首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Flowering is an important step in crop production. Under flower-inducing conditions, biochemical or physiological changes can be recognized. Changes in carbohydrates have an important role in flower development in plants; however, carbohydrate changes during flower bud differentiation in strawberry have not been thoroughly investigated. In this study, runner plants potted in 18 cm diameter pots and grown under non-inducing conditions (28 ± 3/22 ± 3 °C day/night; 16 h day length). When the plants were established, half of the plants then were put under inducing conditions (23 ± 3/13 ± 3 °C day/night; 8 h day length). After the induction period of 21 short-day cycles, plants were brought to non-inductive conditions again. In order to evaluate the carbohydrate changes during flower differentiation, shoot tips, leaves and roots were sampled from four replicated plants collected weekly for the period of 7 weeks. Sucrose, glucose and fructose contents were determined by HPLC, and starch by the anthrone method. The results obtained indicated that the most abundant soluble sugar in all organs tested was sucrose. Sucrose in the shoot tips of induced plants at 42, 56 and 70 days after the start of the short-day treatment were significantly higher than corresponding time in non-induced plants. However, the glucose, fructose and starch contents in shoot tips, leaves and roots of non-induced plants in most sampling dates were greater than those of induced plants. In other words, the shoot tips (bud) of induced plants acted as strong ‘utilizing sink’ and preferentially metabolized carbohydrates rather than storing them. It seems that non-structural carbohydrate contents in shoot tips, leaves and roots of strawberry may have an important role in flower-bud differentiation.  相似文献   

3.
The effects of mean daily temperature (MDT) and mean photosynthetic daily light integral (MDLI) on flowering during the finish stage of two petunia (Petunia × hybrida) cultivars were quantified. Petunia ‘Easy Wave Coral Reef’ and ‘Wave Purple’ were grown in glass-glazed greenhouses at 14–23 °C or 14–26 °C and under 4–19 mol m−2 d−1 with a 16-h photoperiod. The flower developmental rate was predicted using a model that included a linear MDT function with a base temperature multiplied by an exponential MDLI saturation function. The flower developmental rate increased and time to flower decreased as MDT increased within the temperature range studied. For example, under a MDLI of 12 mol m−2 d−1, as MDT increased from 14 to 23 °C, time to flower of ‘Easy Wave Coral Reef’ and ‘Wave Purple’ decreased from 51 to 22 d and 62 to 30 d, respectively. Flower developmental rate increased as MDLI increased until saturation at 14.1–14.4 mol m−2 d−1. Nonlinear models were generated for effects of MDT and MDLI on flower bud number and plant height at flowering. The number of flower buds at flowering increased as MDT decreased and MDLI increased. For example, at an MDT of 14 °C with 18 mol m−2 d−1, plants had 2.5–2.9 times more flower buds than those grown at 23 °C and 4 mol m−2 d−1. Models were validated with an independent data set, and the predicted time to flower, flower bud number, and plant height were within ±7 d, ±20 flowers, and ±4 cm, respectively, for 96–100%, 62–87%, and 93–100% of the observations, respectively. The models could be used during greenhouse crop production to improve scheduling and predict plant quality of these petunia cultivars.  相似文献   

4.
To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Histone H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 °C/17 °C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 °C/20 °C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries.  相似文献   

5.
The effect of night temperature on short day (SD) floral induction has been studied in three June-bearing strawberry cultivars of different geographic origin and compared with yield performance in the cool Nordic environment. At the optimum day temperature of 18 °C, the SD flowering response of the cultivars ‘Florence’ and ‘Korona’ increased significantly with increasing night temperature from 9 to 18 °C, while an optimum was reached at 15 °C in the cultivar ‘Frida’ that is selected under cool-environment conditions in Norway. Also, while saturated flowering response was obtained with 3 weeks of SD treatment at all temperatures in ‘Frida’, several plants of ‘Florence’ and ‘Korona’ failed to initiate flowers at 9 °C night temperature even with 5 weeks of SD. The effect of extended SD period was particularly pronounced in ‘Florence’. The slow SD floral induction response of ‘Florence’ was associated with a 2 week delay of anthesis in subsequent long day (LD) conditions at 21 °C. Yield performance of the same cultivars during 2 years under field conditions at Nes Hedmark and in North Norway also demonstrated that the yield potential of ‘Florence’ was not realized under the climatic conditions prevailing at these locations. In both years the yields varied significantly among the cultivars, ‘Frida’ having the highest yields followed by ‘Korona’, with ‘Florence’ far below. It is concluded that, in the Nordic environment, autumn (September) night temperatures are obviously sub-optimal for yield performance of some June-bearing strawberry cultivars, and that this effect is mediated by autumn temperature effects on flower initiation responses.  相似文献   

