首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reproducible procedure was developed for genetic transformation of Hydrangea macrophylla Ser. cv. Blaumeise by Agrobacterium tumefaciens following the development of an efficient regeneration system using leaf discs excised from 12 to 15 weeks old meristem-derived vitroplants. Explants were cultivated on solid B5 medium complemented with maltose 110 mM, BAP 10 μM and NAA 0.5 μM. A low light regime of 17 μmol m−2 s−1 improved regeneration frequency up to 86%. For transformation, leaf discs were inoculated and co-cultivated with two disarmed A. tumefaciens strains, EHA 101 and LBA 4404, both carrying the binary vector pFAJ3000 which contained the nptII selectable gene and the GUS reporter gene. A pre-culture period of 3 days and a short co-cultivation duration (1 day) improved the efficiency of transformation. Inoculation of only 10 min with agitation including (or not) vacuum infiltration was sufficient. If selection on kanamycin containing medium was applied after a 2 weeks culture period on shoot regeneration medium, the percentage of explants forming kanamycin-resistant shoots increased from 3.3 to 13.3%. Integration and expression of the introduced transgene were confirmed by histochemical GUS assay, PCR and Southern blot analysis. Flowering of transgenic plants in glasshouse occurred 10 months after acclimatization.  相似文献   

2.
Hyacinth bean (Lablab purpureus L.) serves as a good source of vegetable proteins in human diet, and its seeds and pods contain as much as 20–28% protein. The bean contains tyrosinase enzyme, which has potential use for the treatment of hypertension. However, plant biological yield appears to be comparatively low in Aligarh soil in this region of India (Western Uttar Pradesh). A hypothesis was designed to address whether foliar application of triacontanol (TRIA) could enhance the crop productivity as well as crop quality. TRIA is known to be a potent plant growth promoting substance for many agricultural and horticultural crops. The hyacinth bean plants grown in soil containing pots, were sprayed with five concentrations of TRIA (10−0 (Control), 10−8, 10−7, 10−6 and 10−5 M) at 15-day intervals. The plant fresh and dry weights, leaf-area, number and dry weight of nodules per plant, total chlorophyll and carotenoid content, nitrate reductase activity, carbonic anhydrase activity, nodule-nitrogen content, leghemoglobin content and leaf N, P, K and Ca contents were analyzed at 60, 90 and 120 days after sowing (DAS). Net photosynthetic rate, transpiration rate and stomatal conductance were measured only at 90 DAS. The protein content plus carbohydrate and tyrosinase activity were analyzed in the seeds. Foliar spray of 10−6 M TRIA significantly stimulated most of the studied attributes. At the highest concentration (10−5 M TRIA), values of all attributes were significantly decreased at all three stages. For example, 10−6 M TRIA increased seed-yield and -protein content by 56.3 and 14.5%, respectively when compared to unsprayed plants. TRIA also stimulated the activity of tyrosinase when compared to the control plants.  相似文献   

3.
The data presented report on trials conducted during 24 months using the Portuguese olive cultivar ‘Galega vulgar’. The effectiveness of coconut water, BAP, or kinetin, as possible zeatin substitutes in olive micropropagation protocols, was investigated. In all stages of the micropropagation process, the mineral and vitamin formulation of olive medium (OM) was used. Regarding culture establishment the best results were achieved when 50 ml l−1 coconut water and 2.22 μM BAP were used as medium supplements. For the in vitro multiplication stage, the highest proliferation rates with an average of 3.4 new explants on each 30 days were achieved maintaining the coconut water concentration at 50 ml l−1 and increasing BAP up to 8.87 μM. The effects of IBA and activated charcoal on the in vitro root induction were also studied. Rooting rates of over 85% were obtained by basal immersion of the explants in IBA solution at 3 g l−1 for 10 s, followed by inoculation in the OM culture medium, added with 2 g l−1 of activated charcoal and without growth regulators. All in vitro rooted plants were transferred into Jiffy-Pots filled with vermiculite–perlite 3:1 (v/v) substrate. Those were subsequently wetted with the OM mineral solution, placed into polystyrene plates each one with 100 Jiffy-Pots capacity, which were transferred to traditional rooting mist benches, on a water-cooling equipped greenhouse. Such a simple acclimatization procedure allowed for 95% of plants survival.  相似文献   

