首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of different logging techniques on nutrient losses in burnt eucalyptus and pine forests in northern Portugal was investigated. A variety of logging techniques is used in the region resulting in varying amounts of slash debris on the slopes. The efficacy of this litter in reducing soil erosion is well established but less is known about the impact on nutrient losses. Small bounded plots were used to examine the impact of varying amounts of slash debris and pine‐needle cover on nutrient losses in overland flow and adsorbed to eroded sediment over 19 months during the first two–three years after fire. Nutrient losses in solution and adsorbed to eroded sediment were substantially higher on burnt terrain due to increased erosion and overland flow generation and high nutrient concentrations at the soil surface in the burned forests. Post‐fire logging techniques in eucalyptus forests resulting in large amounts of litter debris on the slopes are effective at reducing eroded sediment nutrient losses but less effective at reducing losses in solution. In pine forests, litter is largely ineffective in reducing solute and sediment nutrient losses. However, a covering of pine needles was shown to be highly effective in reducing eroded sediment nutrient losses and to a lesser extent solute losses. Conservational methods of logging are suggested for both eucalyptus and pine forests in the region. In the absence of such measures, the sustainability of short‐rotation eucalyptus forestry is questioned in northern Portugal. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Despite ample literature, the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified. A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment. This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain. The pine stands of these forests were subjected to both prescribed fire and wildfire, and, in the latter case, to post-fire treatment with mulching. Moreover, simple multi-regression models are proposed to predict runoff and erosion in the experimental conditions. In the case of the prescribed burning, the fire had a limited impact on runoff and erosion compared to the unburned areas, due to the limited changes in soil parameters. In contrast, the wildfire increased many-fold the runoff and erosion rates, but the mulching reduced the hydrological response of the burned soils, particularly for the first two-three rainfalls after the fire. The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover, soil water repellency, and ash left by fire; the changes in water infiltration played a minor role on runoff and erosion. The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients. However, these models were less reliable for predictions of the mean erosion rates. The predictions of erosion after wildfire and mulching were excellent, while those of runoff were not satisfactory (except for the mean values). These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side. Moreover, the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.  相似文献   

