `big leaf' canopy model with parameter values determined by the non-linear least squares. The model accurately simulated the response of the forest to light, saturation deficit and drought. The precision of the model was such that the daily pattern of residuals between modeled and measured forest exchange reproduced the component storage flux. The model and independent leaf-level measurements suggest that the marginal water cost of plant C gain in Larix gmelinii is more similar to values from deciduous or desert species than other boreal forests. During the middle of the summer, the L. gmelinii forest ecosystem is generally a net sink for CO2, storing ∼0.75 g C m−2 d−1.  相似文献   

10.
Methane fluxes were measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The CH4 fluxes in forest ecosystem ranged from −4.53 to 8.40 μg C m−2 h−1, in the oil palm ecosystem from −32.78 to 4.17 μg C m−2 h−1 and in the sago ecosystem from −7.44 to 102.06 μg C m−2 h−1. A regression tree approach showed that CH4 fluxes in each ecosystem were related to different underlying environmental factors. They were relative humidity for forest and water table for both sago and oil palm ecosystems. On an annual basis, both forest and sago were CH4 source with an emission of 18.34 mg C m−2 yr−1 for forest and 180 mg C m−2 yr−1 for sago. Only oil palm ecosystem was a CH4 sink with an uptake rate of −15.14 mg C m−2 yr−1. These results suggest that different dominant underlying environmental factors among the studied ecosystems affected the exchange of CH4 between tropical peatland and the atmosphere.  相似文献   

11.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

12.
We quantified the relationship between water table position and CO2 emissions by manipulating water table levels for two summers in microcosms installed in a Colorado subalpine fen. Water levels were manipulated in the microcosms by either adding water or removing water and ranged from +10 cm above the soil surface to 40 cm below the soil surface, with ambient water levels in the fen averaging +3 and +2 cm above the soil surface during 1998 and 1999, respectively. Microcosm installation had no significant effect on CO2 efflux; the 2 year means of natural and reference CO2 efflux were 205.4 and 213.9 mg CO2-C m−2 h−1, respectively (p=0.80). Mean CO2 emissions were lowest at the highest water tables (water +6 to +10 cm above the soil surface), averaging 133.8 mg CO2-C m−2 h−1, increased to 231.3 mg CO2-C m−2 h−1 when the water table was +1 to +5 cm above the soil surface and doubled to 453.7 mg CO2-C m−2 h−1, when the water table was 0-5 cm below the soil surface. However, further lowering of the water table had little additional effect on CO2 emissions, which averaged 470.3 and 401.1 mg CO2-C m−2 h−1 when the water table was 6-10 cm, and 11-40 cm beneath the soil surface, respectively. The large increase in CO2 emissions as we experimentally lowered the water table beneath the soil surface, coupled with no increase in CO2 emissions as we furthered lowered water tables beneath the soil surface, suggest the presence of an easily oxidized labile carbon pool near the soil surface.  相似文献   

13.
Eddy-covariance measurements of net ecosystem exchange of CO2 (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (RE) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall. In the first (drier) year the annual NEE, GEP and RE were lower than the sums in the second (normal) year, and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year.Although the net primary production (NPP) in the first year was 23% lower than that of the second year, the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first, dry year than in the second, normal year. The time variations in NEE were followed by NPP, because in these young Eucalyptus plantations NEE is very largely dominated by NPP, and heterotrophic respiration plays only a relatively minor role.During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation, and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0.8 kPa. Nighttime fluxes of CO2 during calm conditions when the friction velocity (u*) was below the threshold (0.25 m s−1) were estimated based on a Q10 temperature-dependence relationship adjusted separately for different classes of soil moisture content, which regulated the temperature sensitivity of ecosystem respiration.  相似文献   