4.
Agrobacterium-mediated transformation for both Melastoma malabathricum and Tibouchina semidecandra were optimized using green fluorescent protein (GFP) as a reporter. The binary vector pCAMBIA1304 harboring the modified green fluorescent protein (mgfp) gene driven by the CaMV 35S promoter was used. Parameters optimized were bacterial strain, bacterial concentration, pre-culture period, co-cultivation period, immersion time, acetosyringone concentration and wounding type. Results obtained were based on the percentage of GFP expression which was observed 3 days post-transformation. Agrobacterium tumefaciens strain LBA4404 and EHA105 at concentration 1 × 107 cfu ml−1 (OD600nm 0.8) showed the highest virulence on M. malabathricum and T. semidecandra, respectively. Four days of pre-culture and 2 days of co-cultivation were optimum for M. malabathricum transformation, while 3 days of pre-culture and co-cultivation for T. semidecandra. Result also showed that 60 min of immersion and addition of 200 μM acetosyringone gave the highest percentage of positive transformants for both M. malabathricum and T. semidecandra. Mild wounding also significantly increased the efficiency of M. malabathricum transformation.  相似文献   

5.
The proliferation of embryogenic suspension culture in two cultivars (Jihel and Bousthami Noir) of Phoenix dactylifera L. was tested on liquid media with or without 2,4-d and with different glutamine concentrations (3.35 × 10−4, 6.7 × 10−4 and 13.4 × 10−4 M). The liquid medium with 0.1 mg l−1 2,4-d and 6.7 × 10−4 M glutamine has clearly improved the proliferation of somatic embryos. In fact, when glutamine concentration increased from 3.35 × 10−4 to 6.7 × 10−4 M, the yield of somatic embryos increased from 14 to 56 embryos per 100 ml of culture medium for “Jihel” cultivar and 25–71 embryos per 100 ml of culture medium for “Bousthami Noir” cultivar. In contrast, increasing glutamine concentration from 6.7 × 10−4 to 13.4 × 10−4 M, the embryos yield was negligible. Based on biochemical analysis, the highest accumulation of proteins and sugars was obtained in liquid medium with 0.1 mg l−1 2,4-d and 6.7 × 10−4 M glutamine (118 and 91 mg of proteins g−1 DW, respectively, for “Jihel” and “Bousthami Noir” cultivars; 194 mg of sugars g−1 DW for “Jihel” cultivar and 182 mg of sugars g−1 DW for “Bousthami Noir” cultivar). In addition, the supply of 0.05 mg l−1 BAP on the germination medium could be useful in terms of germination percentage of somatic embryos. When BAP concentration increased from 0.05 to 0.2 mg l−1, the germination percentage of somatic embryos decreased from 14.2 to 4.9%, while secondary embryogenesis increased from 26.4 to 45.2%.  相似文献   

6.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

7.
The flowering responses of Brunonia australis (blue pincushion) and Calandrinia sp. to vernalization, photoperiod, temperature and plant age were investigated to provide a foundation for manipulating flowering in these potential potted plants. Plants were vernalized at 4.8 °C for 0, 3 or 6 weeks at the plant age of 1–4 or 8–14 leaves. Following vernalization, plants were grown at 25/10 or 35/20 °C (day/night) under short days (11 h, ambient daylight averaged 380 ± 44 μmol m−2 s−1) or long days (16 h) provided by an additional 5 h night break (21:00–2:00 h at <4.5 μmol m−2 s−1 from incandescent lamps), for 85 days. This is the first work to investigate flowering of these ornamental species. Both species showed enhanced flowering following vernalization and a quantitative requirement for long days. The reduction of the time until the first visible inflorescence (Brunonia) or flower (Calandrinia) buds by 8–13 days was affected by vernalization for 3 or 6 weeks, respectively. Long days were effective for reducing the time to first visible floral bud and increasing the number of inflorescence or flowers per plant for both species. For Brunonia, LDs replaced vernalization when applied to plants with 1–4 leaves. Raising temperature from 25/10 to 35/20 °C increased the number of flowers per plant of Calandrinia by 2–2.5-fold for plants with 1–4 or 8–14 leaves respectively.  相似文献   