6.
Asiatic hybrid lilies, Lilium × elegans Thunb., ‘Red Carpet’ and ‘Sunray’ were used to investigate the effect of bulb vernalization at 2.5 °C on plant growth, flowering, and CO2 production (respiration), and to use the CO2 production pattern to monitor the time of flower bud initiation and development. Lily shoot emergence and flowering were accelerated when bulbs received 2.5 °C bulb vernalization; however, flowering was delayed when bulbs were stored at 20 °C before treatment at 2.5 °C; this indicated that bulbs were de-vernalized. The maximum CO2 level, and the minimum level, reached in 78 h in non-vernalized bulbs and in 110 h in 6 weeks of 2.5 °C (6 weeks/2.5 °C) treated bulbs, was increased as the 2.5 °C duration was increased; this indicated that CO2 level can be an useful parameter to measure the cold stimulus (i) accumulated in bulbs following bulb vernalization. The respiration rate higher than the predicted values of the best-fit curves derived from the quadratic equations was designated as Blip A and this was correlated to the time of flower bud initiation and development. Shoot elongation may follow the rise in carbon dioxide levels after reaching the minimum level. It is proposed that increased carbon dioxide levels higher than the predicted levels (Blip A), was correlated to the time of flower bud initiation and development. Measurement of carbon dioxide production upon receipt of bulbs may be a useful technique to provide important information for optimum vernalization treatments for bulbs that have accumulated different levels of low temperature stimulus after bulb vernalization.  相似文献   

7.
Orchids are currently the most valuable potted crop in the United States. To date, no studies focused on making possible the year-round greenhouse production of flowering nobile dendrobium orchids. This experiment was aimed at developing a strategy to defer flowering of nobile dendrobium orchids by holding them under low temperature. Mature Den. Red Emperor ‘Prince’ and Den. Sea Mary ‘Snow King’ were held at 10 °C for various durations (0, 4, 8, 12 or 16 weeks) after vernalization (4 weeks at 10 °C). Plants were forced in a greenhouse after holding. Time to flower, flower differentiation (flowering node percentage, number of aerial shoot and aborted bud) and flower quality (total flower number, flower diameter, flower number per flowering node and flower longevity) were determined. Increase of low temperature holding duration from 0 to 16 weeks extended time to flower up to 3 months and did not affect parameters of flower except producing larger flowers and reducing flower number per flowering node for Den. Red Emperor ‘Prince’. Notably, the flower longevity was not adversely affected. Defoliation was aggravated in Den. Red Emperor ‘Prince’ by longer duration of cooling and was considered a detrimental effect of low temperature holding.  相似文献   

8.
High temperatures are known to reduce fruit size and fruit weight in strawberry, but cultivar differences in the response to high temperature stress during the reproductive stage up to the second inflorescence have not been sufficiently reported. We examined the effect of two day/night temperature regimes on fruit set and fruit growth in two cultivars, ‘Nyoho’ and ‘Toyonoka’. A high day/night temperature of 30/25 °C reduced the number of inflorescences, flowers, and fruits in both cultivars compared with plants grown at 23/18 °C. The percentage of fruit set in ‘Nyoho’ was not significantly different between the two temperature treatments, while that in ‘Toyonoka’ was much lower at 30/25 °C than at 23/18 °C. Days to ripening was shorter at 30/25 °C than at 23/18 °C, and no cultivar differences were observed. Fresh weight of primary, secondary, and tertiary fruits was greater at 23/18 °C than at 30/25 °C in both cultivars, and no cultivar differences were observed, except in tertiary fruits. The diameter of fruits from all positions was also reduced at 30/25 °C in both cultivars. Relative growth rates of fruits showed two peaks in both cultivars and in both temperature treatments. Both peaks appeared earlier at 30/25 °C than at 23/18 °C. Percentage of fruit set at 30/25 °C in the second inflorescence was also significantly lower in ‘Toyonoka’ than in ‘Nyoho’. These results indicate that high temperature stress negatively affects the reproductive process in strawberry and that plant response to high temperature stress is cultivar-related in such responses.  相似文献   