3.
The effects of two different soil rehabilitation treatments on runoff, infiltration, erosion and species diversity were evaluated in a shrubland area in Galicia (NW Spain) after an experimental fire by means of rainfall simulations. The treatments compared were: seeding, seeding + mulching and control (untreated). Rainfall simulations were conducted 9 months after fire and the application of soil rehabilitation treatments. A rainfall rate of 67 mm h−1 was applied for 30 min to each runoff plot. Seeding significantly increased plant species richness in the treated plots relative to the control plots, although it had no effect on diversity or evenness. Rehabilitation treatments did not significantly increase soil cover or affect runoff and infiltration. Soil losses were low in all cases, varying from 75·6 kg ha−1 in the seeded + mulched plots to 212·1 kg ha−1 in the untreated plots. However, there were no significant differences in sediment yields between treatments. The percentage of bare soil appeared to be a critical variable in controlling runoff and erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In the past decades, Portugal like several other Mediterranean countries has been affected by frequent wildfires. This has led to various field tests of post‐fire soil conservation measures and, in particular, mulching with forest slash residues. While forest residue mulching was shown to be highly effective in reducing post‐fire erosion, its side effects on soil fauna communities have not been studied and are also difficult to predict from the – scarce – literature on mulch effects in general. Therefore, this study compared the abundance, diversity and taxonomic and functional composition of the ground‐dwelling arthropod communities of three mulched and, as control, three untreated erosion plots of roughly 100 m2 that had been installed in a eucalypt plantation almost immediately after a wildfire in 2010, some five years earlier. This was done using three pitfall traps per plot, placed at the lower, middle and upper part of the study slope. Roughly five years after mulching, its impacts on the ground‐dwelling arthropod were rather limited, especially compared to its effect on overall soil erosion rates. One of the few exceptions was the abundance of the Hymenoptera – one of the most frequently occurring orders – which was significantly lower in the mulched than control plots. This and other near significant mulching impacts found in this study plainly justify a follow‐up study on short‐term effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Although the Revised Universal Soil Loss Equation (RUSLE) and the revised Morgan–Morgan–Finney (MMF) are well‐known models, not much information is available as regards their suitability in predicting post‐fire soil erosion in forest soils. The lack of information is even more pronounced as regards post‐fire rehabilitation treatments. This study compared the soil erosion predicted by the RUSLE and the revised MMF model with the observed values of soil losses, for the first year following fire, in two burned areas in NW of Spain with different levels of fire severity. The applicability of both models to estimate soil losses after three rehabilitation treatments applied in a severely burned area was also tested. The MMF model presented reasonable accuracy in the predictions while the RUSLE clearly overestimated the observed erosion rates. When the R and C factors obtained by the RUSLE formulation were multiplied by 0·7 and 0.865, respectively, the efficiency of the equation improved. Both models showed their capability to be used as operational tools to help managers to determine action priorities in areas of high risk of degradation by erosion after fire. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The first‐year effect of two different prescribed burning treatments on throughfall, runoff and soil erosion was evaluated in gorse shrubland (Ulex europaeus L.) in Galicia (NW Spain). The treatments compared were: intense burn, light burn and control (no burn). Accumulated annual throughfall represented between the 81 and 87 per cent of total rainfall in intensely burned and lightly burned areas, respectively, whereas in the unburnt areas it was 60 per cent. No significant differences between burning treatments were found for the annual throughfall. However, runoff was significantly greater in intensely burned plots (1·5‐times) than in lightly burned plots. Burning also resulted in a significant increase in runoff (between 2·5 and 1·7‐times, respectively) compared with controls. Total soil losses were small in all treatments, but the intense burn caused significantly greater soil erosion (5·8‐times) compared with the unburned areas. Soil losses after the light burn did not significantly differ from the control although they were higher (2·3‐times). The relationships obtained between erosion and several rainfall parameters were significantly different in burned areas compared to the control. The same response was observed for runoff. Annual erosion losses showed a strong dependence on percentage of bare soil even for small values of this variable. Litter thickness was also a very important variable influencing on erosion rates. This study indicated that by combining ignition techniques and high litter moisture content to maintain the percentage of bare soil below 85 per cent, soil erosion was low. Nevertheless, this result was constrained by the low rainfall that occurred during the study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

8.
为揭示南方红壤侵蚀区不同郁闭度马尾松林水土流失的规律,以长汀红壤侵蚀区不同郁闭度(0.2,0.4,0.6,0.8)马尾松林为研究对象,采用标准径流小区观测的方法,利用在2015年观测的37场自然降雨事件构成一个降雨梯度,分析不同郁闭度马尾松林水土流失随降雨等级的变化规律,以及产流产沙量与降雨因子之间的相关性。结果表明:(1)不同郁闭度马尾松林产流产沙量均随降雨等级的增加呈逐渐增大的趋势,且暴雨下增加更为明显;(2)在中雨、大雨和暴雨3种降雨等级下,郁闭度0.2和0.8马尾松林产流产沙量均高于郁闭度0.4和0.6,且郁闭度0.4和0.6马尾松林产流产沙量随降雨等级增加变化较小;(3)在自然降雨梯度下,不同郁闭度马尾松林产流产沙与降雨量和降雨侵蚀力显著相关(P<0.05);(4)逐步回归分析发现,不同郁闭度马尾松林产流回归方程的主要变量是降雨量和最大30 min雨强,而产沙回归方程的主要变量是降雨量和降雨侵蚀力。综上,马尾松林郁闭度过高或过低不利于水土保持,长汀红壤侵蚀区郁闭度0.6马尾松林防治水土流失效果最佳。  相似文献   