8.
Abiotic factors affect the induction of PLBs and callus in hybrid Cymbidium Twilight Moon ‘Day Light’. The initiation and proliferation of new PLBs and callus could be achieved on NAA and kinetin, supplemented at 0.1 mg l−1 each, respectively, both within 45–60 days. Bacto agar was found to be the most suitable solidifying agent for PLB induction, although a higher shoot fresh weight was obtained on Gelrite; a pH 5.3 was optimal while pH 4.5 caused 100% explant necrosis; coconut water, when supplied at 10–20% (v/v) resulted in a significant increase in the number of PLBs formed per PLB segment (23.1 versus 14.6 in controls) while a massive (almost four-fold) increase in fresh top weight occurred when PLB explants were placed in liquid culture, as a result of hyperhydricity; Fe-EDTA (1 mg l−1) and activated charcoal (1 g l−1) stimulated total fresh weight and PLB formation in the presence of PGRs; PLB formation decreased but total fresh shoot weight increased with the addition of niacin or myo-inositol, both vitamins. Dark-grown PLB-induced plants were etiolated and had longer internodes and higher fresh weight than light-grown control plants at 45 μmol m−2 s−1; at 15 μmol m−2 s−1 shoots were slightly etiolated, fragile, and PLB formation was scarce. RAPD and mtDNA analysis of all resultant PLBs, callus or plants showed them to be genetically identical, with comparable chlorophyll contents. Despite the detection of cytological variation between different plant parts, little variation resulted from abiotic factor treatment.  相似文献   

9.
A tomato (Solanum lycopersicum L.) crop was grown in four greenhouses during the dry season 2005/06 in Central Thailand. Sidewalls and roof vents of two greenhouses were covered with nets and these greenhouses were mechanically ventilated when air temperature exceeded 30 °C (NET). The other two greenhouses were covered with polyethylene film and equipped with a fan and pad cooling system (EVAP). Overall mean air temperature was significantly reduced by 2.6 and 3.2 °C (day) and 1.2 and 2.3 °C (night) in EVAP as compared to NET and outside air, respectively. Temperature maxima in EVAP averaged about 4 °C lower than in NET and outside. The relative humidity was around 20 and 30% (day) and 10 and 15% (night) higher in EVAP than in NET or outside, respectively. Vapour pressure deficit averaged 0.25 kPa in EVAP, 1.03 kPa in NET and 1.48 kPa outside. The crop water-consumption was significantly lower in EVAP (1.2) than in NET (1.8 L plant−1 day−1), which is ascribed to reduced transpiration in EVAP. Total fruit yield was similar in NET (6.4 kg plant−1) and EVAP (6.3 kg plant−1). The quantity of undersized (mostly parthenocarpic) and blossom-end rot (BER)-affected fruits was reduced in EVAP. However, the proportion of marketable yield was significantly higher in NET (4.5 kg plant−1) than in EVAP (3.8 kg plant−1), owing largely to an increased incidence of fruit cracking (FC) in EVAP. Higher FC but lower BER incidence coincided with higher fresh weight and Ca concentration in the fruits in EVAP. It is concluded that in regions with high atmospheric relative humidity evaporative cooling without technical modifications allowing dehumidification will not improve protected tomato production.  相似文献   

