首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the effect of nitrogen (N) and sulfur (S) fertilizers on yield and seed quality of three canola cultivars, a factorial based on randomized complete block experiment was conducted during 2005–2006 in Iran. Treatments included four nitrogen rates (0, 75, 150, and 225 kg N ha?1 source of urea), four sulfur rates (0, 100, 200, and 300 kg S ha?1), and three cultivars (‘Pf’, ‘Option-500’, and ‘Hyola-401’). Results indicated cultivar had a significant effect on all studied traits. ‘Option-500’ and ‘Hyola-401’ cultivars had the highest seed yield, protein content, and N:S ratio in seed. The levels of 150 and 220 kg N ha?1 resulted in the maximum protein content. Increasing N levels resulted in N content and decreased the oil content. The interaction effect between S and N levels showed the highest N content in seed was obtained with 300 kg S ha?1 and 225 kg N ha?1.  相似文献   

2.
ABSTRACT

Seed yield and nutrient use efficiency are related to biomass accumulation and nutrient uptake in the growing season. Biomass accumulation and nutrient uptake of canola (Brassica napus L. and Brassica rapa L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.) and the relationship to days after emergence (DAE) or growing degree days (GDD) were determined during the 1998 and 1999 growing seasons in field experiments at Melfort, Saskatchewan, Canada. In general, biomass accumulation and nutrient uptake increased with time at early growth stages and reached a maximum at late growth stages. Significant R2 values for both biomass accumulation and nutrient uptake indicated that a cubic polynomial type equation was suitable to represent these parameters as a function of DAE. All oilseed crops maximized biomass at mid way to the end of pod forming stages (74–84 DAE or 750–973 GDD). Maximum biomass accumulation rate occurred at the early to late bud forming stage (42–49 DAE or 390–498 GDD), and it was 146–190 kg ha?1d?1 for canola, 158–182 kg ha?1d?1 for mustard, and 174–189 kg ha?1d?1 for flax. Maximum nutrient uptake occurred during flowering to early ripening (59–82 DAE or 597–945 GDD). Maximum nutrient uptake rate normally occurred at branching to early bud formation (21–42 DAE or 142–399 GDD). There was a close correlation between biomass accumulation and nutrient uptake, and among nutrients, suggesting interrelated absorption. For nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and boron (B), respectively, maximum nutrient uptake rate was 2.3–4.5, 0.3–0.5, 2.5–5.7, 0.7–1.1, and 0.005–0.008 kg ha?1d?1 for canola; 2.3–3.9, 0.4–0.5, 2.6–4.9, 1.2–1.4, and 0.006–0.008 kg ha?1d?1 for mustard; and 3.2–4.0, 0.3–0.4, 2.9–4.1, 0.3–0.5, and 0.004–0.009 kg ha?1d?1 for flax. In general, maximum nutrient uptake rate and amount occurred earlier than maximum biomass accumulation rate and amount, and maximum rates of both nutrient uptake and biomass accumulation occurred earlier than their maximum amounts. The findings suggest that for high seed yields, there should be adequate supply of nutrients for plants, particularly to sustain high nutrient uptake rate at branching to bud forming stage and high biomass accumulation rate at early to late bud forming stage.  相似文献   

3.
《Journal of plant nutrition》2013,36(7):1145-1161
Abstract

Production of new high-yielding canola hybrids has been extremely prolific and, as a consequence, very little work has been performed to assess the fertility requirements of these crops. A series of experiments (14 site-years) was carried out over three years (1999–2001), primarily to assess the nitrogen (N) fertility of canola hybrid cultivars and at the same time ascertain whether the associated phosphate and sulfur (S) fertility are influenced by N application. All experiments included 12 rates of N (0 to 220 kg N ha?1 in 20 kg ha? 1 increments) and three rates of either P2O5 or S (0, 20, and 40 kg ha? 1) with blanket application of other nutrients. Although differences in the performance of individual canola hybrid cultivars can be significant in some cases, the term “hybrid” in this study does not refer to the performance of one specific cultivar, but to the group of hybrids tested. Under an identical nutrient regime, on average, hybrid cultivars produced a 17% higher seed yield, but did not reach maximum potential; on average, this result, occurred under a higher N fertility regime at which hybrid cultivars produced 33% higher yields than did conventional cultivars. To maintain maximum yield, hybrids must be supplied with phosphate and S at levels that are similar to those used on conventional cultivars. Hence, it would appear that hybrids are more efficient scavengers of soil nutrients, a fact that may have serious ramifications for the fertility of the following crops.  相似文献   