9.
Flower color, an important feature biologically and commercially, is based on four natural pigments – flavonoids, carotenoids, betalains and chlorophylls. Temperature, light, nutrition – as well as additions of sugar, salt, or metals to the conservation water – have an effect on pigmentation. We investigated the effects of K-sulphate and/or sucrose on flower color in leaf treatments applied 30–10 days before harvest to four Asiatic lily (Lilium × elegans Thunb.) cultivars during the winter and summer. Colors of tepals were evaluated by a portable spectrocolorimeter that calculates the standard CIE L*a*b* coordinates and the color differences (E). After leaf treatments during both seasons, cultivars with flowers with high red components (e.g. the purple ‘Fangio’ and the pink ‘Brindisi’) showed significant improvements in color quality. The orange-flowered ‘Tresor’ showed improvement only if K-sulphate and Mix (K-sulphate and sucrose) solution treatments were applied during the summer. The yellow-flowered ‘Menorca’ was not affected by treatments during either summer or winter forcing season. Especially in the winter, a significant reduction in flower abortion was observed for cut flowers of all cultivars. In summer only ‘Fangio’ and ‘Tresor’ showed a reduction in flower abortion. Also, flower size and longevity were improved by the leaf treatment. The results, obtained from a commercial nursery operation, demonstrate that lily growers can adopt a very simple and inexpensive treatment to improve important qualitative traits of their product.  相似文献   

10.
Pre-chilled potted plants of Paeonia ‘Coral Sunset’, ‘Monsieur Jules Elie’, ‘Sarah Bernhardt’, and ‘Karl Rosenfeld’ were placed in a range of controlled temperature regimes to ascertain the effect of temperature on the timing of shoot emergence and floral development. For all cultivars, warmer temperatures up to 25 °C lead to more rapid shoot emergence and flower development. Linear temperature responses adequately described the rate of development from shoot emergence to flower bud appearance, and from bud appearance to flower opening, but a curvilinear response was required to describe the time taken for shoots to emerge. There were significant differences between cultivars in the number of heat units required for shoot emergence, with the shoots of the slowest-developing cultivar, ‘Monsieur Jules Elie’, taking 50% longer to emerge than those of the most rapid, ‘Coral Sunset’. No significant differences were found among cultivars in the time taken from shoot emergence to flower opening, although the ‘split’ stage (when the bud opens sufficiently for petal colour to be observed) was slightly earlier in ‘Karl Rosenfeld’.  相似文献   

11.
12.
The effects of three set-sizes (12.5, 17.5 and 22.5 mm in diameter) and seven storage temperatures (0, 5, 10, 15, 20, 25 and 30 °C) on bolting, bulbing and seed yield in two onion (Allium cepa L.) cultivars ‘Hygro’ and ‘Delta’ were investigated. The incidence of bolting increased linearly with set-size and curvi-linearly with decreasing storage temperature. Time to inflorescence emergence and floret opening showed a curvi-linear response to storage temperature with the earliest inflorescence emergence and floret opening occurring at 5 °C and the latest at 30 °C for ‘Hygro’ and at 25 °C for ‘Delta’. Seed yield per umbel also showed a curvi-linear response to storage temperature with the lowest seed yield occurring at 30 °C for ‘Hygro’ and at 25 °C for ‘Delta’ and the highest seed yield at 5 °C. For a seed crop, storage of large sets (22.5 mm) of these cultivars at 5 °C for 120 days appeared to be optimum with 5–12% higher seed yield per umbel than that of 90 days storage. Bulb yield showed a curvi-linear response to storage temperature with the highest bulb yield occurring at 25 °C and the lowest at 5 °C.  相似文献   