9.
Despite the high variability of the precipitation regime characterizing the Mediterranean area, the records of rainfall depth are usually not appropriate for long‐term calculations of erosivity and soil losses, because they do not reveal details of short lengths or long durations (daily, monthly). In this work, we present a simple approach to calculate annual erosivity through monthly precipitation records. The study area (olive groves on steep slopes) has a high erosion risk associated to the main soil land use, combined with an irregular and erosive rainfall regime. The relationships between rainfall data at intervals of 10 min for a period of 3 years, daily rainfall records over 10 years and a long‐term monthly dataset of 60 years were checked to calculate the annual erosivity values through daily data, Fourier's index and modified Fourier's index values. A good, adjusted linear relationship between modified Fourier's index and the erosivity was found, which allowed us to optimize the use of the 60‐year monthly data series and to carry out a long‐term analysis of the erosivity quantiles in the study area. The estimated mean erosivity showed a return period of between 2 and 5 years and a variation coefficient of over 50 per cent, which illustrate its high variability and frequency. This approach to calculate erosivity and the use of quantiles could be applied in other areas with month‐long data series in order to study and model the erosion risk using suitable temporal periods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A primary cause of soil erosion is the impact of rain. Therefore, understanding the altering rainfall characteristics and their effect on soil erosion is an issue of main concern. This is of utmost importance to contribute to developing suitable adaptation and mitigation strategies for soil and water resources conservation and crop management practices. The rainfall seasonality index (SI), precipitation concentration index (PCI) and modified Fournier index (MFI) for rainfall erosivity have been calculated and analysed in this study for the hyper‐arid region of Sudan. The data used consist of monthly rainfall measurements spanning over 60 years for three index meteorological stations, two on the Nile corridor and one on the Red Sea coast. The region is characterized by high year‐to‐year variability in rainfall leading to extreme seasonality/irregular distribution of rainfall over the year. Although prevalent diminishing rainfall amounts have been witnessed, there are marked tendencies for some months to become wetter, indicating changing intra‐annual rainfall variability and thus monthly rainfall erosivity. No statistically significant trends were observed in rainfall seasonality and concentration during the common data period of 1945–2007. Cases of high and very high erosion powers were detected. A significant decreasing trend in erosivity is shown for one inland station. A brief discussion on the implications of these results for risk of soil erosion, freshwater quality and agriculture is also given. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Although it is known that cool fire can result in carbon loss in organic soils, data are lacking on the effects of such fire on the distinctive lowland organic soils of the southern hemisphere and on the relationship of fire-induced carbon loss to topography. We established an experiment to determine the effects of a low severity burn on organic and total mass of soils, the position of the water table and vegetation cover. We recorded soil losses directly after the fire, after the first rain and after 4 years. We also recorded losses as a result of the first rain and at 4 years after a wildfire at another locality with the same vegetation and topography. We compared soil surface temperatures over summer between burned and unburned moorland. The planned fire resulted in substantial soil and carbon losses, which, up to 4 years after the wildfire, occurred mostly as a result of the fire itself and the first rains. The topographic wetness index was strongly related to soil and organic matter loss for the pooled data for both sites, while fire severity, slope and vegetation cover were less predictive. Burning increased dissolved organic material in streams; the depth of the water table; and, soil temperatures. The continuing soil loss on slopes 18 years after fire contrasts with faster recovery on the shelves and in the basins, reflecting a strong topographic component in variation. Fire is a major influence on the depth of the organic soils of the southern hemisphere, as in the northern hemisphere. The influence of fire on soils varies markedly between topographic positions, with the time interval between fires that would maintain organic soils in basins being markedly less than that necessary to maintain organic soils on slopes. The topographic effect appears to be a consequence of relative drying rather than relative exposure to water or aeolian erosion or differences in fire severity.  相似文献   