4.
ABSTRACT

This study was conducted to determine the effects of nitrogen (N) doses on yield, quality, and nutrient content in broccoli heads. Treatments consisted of 0, 150, 300, 450, and 600 kg N ha? 1. Nitrogen rates significantly increased yield, average weight of main and secondary heads, and the diameter in broccoli compared to control. The highest total yield (34631 kg ha? 1) was obtained at 300 kg N ha? 1. At harvest, the highest amount of the total N in broccoli heads was measured at 450 kg N ha? 1 application. Potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) content increased with increases in nitrogen treatments but, phosphorus (P), copper (Cu), manganese (Mn), boron (B), and sodium (Na) contents were not influenced. Also, removed nutrients by broccoli head were highest at 300 kg ha? 1N rate.  相似文献   

5.
Soil pH and nutrient contents influence the uptake and utilization of nutrients required for plant growth. Soil characteristics in the canola-growing areas of the Western Cape Province of South Africa are often very variable. Hence, the major aim of this research was to determine the effects of soil and climatic differences as experienced at different localities on macro- and micronutrient contents and uptake in canola plants fertilized with different nitrogen (N) and sulfur (S) application rates. Plants fertilized with 0, 15, and 30 kg S ha?1 in combination with N rates of 0 and 90 kg ha?1 were sampled at 90 days after planting (DAP) (flowering stage) at Altona, Elsenburg, Langgewens, Roodebloem, and Welgevallen localities in the Western Cape during 2009 2010, and 2011. Nutrient content in canola plants were affected by locality and interactions between locality and N application rates. Sulfur content within the plants remained less than the sufficient quantity of 0.5%, and a dilution effect on elemental concentration in canola especially at greater N rates (plus lack of sufficient S) is apparently evident from the results. The results also reveal that canola S application should match S adsorption capacity of the low pH soils of the Western Cape.  相似文献   

6.
Field experiments were conducted to evaluate the effects of nitrogen (N) and sulfur (S) levels and their methods of application on canola. Branches plant?1, pods plant?1 and biological yield significantly increased with increase in nitrogen level and no significant increase in seed pod?1 and seed and oil yields occurred beyond 120 kg N ha?1. However, thousand seed weight consistently decreased with increasing level of nitrogen. Pods plant?1 and biological yield continually increased with increase in sulfur level. Alternatively, significant increase in branches plant?1, seed pod?1, seed weight, seed and oil yields was noted with increase in sulfur level up to 40 kg ha?1. Applications of sulfur and nitrogen in split significantly decreased seed yield as compared to sole applications. It is concluded that sulfur and nitrogen application as sole at the rate of 40 and 120 kg ha?1, respectively performed better than the rest of their levels and method of application.  相似文献   

7.
Inappropriate sulfur and potassium fertilization, particularly with continued soil nutrient mining and yearly fluctuations in rainfall, are major factors contributing to slow growth and low seed quality of canola in northwestern Pakistan. A field experiment was conducted in 2007–2008 on a sulfur (S) and potassium (K) deficient clay loam soil under irrigation at the research farm of NWFP (Northwest Frontier Province) Agricultural University, Peshawar, Pakistan, with an objective to determine response of phenology and seed quality of Brassica oilseed rape versus mustard to S and K fertilizer application. Twenty treatments in a randomized complete block design were consisted of two oilseed genotypes [rape (B. napus canola) and mustard (B. juncea canola)], at three rates each of S (15, 30, and 45 kg S ha?1) and K (30, 60, and 90 kg K ha?1), plus control (no K and S applied). Days to flowering, pod formation, seed filling duration and maturity were enhanced with K and S fertilization compared to control plots. The species B. napus took more time to flowering, pod formation, seed filling duration and maturity compared to B. juncea. Both genotypes responded positively for seed quality (oil and protein content) to K and S fertilization, but the magnitude of response varied with level and combination of K and S fertilization. Delay in the phenological stages showed negative relationship with oil and protein content in seed of both genotypes. It is concluded that a combination of 60 kg K ha?1 + 30 kg S ha?1 would accelerate phenological development and improve seed quality of rape and mustard in the study area.  相似文献   

8.
Agronomic management through better use of inputs benefits farmers both by enhancing productivity and profitability. A field experiment was conducted in consecutive summer seasons (2011–2013) consisting of two mulching (no mulch, polythene mulch), three hydrogel (0, 2.5, 5.0 kg ha?1), and three nutrient management treatments (organic, inorganic, and integrated) in a split–split plot design. Use of mulching and 2.5 kg hydrogel ha?1 and integrated nutrient management enhanced pod, haulm, kernel and oil yields, and net economic returns. Partial factor productivity and water-use efficiency were higher under polythene mulch and 5.0 kg hydrogel ha?1. Higher nutrient uptakes were obtained under both mulching and integrated nutrient management. Use of 2.5 kg hydrogel ha?1 resulted in more removal of N; P and K uptakes were higher in 5.0 kg hydrogel ha?1. Combination of three managements had a consequence of actual soil N loss, but gains in soil P and K after three cropping cycles.  相似文献   