10.
Lychnis (Caryophyllaceae) consists of about 30 species distributed throughout the temperate regions of the Northern Hemisphere, from East Asia to Europe. Many Lychnis spp. have high ornamental value and cultivated as pot or garden plants. In the present study, in vitro chromosome doubling of several Lychnis spp. was examined in order to widen their variability in horticultural traits. Initially effect of various spindle toxin treatments [100, 500 or 1000 mg l−1 colchicine (COL), 10, 20 or 50 mg l−1 oryzalin (ORY), or 1, 5, 10 mg l−1 amiprophos-methyl (APM)] of nodal segments of a triploid genotype of L. senno (3x) was investigated on survival of nodal segments and chromosome doubling in nodal segment-derived plantlets. Significantly higher percentage (75.0%) of surviving segments after spindle toxin treatment was obtained in 10 mg l−1 ORY treatment. Flow cytometry (FCM) analysis of leaf tissues showed that 9.4–13.8% of plantlets, which were derived from 10 to 20 mg l−1 ORY, or 5 mg l−1 APM treatments, were hexaploid (6x) or ploidy chimera (3x + 6x, 4x + 6x, 5x + 6x, 3x + 4x + 6x). The results obtained by FCM analysis were confirmed by chromosome observation in root tip cells. Thus 10 mg l−1 ORY treatment of nodal segments is suitable for in vitro chromosome doubling of triploid L. senno. Efficient chromosome doubling was also achieved in diploid L. fulgens (2x) and L. sieboldii (2x) by treating nodal segments with 10 mg l−1 ORY: 68.9–88.7% of nodal segments survived after ORY treatment, and 24.7–26.5% of plantlets derived from ORY-treated nodal segments were tetraploid (4x) or ploidy chimera (2x + 4x) in both species. These results indicate that the in vitro chromosome doubling method established for triploid L. senno may be applicable to a wide range of Lychnis spp. Tetraploid L. fulgens and L. sieboldii showed a compact plant form, and had thick stems and deep green leaves compared with the diploid mother plants. On the other hand, hexaploid L. senno showed very poor growth and died before flowering.  相似文献   

11.
Effects of the commercial product TrichoFlow WP™ (Agrimm Technologies Ltd., New Zealand), based on the fungus Trichoderma harzianum, on quality characteristics and yield of bulb onion was investigated. Bulb sets of the local cultivar Kantartopu was planted in soil with in and between row distances of 0.15 m and 0.40 m, respectively. The product, at considerably high dosages of 5 g m−2, 10 g m−2 and 15 g m−2, was mixed with water and sprinkled once to the plots at planting. Analyses of data at harvest did not show statistical significance for Trichoderma effect on total bulb yield, bulb diameter, leaf length, number of shoot apex, %titratable acidity, number of internal (fleshy) leaves, number of external (papery) leaves, %soluble solids and %bulbs with diameters of 20–39 mm, 40–69 mm and ≥70 mm. The yields obtained from the plots treated with the dosages of 5 g m−2, 10 g m−2 and 15 g m−2 and the control plots were 1063.7 kg da−1, 1051.0 kg da−1, 1066.5 kg da−1 and 985.0 kg da−1, respectively. Our results showed that high dosages of the Trichoderma product were not effective in enhancing onion bulb and yield characteristics under the given conditions.  相似文献   

12.
We assessed the effect of soil-applied derivatives of melia (Melia azedarach L.) and neem (Azadirachta indica A. Juss) on nitrogen (N) soil availability, root uptake and peach (Prunus persica L.) growth. First we evaluated the effectiveness of experimentally prepared amendments made with fresh ground melia leaves or commercial neem cake incorporated into the soil as nitrification inhibitors, then we evaluated the effect of fresh ground melia fruits and neem cake on growth and N root uptake of potted peach trees, and on soil microbial respiration. Soil-applied fresh ground melia leaves at 10 and 20 g kg−1 of soil as well as commercial neem cake (10 g kg−1) were ineffective in decreasing the level of mineral N after soil application of urea-N as a source of mineral N, rather they increased soil concentration of nitric N and ammonium N. The incorporation into the soil of fresh ground melia fruits (at 20 and 40 g kg−1) and neem cake (at 10 and 20 g kg−1) increased N concentration in leaves of GF677 peach × almond (Prunus amygdalus) hybrid rootstock alone or grafted with one-year-old variety Rome Star peach trees. An increase in microbial respiration, leaf green color and plant biomass compared to the control trees were also observed. The Meliaceae derivatives did not affect, in the short term (7 days), N root uptake efficiency, as demonstrated by the use of stable isotope 15N, rather they promoted in the long term an increase of soil N availability, N leaf concentration and plant growth.  相似文献   