13.
Environmental control of the annual growth cycle of ‘Glen Ample’ raspberry has been studied in order to facilitate crop manipulation for out-of-season production. Plants propagated from root buds were raised in long days (LD) at 21 °C and then exposed to different temperature and daylength conditions at varying ages. Shoot growth was monitored by weekly measurements and floral initiation by regular sampling and examination of axillary bud #5. Under natural summer daylight conditions at 60°N shoot growth was nearly doubled at 21 °C compared with 15 °C, while at 9 °C one half of the plants ceased growing and formed flower buds at midsummer. Developing shoots have a juvenile phase and could not be induced to flower before the 15-leaf stage. No significant reduction in induction requirements was found in larger plants. Plants exposed to natural light conditions from 10th August, had an immediate growth suppression at 9 and 12 °C with complete cessation after 4 weeks (by September 7). This coincided with the first appearance of floral primordia. At 15 °C both growth cessation and floral initiation occurred 2 weeks later (by September 21), while at 18 °C continuous growth with no floral initiation was maintained until early November when the photoperiod had fallen below 9 h. The critical photoperiod for growth cessation and floral initiation at 15 °C was 15 h. Plants exposed to 10-h photoperiods at 9 °C for 2–4 weeks had a transient growth suppression followed by resumed growth under subsequent high temperature and LD conditions, while exposure for 5 or 6 weeks resulted in complete growth cessation and dormancy induction. The critical induction period for floral initiation was 3 weeks although no transitional changes were visible in the bud before week 4. When exposed to inductive conditions for marginal periods of 3 or 4 weeks, an increasing proportion of the plants (20% and 67%, respectively), behaved as primocane flowering cultivars with recurrent growth and terminal flowering. It is concluded that growth cessation and floral initiation in raspberry are jointly controlled by low temperature and short day conditions and coincide in time as parallel outputs from the same internal induction mechanism.  相似文献   

14.
The effects of photoperiod (12, 13, 14, 15 or 16 h), day temperature (12, 15, 18, 24 or 27 °C) and night temperature (6, 9 or 12 °C) and their interactions on flower and inflorescence emergence were investigated by exposing 4 week old runner plants of strawberry cvs. Korona and Elsanta during a period of 3 weeks. A daily photoperiod of 12 or 13 h resulted in the highest number of plants with emerged flowers. A photoperiod of 14 h or more strongly reduced this number, while no flowers emerged at a photoperiod of 16 h. Plants exposed to photoperiods of 12 or 13 h flowered earlier and had longer flower trusses. A day temperature of 18 °C and/or a night temperature of 12 °C were optimal for plants to emerge flowers and resulted in the shortest time to flowering. A night temperature of 6 °C strongly reduced the number of plants that emerged flowers, especially when combined with lower day temperatures. Photoperiod and temperature had no effect on the number of inflorescences, all flowering plants produced on average one inflorescence. The number of flowers on the inflorescence increased with decreasing day temperature and when photoperiod was raised from 12 to 15 h. In general, ‘Korona’ was more sensitive to photoperiod and temperature as ‘Elsanta’, and had a lower optimal day temperature for flower emergence. Results of this experiment may be used to produce high quality plant material or to define optimal conditions when combining flower induction and fruit production.  相似文献   

15.
Knowledge of the factors involved, and tools to control morphology and flowering are important in intensive and cost-efficient greenhouse production. Hydrangea macrophylla is an important flowering pot plant in Norway and is produced year-around in greenhouses. Due to problems in scheduling, a study was conducted to compare floral transition and morphology of two commercially important cultivars of Hydrangea (‘Early Blue’ and ‘Schneeball’) under different flower initiating treatments in growth chambers. Plants were grown with high pressure sodium lamps (HPS) at moderate temperature (17 °C) (MT) and high (24 °C) temperature. At high temperature, the effect of (1) irradiance under long day conditions (16 h lighting with 70 or 200 μmol m−2 s−1), and (2) short day (8 h lighting) was investigated. The short day treatment had similar light integral as the low irradiance long day treatment (SD: 8 h × 140 μmol m−2 s−1 and LD: 16 h × 70 μmol m−2 s−1 = 4.0 mol m−2 d−1). The intention was to test the effect of irradiance and SD on flower transition and morphology under high temperatures. The results clearly showed that MT is the strongest signal for floral transition. MT resulted in a rapid floral transition of the terminal buds and lateral flower buds. A short forcing period was required and the plants became short and compact without any use of chemical growth retardants. At high temperatures only SD had a promotive effect on flower transition and the response was found to be stronger in ‘Schneeball’ than ‘Early Blue’. In general, all the treatments under high temperatures required a long forcing time and the plants tended to be very tall with a low number of lateral flower buds.  相似文献   