9.
A field experiment was carried out in a semi-arid region of Iran during the 2006–2007 growing season to investigate canola seed yield as affected by nitrogen (N) and natural zeolite (Z) rates. This experiment studied N efficiency and N leaching loss in a sandy soil. Experimental treatments consisted of a factorial combination of three N levels (90, 180, and 270 kg N ha?1) and four zeolite rates (0, 3, 6, and 9 t zeolite ha?1). The result showed that the greatest seed yield (2452.3 kg ha?1) was obtained from the N270Z9 treatment whereas the control treatment (N0Z0) produced the lowest seed yield (1038.3 kg ha?1). Moreover, use of 270 kg N ha?1 without zeolite (N270Z0) led to the greatest amount of N leaching loss (144.23 kg ha?1). Zeolite application clearly reduced N leaching loss in all N rates. This justified low N-use efficiency in high N applications. More N uptake and more canola seed yield is attributed to zeolite application.  相似文献   

10.
Improved nutrient‐use efficiency is important to sustain agricultural production. The goal of our study was to investigate the effects of Azovit® (Azotobacter chroococcum) inoculation of seed with N fertilization on crop yield, nutrient uptake, and N‐use efficiency (NUE) of irrigated cotton (Gossypium hirsutum L. cv. C‐6524) in secondary saline soil under continental climatic conditions of Uzbekistan. A randomized complete block design in a 4 × 2 split‐plot experiment was established in the fall of 2013. The main plot was N fertilization (0, 140, 210, and 280 kg ha?1) and the subplot was Azovit inoculation. Azovit inoculation consistently increased the seed and lint yields of cotton by 25 and 27.9%, respectively, at 210 kg N ha?1 compared to the respective control. Azovit with 210 kg N ha?1 significantly increased the cotton harvest index by 21%, when compared to the control. Likewise, nutrient uptake and NUE of cotton were higher when N (210 kg ha?1) was applied with Azovit, as compared to other treatment combinations. An extrapolation of the relationship of relative yield vs. N fertilization showed that Azovit at 210 kg N ha?1 was sufficient to obtain near‐maximum cotton production (90%) with highest NUE, as compared to the respective control. The results suggest that Azovit with 210 kg N ha?1 produces cotton yield higher and/or comparable with the currently used rates of 280 kg N ha?1 or higher, suggesting savings of 70 kg N ha?1 for cotton production in saline soils under continental climatic conditions.  相似文献   

11.
Asiatic cotton (Gossypium arboreum) is mostly grown in the rainfed regions of India. However, little is known about the effects of nutrient‐management practices on plant growth and fruiting pattern of Asiatic cotton. Therefore, plant growth and fruiting pattern under four nutrient‐management treatments, N, NPK, FYM (10 Mg ha–1), and INM (integrated nutrient management: a combination of NPK and FYM) were quantified during 2000–01 to 2002–03 (years 16 to 18 of a long‐term field experiment). Plants of the INM and FYM treatments were taller (68.4–149.5 cm) and had more main stem nodes per plant (30.5–44.5) as compared to N and NPK treatments. In treatment N, the shortest plants (50.9–83.6 cm) and the least number of fruiting structures were produced. Plants of the INM and FYM treatments accumulated more squares and bolls. Maximum boll production was 10–19 days earlier with the manure‐amended than the N and NPK treatments. Treatment N had the lowest seed cotton yield (639–790 kg ha–1), because of small boll size (1.48–1.73 g) and few open bolls. Seed cotton yield followed the trend: NPK (815–1278 kg ha–1) < INM (776–1551 kg ha–1) < FYM (902–1593 kg ha–1). Water stress and nutrient deficiencies (P and Zn in the N and Zn in the NPK treatments) as a consequence of nutrient depletion over the years may have decreased seed cotton yields in treatments that received mineral fertilizer alone in comparison with manure‐amended treatments. On a long‐term basis, FYM application should therefore form an integral part of nutrient recommendation.  相似文献   