13.
An in vitro plant regeneration protocol for pansy (Viola wittrockiana) cultivar ‘Caidie’ from petioles was established as following: callus induction on a half-strength MS medium supplemented with 0.45 μmol l−1 2,4-d plus 8.9 μmol l−1 BA, callus subculture on medium F (1/2MS with 4.5 μmol l−1 2,4-d, 2.7 μmol l−1 NAA and 0.44 μmol l−1 BA) and then on medium T (1/2MS with 4.5 μmol l−1 2,4-d, 2.7 μmol l−1 NAA and 2.2 μmol l−1 BA), shoot regeneration on medium D3 (MS media supplemented with 2.9 μmol l−1GA3, 23.6 μmol l−1 AgNO3, 0.02% active charcoal and 4.5 μmol l−1 TDZ), shoot multiplication on medium M (half-strength MS medium containing NAA 1.1 μmol l−1, TDZ 9.1 μmol l−1 and GA3 8.7 μmol l−1), and then shoot elongation and rooting on medium R (MS medium supplemented with 1.1 μmol l−1 NAA and 1.1 μmol l−1 BA). Subculture on appropriate medium was found to be important for successful shoot regeneration.  相似文献   

14.
Since the response of cuttings to raised CO2 concentration is not documented, controlled atmosphere (CA) storage of kalanchoe cuttings at combinations of high carbon dioxide and low oxygen levels was investigated to study the feasibility of using CA to sustain quality of cuttings prior to planting. During storage, stomata opening and plant fresh weight (FW) were measured, and root formation (RF) was recorded post storage. Storage atmosphere composition (10/2, 15/2, or 15/5; kPa CO2/kPa O2), storage duration (9 or 19 days), and cutting type (rooted or un-rooted) affected stomata conductance (Gs), and influenced FW and subsequent RF in cuttings of kalanchoe ‘Yellow Josefine’. In CA stored plants, Gs was high, 60–160 mmol m−2 s−1, indicating open stomata, whereas in control plants Gs was low, 5–14 mmol m−2 s−1, indicating closed stomata. Generally Gs values were higher for un-rooted than for rooted cuttings. Overall, cutting FW was reduced by CA storage with no significant differences in FW reduction between the CA treatments. RF of un-rooted CA stored cuttings was comparable to that of controls, whereas for rooted cuttings controls grew better than CA stored cuttings. CA at 10 kPa CO2 and 2 kPa O2 for 2–3 weeks could sustain un-rooted cuttings, in a pests-free state whilst retaining the ability of the cuttings RF. The results showed that stomata aperture may be altered by high CO2 concentration combined with low O2, and results indicated that this effect was not only caused by high CO2 but also by low O2 concentration. In addition, the results indicated that CA storage, stomata conductance, and water stress of kalanchoe cuttings may be correlated. Monitoring Gs of leaves of cuttings could be used as a non-destructive indicator of storability and quality status. Based on the novel positive preliminary results reported here, a protocol that focuses on minimising water loss should be developed and optimised for kalanchoe.  相似文献   

15.
Using Agrobacterium mediated transient expression method, plant bivalent expression vector pBI121 containing GUS as a report gene was transformed into lettuce (Lactuca sativa). Through designed orthogonal analysis, intact lettuce leaves infiltrated with 200 μM acetosyringone and 0.8 OD600 bacterial suspensions under vacuum for 30 min, then co-cultured at 24 °C for 6 ds produced a maximum GUS protein of 2.5% TSP with 21.39 nmol mg−1 min−1 MU activity, which was 19 times of the control (1.31 nmol mg−1 min−1 MU). Employed these optimized conditions HuIFN-beta was expressed in lettuce leaves. Western blot and antivirus bioactivity analyses confirmed the HuIFN-beta achieved by agrobacterium infiltration had a high biological activity (3.1 × 104 IU/mL). To our knowledge, it is the first detailed orthogonal optimizing study of Agrobacterium mediated transient expression and the first report on the production of the biologically active therapeutic proteins produced by Agrobacterium mediated transient expression in lettuce. In summary, transient expression by Agrobacterium vacuum infiltration can be adopted as an efficient, inexpensive and small-scaled plant expression system for therapeutic protein production.  相似文献   