14.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

15.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

16.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

17.
18.
The aim of this study was to investigate the effects of increased N deposition on new and old pools of soil organic matter (SOM). We made use of a 4-yr experiment, where spruce and beech growing on an acidic loam and a calcareous sand were exposed to increased N deposition (7 vs. 70 kg N ha−1 yr−1) and to elevated atmospheric CO2. The added CO2 was depleted in 13C, which enabled us to distinguish between old and new C in SOM-pools fractionated into particle sizes. Elevated N deposition for 4 yr increased significantly the contents of total SOM in 0-10 cm depth of the acidic loam (+9%), but not in the calcareous sand. Down to 25 cm soil depth, C storage in the acidic loam was between 100 and 300 g C m−2 larger under high than under low N additions. However, this increase was small as compared with the SOM losses of 600-700 g C g C 0.25 m−1 m−2 from the calcareous sand resulting from the disturbance of soils during setting up of the experiment. The amounts of new, less than 4 yr old SOM in the sand fractions of both soils were greater under high N deposition, showing that C inputs from trees into soils increased. Root biomass in the acidic loam was larger under N additions (+25%). Contents of old, more than 4 yr old C in the clay and silt fractions of both soils were significantly greater under high than under low N deposition. Since clay- and silt-bound SOM consists of humified compounds, this indicates that N additions retarded mineralization of old and humified SOM. The retardation of C mineralization in the clay and silt fraction accounted for 60-80 g C m−2 4 yr−1, which corresponds to about 40% of the old SOM mineralized in these fraction. As a consequence, preservation of old and humified SOM under elevated N deposition might be a process that could lead to an increased soil C storage in the long-term.  相似文献   

19.
Organic mounds of the red wood ants (Formica rufa group; RWA) have been shown to be “hot spots” of carbon dioxide (CO2) efflux from the European forest soils. However, little information is available on the variability of CO2 effluxes from RWA mounds and on the factors regulating CO2 efflux. We assessed the seasonal and diurnal changes in CO2 effluxes, temperatures and volumetric water contents from mounds of Formica aquilona, the important RWA of the boreal forests in Finland. The daily average CO2 efflux from RWA mounds ranged 1.1-6.9 g CO2 m−2 h−1 during the active ant season (May-September), and from 0.2 to 1.1 g CO2 m−2 h−1 during their dormant period (October-April). Mound CO2 efflux from May to September was 3.6-6.0 times higher than from the surrounding forest floors, and most likely came from RWA respiration. Seasonal changes in mound CO2 effluxes were significantly correlated with mound temperature, but not with volumetric water content (7% on average). The high CO2 efflux associated with increased volumetric water content (up to 34%) after a RWA mound was abandoned indicated that these dry mound conditions restrict microbial decomposition of mound organic matter. CO2 effluxes were highest at night and lowest during the day, which is likely due to an increased ant activity or numbers in the mound at night. Diurnal changes in mound CO2 efflux were negatively correlated with air temperature, and positively correlated with the difference between the mound and air temperature. This suggests that thermal convection of warmer mound air to the colder outside air at night might be also a cause of the diurnal changes. We conclude that seasonal and diurnal variations in mound CO2 effluxes are dependent on RWA activities and fluctuation in RWA mound and outside temperatures.  相似文献   

20.
Methane (CH4) uptake by soil can possibly be suppressed more in regions with heavy summer precipitation, such as those under the East Asian monsoon climate, as compared to that in regions with a dry summer. In order to determine how precipitation patterns affect seasonal and spatial variations in CH4 fluxes in temperate forest soils, such fluxes and selected environmental variables were measured on different parts of a hill slope in a cypress forest in central Japan. On the upper and middle parts of the slope, CH4 uptake was observed throughout the year, and the uptake rates increased slightly with soil temperature and decreased with soil water content. The CH4 flux predicted using data for the middle and upper parts of the slope ranged from −1.12 to −0.83 kg-CH4 ha−1 y−1 (i.e. CH4 uptake by soil) and from −2.30 to −2.04 kg-CH4 ha−1 y−1, respectively. In contrast, in the relatively wet lower part of the slope near an in-stream wetland, large CH4 emissions (>2 mg-CH4 m−1 d−1) were observed during the rainy summer. In this wetter plot, the soil functioned as a net annual CH4 source in a rainy year. Hence the variation in CH4 flux with a change in soil water conditions and soil temperature on the lower part of the slope contrasted to that on the upper and middle parts of the slope. The predicted CH4 flux for this lower plot ranged from −0.45 kg-CH4 ha−1 y−1 in a dry year to 1.80 kg-CH4 ha−1 y−1 in a rainy year. Our results suggest that consideration of the soil water conditions across a watershed is important for estimating the CH4 budgets for entire forest watershed, particularly in regions subject to a wet summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号