12.
研究紫色土区坡耕地玉米全生育期细沟侵蚀阶段水土及氮素流失规律,以期为研究区氮素流失有效防控提供科学依据。采用人工模拟降雨与野外径流小区相结合的方法,开展降雨强度为1.5mm/min条件下玉米全生育期细沟侵蚀阶段地表径流、壤中流和侵蚀泥沙中氮素流失特征的研究。结果表明:细沟侵蚀阶段,玉米各生育期地表径流量、壤中流量和侵蚀产沙量总体表现为随降雨时间延长呈先增加后平稳的变化趋势。地表径流中总氮、可溶性总氮、硝态氮和侵蚀泥沙中总氮流失量总体呈现先增加后平稳的趋势,而地表径流中铵态氮流失量变化趋势在降雨前期呈现波动性变化,降雨后期逐渐平稳。壤中流中总氮、可溶性总氮、硝态氮、铵态氮流失量则随着降雨时间延长呈现平稳的变化趋势。细沟侵蚀阶段地表径流中氮素流失总量在玉米苗期最大,为628.77mg/m2;壤中流中氮素流失总量在拔节期和抽雄期最大;侵蚀泥沙中氮素流失总量在苗期最大,为144.95mg/m2。壤中流为氮素流失主要途径,硝态氮为氮素流失主要形态。  相似文献   

13.
The frequency and intensity of wildfires are expected to increase in the coming years due to the changing climate, particularly in areas of high net primary production. Wildfires represent severe perturbations to terrestrial ecosystems and may have lasting effects. The objective of this study was to characterize the impacts of wildfire on an ecologically and economically important ecosystem by linking soil properties to shifts in microbial community structure in organic horizon soils. The study was conducted after a severe wildfire burned over 7000 ha of the New Jersey Pinelands, a low nutrient system with a historical incidence of fires. Soil properties in burned and non-burned soils were measured periodically up to two years after the fire occurred, in conjunction with molecular analysis of the soil bacterial, fungal and archaeal communities to determine the extent and duration of the ecosystem responses. The results of our study indicate that the wildfire resulted in significant changes in the soil physical and chemical characteristics in the organic horizon, including declines in soil organic matter, moisture content and total Kjeldahl nitrogen. These changes persisted for up to 25 months post-fire and were linked to shifts in the composition of soil bacterial, fungal and archaeal communities in the organic horizon. Of particular interest is the fact that the bacterial, fungal and archaeal communities in the severely burned soils all changed most dramatically during the first year after fire, changed more slowly during the second year after the fire, and were still distinct from communities in the non-burned soils 25 months post-fire. This slow recovery in soil physical, chemical and biological properties could have long term consequences for the soil ecosystem. These results highlight the importance of relating the response of the soil microbial communities to changing soil properties after a naturally occurring wildfire.  相似文献   