16.
In order to study the effect of brassinosteroids on the amelioration of the inhibitory effect of salinity on strawberry plants, a short-term experiment was conducted in greenhouse to test different concentrations of 24-epibrassinolide (24-EBL) (0.0, 0.5, and 1 μM) by foliar application on some agro-physiological properties, such as shoot dry weight, and root dry weight, stomatal conductance (SC), leaf relative water content (LRWC), leaf chlorophyll reading values (LCRV) and membrane permeability (MP) of strawberry ‘Fern’ and ‘A6’ cultivars irrigated with salt water (35 mM NaCl). 24-EBL solutions were applied twice during late afternoon hours with 7 d intervals using a hand-held sprayer. Plant shoot dry weight, root dry weight, SC, LRWC and LCRV were reduced by 29–33%, 45–15%, 71–55%, 11–13%, and 12–13% for ‘A6’ and ‘Fern’ cultivars at 35 mM (without 24-EBL applied), respectively, as compared to the nonsaline treatment, but MP increased 40% and 12%. An exogenous supply of 24-EBL was found to be successful in alleviating of the inhibitory effects of salt stress on plant growth parameters and nutrient contents. 24-EBL (1 μM) application under saline condition significantly increased shoot and root dry matter, SC, LRWC and LCRV of plants, and alleviation effects of 1 μM 24-EBL application was 20%, 15%, 122%, 5.8%, and 10.9% for ‘A6’ and 47%, 8.0%, 83%, 33.3% and 6.0% for ‘Fern’ cultivars, respectively. Macro-micro element content of plant leaf and root increased with increase 24-EBL except for Na under salinity stress. These results support the view that supplementary 24-EBL application can overcome the effects of salinity stress on plant growth and growth parameter under saline conditions.  相似文献   

17.
Prevailing ambient temperature during the reproductive phase is one of important factors for seed and fruit set in different plant species. In mango (Mangifera indica L.), natural low temperatures during flowering induced seedless fruits. Here the sexual reproduction process of ‘Tainong 1’ mango at low temperatures (diurnal maximum temperature < 20 °C) was studied. For comparison, we also examined this process at “normal” temperatures (diurnal maximum ranging from 25 to 30 °C, diurnal average temperature > 20 °C). Results showed: natural low temperatures significantly affected pistil and male gametophyte development, resulting in pollen grains with low viability. Meiotic chromosomal irregularities, including univalents, multivalents, laggards, bridges and micronuclei were detected at higher incidences and significantly greater proportions of nucleolus fragmentation and dissolution were detected when temperatures were low. Pollen tube growth was retarded under low temperature stress, either in vivo or in vitro. The virtual absence of sexual reproduction of ‘Tainong 1’ mango at low temperatures appears to be due largely to slow growth of pollen tube in vivo and to a low rate of successful fertilization.  相似文献   

18.
Since 1926, the University of Minnesota herbaceous perennial breeding program has released N = 84 garden chrysanthemum cultivars (Dendranthema × grandiflora) with important traits for northern temperate climates, such as winter hardiness. Recent breeding objectives have identified the need for development of non-destructive phenotypic markers and destructive laboratory freezing tests for co-selection of cold tolerance in Dendranthema, Gaura, and other herbaceous perennial flower crops. Such methods have become critical to flower breeding programs in northern temperate regions during periods of above-average winter temperatures and minimal snow cover due to the ‘el Niño’ effect. Two different, destructive laboratory freezing tests were evaluated for their effectiveness in determining cold tolerance. Acclimated crowns of n = 6 garden chrysanthemum genotypes, ranging from hardy to non-hardy in USDA Z3-4, were used in Omega Block (using detached, emergent rhizomes) and chamber (using entire, intact crowns with emergent, non-emergent rhizomes) freezing test methods. Comparative winter survival in the field was monitored over locations and years. Cold tolerance was assessed at 0 to −12 °C with varying ramp and soak time periods. LT50 temperatures and number of living emergent rhizomes were also determined. Rhizome quality at 1, 3, and 5 cm depths was rated for regrowth on a 0 (dead) to 5 (undamaged) scale. The chamber freezing method was the most powerful to discern accurate LT50 values. Cold tolerant genotypes included ‘Duluth’ and Mn. Selection 98-89-7 (LT50 = −12 °C). Four genotypes were rated as non-hardy (LT50 = ≤−10 °C). Cold-tolerant genotypes also had significantly higher regrowth ratings for rhizomes at 1 and 3 cm depths. Future research will implement the chamber freezing method to assay the inheritance of winter hardiness in intact crowns of segregating populations.  相似文献   