16.
Efficient protocols were established for in vitro seed germination, neo-formation of secondary (2°) protocorms from primary (1°) protocorms and multiple shoot buds and protocorm-like body (PLB) induction from pseudo-stem segments of in vitro-raised seedlings of Cymbidium giganteum. Four nutrient media, namely Murashige and Skoog (MS), Phytamax (PM), Mitra et al. (M), and Knudson ‘C’ (KC) were evaluated for seed germination and early protocorm development. In addition, the effects of peptone, activated charcoal (AC) and two plant growth regulators [6-benzylaminopurine (BAP) and 2,4-dichlorophenoxyacetic acid (2,4-D)] were also studied. Both M and PM supplemented with 2.0 g l−1 peptone or 1.0 mg l−1 BAP resulted in ∼100% seed germination. Media supplemented with 2.0 g l−1 AC could effectively induce large protocorms (1.6 ± 0.1 mm in diameter). Neo-formation of 2° protocorms from 1° protocorms was achieved in liquid and agar-solidified PM medium fortified with different concentrations and combinations of auxins (α-naphthalene acetic acid (NAA) and 2,4-D) and cytokinins [BAP and kinetin (KN)]. The highest number of 2° protocorms was obtained in liquid medium (10.7 ± 0.9/1° protocorm) supplemented with 2.0 mg l−1 BAP + 1.0 mg l−1 NAA. Although protocorms proliferated profusely in liquid medium, these did not develop further unless transferred to agar-solidified medium within 6–8 weeks. Multiple shoot buds and PLBs were induced from pseudo-stem segments on agar-solidified PM medium fortified with different concentrations and combinations of BAP and NAA and the maximum number of PLBs (6.00 ± 0.20) was recorded when BAP and NAA were applied at 2.0 mg l−1 each. A solid root system was induced from PLBs and shoot buds when these were transferred to half-strength PM or M media fortified with 0.5 mg l−1 indole-3-acetic acid. Well-rooted plants were transferred to the greenhouse with 95% survival.  相似文献   

17.
Seven wild and ten cultivated blackberries (Arapaho, Bartin, Black Satin, Bursa 1, Bursa 2, Cherokee, Chester, Jumbo, Navaho, and Ness), and six lowbush (Vaccinium arctostaphylos) and four highbush (Vaccinium corymbosum) blueberries fruits (Ivanhoe, Jersey, Northland, and Rekord) were analyzed for total anthocyanins, total phenolics, and antioxidant activity as ferric reducing antioxidant power (FRAP) in this study. The respective ranges of total anthocyanin and total phenolic contents of the tested samples were: blackberries, 0.95–1.97 and 1.73–3.79 mg g−1 and blueberries, 0.18–2.94 and 0.77–5.42 mg g−1. FRAP values varied from 35.05 to 70.41 μmol g−1 for blackberries, 7.41 to 57.92 μmol g−1 for blueberries. Wild blackberries had the highest FRAP values while wild blueberries had the highest total phenolic and total anthocyanin contents. A linear relationship was observed between FRAP values and total phenolics for blueberries (r = 0.981). The anthocyanin pigments in samples were isolated and characterized by high-performance liquid chromatography (HPLC) with UV–visible detection. Cyn-3-glu was the predominant anthocyanin in all blackberry fruits.  相似文献   