14.
In spite of the high risk of erosion, highly mechanized operations, in which humus layer removal and down-slope ploughing are practised, are often employed to prepare steep forestlands for planting. The purpose of this study was to evaluate the effect on soil loss of three post-harvesting management systems usually used in a mountainous region of northern Spain. The techniques evaluated were (a) conventional stem-only harvesting, (b) whole-tree harvesting and humus layer removal and (c) whole-tree harvesting and humus layer removal followed by down-slope deep ploughing. Soil erosion was measured in a total of 39 recently clear-felled Pinus radiata plantations over the period between the stand harvesting and establishment of understorey vegetation. They were located on slopes with gradients of between 40 and 50 per cent. For all treatments the associated runoff–rainfall ratios were high, indicating inherent low permeability of the soil. Intense site preparation resulted in considerable decreases in soil organic matter and increases in bulk density, which decreased the hydraulic conductivity and subsequently produced higher runoff. These deteriorations of soil properties delayed the establishment of pioneer vegetation thus extending the period of high erosion. In the ploughed soils, the higher soil erodibility and the removal of slash and vegetation cover resulted in a four-fold increase of soil losses when compared with no mechanical site preparation. The results indicate that, in order to maintain the soil productivity, and for conservation purposes, harvesting management should minimize the soil disturbances and maintain the slash and vegetation cover. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Fire affects large parts of the dry Mediterranean shrubland, resulting in erosion and losses of plant nutrients. We have attempted to measure these effects experimentally on a calcareous hillside representative of such shrubland. Experimental fires were made on plots (4 m × 20 m) in which the fuel was controlled to obtain two different fire intensities giving means of soil surface temperature of 439°C and 232°C with temperatures exceeding 100°C lasting for 36 min and 17 min. The immediate and subsequent changes induced by fire on the soil's organic matter content and other soil chemical properties were evaluated, together with the impact of water erosion. Seven erosive rain events, which occurred after the experimental fires (from August 1995 to December 1996), were selected, and on them runoff and sediment produced from each plot were measured. The sediments collected were weighed and analysed. Taking into account the variations induced by fire on the soil properties and their losses by water erosion, estimates of the net inputs and outputs of the soil system were made. Results show that the greatest losses of both soil and nutrients took place in the 4 months immediately after the fire. Plots affected by the most intense fire showed greater losses of soil (4077 kg ha?1) than those with moderate fire intensity (3280 kg ha?1). The unburned plots produced the least sediment (72.8 kg ha?1). Organic matter and nutrient losses by water erosion were related to the degree of fire intensity. However, the largest losses of N‐NH4+ and N‐NO3 by water erosion corresponded to the moderate fire (8.1 and 7.5 mg N m?2, respectively).  相似文献   

16.
黄土高原不同地貌类型区降雨侵蚀力时空特征研究   总被引:6,自引:1,他引:5  
通用土壤流失方程USLE是迄今为止较为成熟,应用较广的土壤侵蚀预报模型,区域降雨侵蚀力R及其分布特征是将USLE应用于较大地区的关键.以日降雨量计算侵蚀力模型为基础,建立了黄土高原月降雨量计算降雨侵蚀力模型.用黄土高原235个气象站点1971-2000年30 a的月降雨量数据,计算得各站点的时间序列月降雨侵蚀力和年降雨侵蚀力,通过Kriging空间插值方法生成降雨侵蚀力时空分布栅格图像,并分析了不同地貌类型区降雨侵蚀力的时空特征.黄土高原降雨侵蚀力空间分布从东南到西北呈梯度递减趋势,范围在300~7 500,平均不到3 000,不同地貌类型区从大到小依次为土石山区、丘陵沟壑区(延安)、高塬沟壑区、丘陵沟壑区(榆林)、丘陵区(陇西);降雨侵蚀力年内分布主要集中于7,8两月,年际变化上存在一个2.7 a的波动周期,波动范围在多年平均值的1倍以上,不同地区相差较大.  相似文献   

17.
降雨侵蚀因子和植被类型及覆盖度对坡耕地土壤侵蚀的影响   总被引:13,自引:4,他引:13  
为探讨降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,2006-2010年采用坡面径流小区观测法研究了天然降雨条件下降雨侵蚀因子、植被覆盖度、植被类型对坡耕地地表径流量、土壤侵蚀量的影响。设5°和10°两个坡度水平,以甘薯和谷子为供试作物,2006-2007年对照区为天然荒草地,2008-2010年为裸坡地。结果表明,甘薯地径流量和侵蚀量与降雨量(R)、最大30 min雨强(I_(30))、R×I(平均雨强)、R×I_(30)正相关显著(P0.05);裸坡地径流量与R、R×I_(30)正相关显著(P0.05),侵蚀量与I_(30)、R×I_(30)正相关显著(P0.05),与降雨量相关不显著(P0.05)。甘薯地和裸坡地的径流量和侵蚀量与平均降雨强度正相关均不显著(P0.05)。回归分析表明,降雨量主要影响径流量,最大30 min雨强主要影响侵蚀量。中、高雨强下,侵蚀量与径流量显著正相关(P0.01)。甘薯地径流量和侵蚀量与植被覆盖度呈显著负指数关系(P0.05)。5°坡耕地,不同植被类型侵蚀量为甘薯地荒草地谷子地;10°坡耕地,荒草地侵蚀量总体最少。多元回归分析表明,对土壤侵蚀的影响为地表径流降雨侵蚀力(R×I_(30))植被覆盖度。通过连续5 a坡面径流小区观测,初步探明降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,可为该区坡耕地土壤侵蚀的有效防治提供一定的理论依据和技术支撑。  相似文献   