19.
Eleven cultivars of Chrysanthemum × grandiflorum (Ramat.) Kitam.: ‘Richmond’ and its 10 radiomutants, representing the Lady group, were propagated in vitro with shoot tips and leaves as explants. The aim of this study was to investigate if the explant type used for micropropagation affects the genotype and phenotype of chrysanthemums. Plants grown from shoot tips and adventitious buds formed on leaves were rooted in vitro, acclimatized and cultivated in glasshouse up to full-flowering. The colour and shape of inflorescences of plants obtained from two different explant types were compared within the cultivars. All plants derived from shoot-tip explants showed the inflorescence colour and shape typical for the cultivars. Inflorescence colour of plants derived from adventitious buds were true-to-type in four cultivars: ‘Richmond’, ‘Lady Amber’, ‘Lady White’ and ‘Lady Yellow’. All plants of ‘Lady Apricot’ (originally: golden beet) and ‘Lady Salmon’ (salmon) propagated from adventitious buds technique showed altered inflorescence colour (respectively: purple gold; pink and white). ‘Lady Bronze’ (originally: reddish brown), ‘Lady Orange’ (orange brown) and ‘Lady Rosy’ (purple gold) propagated with adventitious buds had both typical and changed inflorescence colours (respectively: yellow; yellow and red; reddish pink). ‘Lady Vitroflora’ showed altered number of ligulate florets grown into tubes in inflorescence when propagated with shoot tips and leaves as explants. Those changes might be an effect of either chimeral structure or somaclonal variation of the plants investigated. The variation appears only if non-meristematical explants were used. The adventitious buds technique might be useful in chrysanthemum breeding as a source of a new variability.  相似文献   

20.
To determine the effect of light intensity on flower greening, the Japanese hydrangea phyllody (JHP) phytoplasma-infected hydrangea cultivars ‘Midori’, ‘Libelle’, ‘Rosea’ and ‘Madame E. Mouillere’ plants were grown under different shade conditions. In the first-year experiment, the results indicate that the flowers of the JHP-phytoplasma-infected hydrangea become green under shaded conditions (70% and 49% sunlight intensities). On the other hand, under full sunlight intensity (100% sunlight intensity), the flowers of ‘Midori’, ‘Rosea’, and ‘Libelle’ plants were blue, pink or white. To calculate the percentage of flower greening, inflorescences of these plants were separated and divided into individual flowers, and classified into four types by green-area ratio, calculated using Adobe Photoshop. Under shading with one sheet of cheesecloth (70% sunlight intensity), the inflorescences of ‘Midori’, ‘Libelle’ and ‘Madame E. Mouillere’ plants were composed of more than 40% completely green flowers (0.8 ≦ green-area ratio), whereas those of ‘Rosea’ plant had 0% completely green flowers. Under shading with two sheets of cheesecloth (49% sunlight intensity), the inflorescences of ‘Midori’, ‘Libelle’ and ‘Madame E. Mouillere’ plants had more than 75% completely green flowers; ‘Rosea’ plants had 28%. In the second-year experiment, under full sunlight intensity, ‘Midori’ plants had four types of flower depending on their green-area ratio, namely, completely blue or pink, pink-green, greenish and completely green flowers. Under shading with two sheets of cheesecloth, ‘Midori’ plants had more than 90% completely green flowers. The JHP-phytoplasma could not be identified by PCR analysis in flowers with a green-area ratio = 0 (completely blue/pink/white flowers). On the other hand, in flowers with a green-area ratio > 0, the JHP-phytoplasma was detected by PCR analysis. Thus, we conclude that shading enhances flower greening in hydrangea by increasing the JHP-phytoplasma concentration in the flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号