18.
Clumps of statice (Limonium latifolium) plantlets grown photomixotrophically were used as explants and cultured for 25 days on a sugar-free modified Murashige and Skoog (MS) medium in Magenta-type vessels with the number of air exchanges of the vessel (NAE) being 3.8 h−1, at a photosynthetic photon flux (PPF) of 100 μmol m−2 s−1 and a CO2 concentration of 1500 μmol mol−1 in the culture room. A factorial experiment was conducted with three levels of 6-benzylaminopurine (BA) concentration, namely 0, 0.25 and 0.5 mg L−1, and two types of supporting material, agar and Florialite (a porous material). The control treatment was a photomixotrophic culture using a sugar- and BA (0.25 mg L−1) containing agar medium in the vessel with NAE of 0.2 h−1, at a PPF of 50 μmol m−2 s−1 and a CO2 concentration of 400 μmol mol−1 in the culture room. Leaf area, chlorophyll concentration and net photosynthetic rate were greater in the sugar-free medium treatment with a BA concentration of 0.25 mg L−1 and Florialite than those in the control treatment. The number of shoots and dry weight per clump in the sugar-free medium treatment were comparable to those in the control treatment. Among the sugar-free medium treatments, the number of shoots increased with increasing BA concentration, however, the leaf area, dry weight, chlorophyll concentration and net photosynthetic rate decreased with increasing BA concentration. The use of Florialite significantly enhanced the growth and root induction as well as net photosynthetic rate, compared with the treatments that use agar. These results indicated that sugar-free medium micropropagation could be commercially applied to the multiplication of statice plantlets.  相似文献   

19.
Methods to regenerate whole plants from mature leaf explants of Pelargonium rapaceum (L.) L’Hérit were established. To optimize shoot induction, leaf explants were cultured on media containing different types and combinations of plant growth regulators. Growth was initiated within 17–24 days culture, and included callus formation, and root or shoot organogenesis ranging from 20 to 100% regeneration. Shoots were induced only when explants were cultivated on MS medium containing a combination of NAA and kinetin, NAA and BAP, IAA and Kinetin, or IAA and BAP. On media containing NAA and BAP, dark incubation was critical for efficient direct shoot regeneration from explants. Direct shoot formation and the highest number of shoots per explant (17.6) were obtained from leaf explants cultured in the dark for 30 days on MS medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 BAP. Shoots cultured on MS medium containing 0.1 mg l−1 NAA formed tuberous roots with microtubers within 42 days. Healthy regenerated plants were acclimated and transferred to a greenhouse.  相似文献   

20.
The effects of application method and concentration of gibberellic acid (GA3), paclobutrazol and chlormequat on black iris performance were assessed. Plants (10 cm high, 4 ± 1 leaves) were sprayed with 125, 250, 375 or 500 mg L−1 or drenched with 0.25, 0.5, 1 or 2 mg L−1 GA3. In a second experiment, the plants were sprayed with 100, 250, 500 or 1000 mg L−1 or drenched with 0.25, 0.5, 1 or 2 mg L−1 paclobutrazol. Other plants were sprayed with 250, 500, 1000 or 1500 mg L−1 or drenched with 100, 250, 375 or 550 mg L−1 chlormequat. In each experiment, the control treatment consisted of untreated plants. Results indicated that the tallest plants (37.3 cm) in the GA3 experiment were those sprayed with 250 mg L−1. The most rapid flowering (160 days after planting) occurred when a 375 mg L−1 GA3 spray was used, whereas flowering was delayed to 200 days using 1 mg L−1 GA3 drench. Drenching with 1 mg L−1 GA3 increased height of the flower stalk by 7 cm compared to the control. Though relatively slow to flower, plants drenched with 1 mg L−1 GA3 had long and rigid stalks, which were suitable as cut flowers. Number and characteristics of the sprouts were not affected by GA3. All paclobutrazol sprays resulted in leaf falcation. A 500 or 1000 mg L−1 paclobutrazol spray resulted in severe and undesirable control of plant height, drastic reduction in stalk height and weight, and delayed flowering. Plants drenched with 0.25 or 1 mg L−1 paclobutrazol were suitable as pot plants. Chlormequat reduced plant height only at the highest drench concentration, which also reduced flowering to 70%. No leaf falcation was observed with GA3 or chlormequat. Chemical names: ( ± )-(R*,R*)-beta-((4-chlorophenyl)methyl)-alpha-(1,1,-dimethylethyl)-1H-1,2,4,-triazol-1-ethanol (paclobutrazol); (2-chloroethyl) trimethylammonium chloride (chlormequat).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号