18.
《CATENA》2004,55(1):79-90
Vineyards are one of the lands that incur the highest soil losses in Mediterranean environments. Most of the studies that report about this problem only focus on soil losses and few investigations have addressed the nutrient losses associated with erosion processes during the storms. The present research evaluates the loss of nitrogen, phosphorus and potassium in vineyard soils located in a Mediterranean area (NE Spain), after an extreme rainfall event recorded on 10 June 2000. The total rainfall of this event was 215 mm, 205 mm of which fell in 2 h 15 min. The maximum intensity in 30-min periods reached 170 mm h−1. This rainfall produced a large amount of sediments both inside and outside the plots, with the consequent soil mobilisation and loss of nutrients. The estimate of soil loss was based on the subtraction of two very accurate digital elevation models (DEMs) of different dates in GIS, and measures of the nutrient content of sediment collected in the plot. Soil loss in the study plot reached 207 mg ha−1. Most sediment was produced by concentrated surface runoff. Nutrient losses amounted as 108.5 kg ha−1 of N, 108.6 kg ha−1 of P and 35.6 kg ha−1 of K. The proposed method allowed mapping the sediment contribution and deposition areas and the distribution of the nutrient load and losses within the plot.  相似文献   

19.
1980-2013年闽西地区降雨侵蚀力时空变化特征   总被引:2,自引:0,他引:2  
闽西地区是福建省土壤侵蚀重点防治区,为研究闽西地区降雨侵蚀力的时空分布格局,根据1980-2013年闽西地区9个站点的逐日降雨数据,利用日雨量模型来计算降雨侵蚀力,采用线性回归、气候倾向率、Mann-Kendall检验和反距离加权插值法(IDW)等方法对区域降雨侵蚀力的时空变化进行分析.结果表明:1)闽西地区多年平均降雨侵蚀力为9 504 MJ·mm/(hm2·h),与降雨量呈极显著正相关(P<0.o1);2)空间上西高东低,与降雨量分布规律基本一致;3)降雨侵蚀力的年内分布主要集中在3-8月,占到全年的80.12%;4)1980-2013年期间研究区降雨量呈微下降趋势,而整体上降雨侵蚀力呈略微增加趋势,但未达到显著水平(P>0.05),其中其在夏季呈现上升趋势,而在春秋冬3季呈现下降趋势;5)34年内降雨侵蚀力分别在1995和2002年发生突变.该研究可为该区域土壤侵蚀危险性评估和土壤侵蚀治理工作提供依据.  相似文献   

20.
In 2003, the Lost Creek fire burned 21,000 ha of nearly contiguous crown land forests in the headwater regions of the Oldman River Basin, Alberta. Seven small watersheds with various levels of land disturbance (burned, post-fire salvage logged, unburned) were instrumented and monitored for four years to measure stream discharge, sediment concentration, and sediment yields for a range of dominant flow periods characteristic of the region (baseflow, spring melt, and stormflow). Stream discharges reflected runoff regimes consistent with high regional precipitation and the high relief physiographic setting of the study area. Suspended sediment concentrations and yields were significantly higher in both burned and post-fire salvage logged watersheds than in unburned watersheds and were strongly influenced by topographic and hydro-climatic controls. Sediment availability was much higher in both the burned and post-fire salvage logged watersheds but it varied strongly with flow condition, particularly during the snowmelt freshet and high flow events. Because of increases in wildfire frequency and severity over recent decades, understanding the range of impacts from both wildfire and post-disturbance management strategies such as salvage logging is likely to become increasingly important for land managers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号