12.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

13.
In the present study, seven fertilizer treatments [T1, 50% NPK; T2, 100% NPK (Recommended dose of fertilizer, 200–65.4–124.5 kg N-P-K ha?1); T3, 150% NPK; T4, 100% PK; T5, 100% NK; T6, 100% NP and T7, control (zero NPK)] with four replications were assessed in the new alluvial soil zone (Entisols) of West Bengal, India. The objectives of the study were to generate information on potato productivity, profitability, indigenous nutrient supply and net gain/loss of NPK in post-harvest soil. Plants grown under higher NPK supply resulted in higher tuber yield and there were significant (p ≤ 0.05) reductions in total yield with nutrient omissions. Nutrient?limited yields were 19.78, 2.83 and 1.77 t ha?1 for N, P and K, considering total tuber yield (28.24 t ha?1) obtained under 100% NPK as targeted yield. Indigenous nutrient supply of N, P and K were estimated at 24.1, 22.34 and 110.22 kg ha?1, respectively that indicates higher K?supplying capacity of experimental soil as compared to N and P. Net income (US$1349 ha?1 year?1) and B:C ratio (1.91) was highest with 100% NPK, and further addition of NPK (150%) resulted in decrease on net return (US$1193 ha?1 year?1) and B:C ratio (1.73).  相似文献   

14.
This study reports and analyzes nutrient balances in experimental vegetable production systems of the two West African cities of Tamale (Ghana) and Ouagadougou (Burkina Faso) over a two‐year period comprising thirteen and eleven crops, respectively. Nutrient‐use efficiency was also calculated. In Tamale and Ouagadougou, up to 2% (8 and 80 kg N ha?1) of annually applied fertilizer nitrogen were leached. While biochar application or wastewater irrigation on fertilized plots did not influence N leaching in both cities, P and K leaching, as determined with ion‐absorbing resin cartridges, were reduced on biochar‐amended plots in Tamale. Annual nutrient balances amounted to +362 kg N ha?1, +217 kg P ha?1, and –125 kg K ha?1 in Tamale, while Ouagadougou had balances of up to +692 kg N ha?1, +166 kg P ha?1, and –175 kg K ha?1 y?1. Under farmers' practice of fertilization, agronomic nutrient‐use efficiencies were generally higher in Tamale than in Ouagadougou, but declined in both cities during the last season. This was the result of the higher nutrient inputs in Ouagadougou compared to Tamale and relatively lower outputs. The high N and P surpluses and K deficits call for adjustments in local fertilization practices to enhance nutrient‐use efficiency and prevent risks of eutrophication.  相似文献   

15.
Abstract

To study the response of inorganic and organic nitrogen (N) sources both alone and in conjunction and their influence on soil quality, a field experiment was conducted during kharif and rabi seasons using sunflower (MSFH‐8) as test crop. The experimental site soil was Typic Haplustalf situated at Hayatnagar Research Farm of Central Research Institute of Dryland Agriculture, Hyderabad, India, at 17° 18′ N latitude, 78° 36′ E longitude. The experiment design was a simple randomized block design with 11 treatments replicated four times. Among all the treatments, vermicompost (VC)+Fert at 25+25 kg N ha?1 recorded the highest grain yields of 1878 and 2160 kg ha?1 during both kharif and rabi seasons, respectively, which were 43.9 and 85.1% higher than their respective control plots. Apparent N recovery varied from as little as 38.30% (FYM at 50 kg N ha?1) to 62.16 (25 kg N ha?1) during kharif and 49.65 (75 kg ha?1) to 83.28% (VC+Fert at 25+25 kg N ha?1) during rabi season. Conjunctive nutrient treatments proved quite superior to other set of treatments in improving the uptake of N, phosphorus (P), potassium (K), sulfur (S), and micronutrients in sunflower and their buildup in the soil. Highest relative soil quality indexes (RSQI) were observed under VC+Fert at 25+25 kg N ha?1 (1.00) followed by VC+Gly at 25+25 kg N ha?1 (0.87). Considering the yield and relative soil quality indices (RSQI), conjunctive applications of VC with either inorganic fertilizer, FYM, or Gly at 25+25 kg N ha?1 could be a successful and sustainable soil nutrient management practice in semi‐arid tropical Alfisols. Besides this, the fertilizer N demand could be reduced up to 50%.  相似文献   

16.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

17.
Rice is a major cereal crop in Himachal Pradesh, a Himalayan state of India, where paddy acreage is about 78,000 ha with a low average yield of 19.62 q ha?1 due to rainfed upland farming. High seeding rates and poor resource-use efficiency of conventional fertilizer nitrogen (N) management practices in rainfed upland paddy have also been major production constraints in rainfed upland ecosystems. To validate and refine the production technology on seed rate and fertilizer N management, the Farm Science Centre, Sundernagar, India, conducted numerous on-farm trials (OFTs) during 2006–2010 under an on-farm participatory technology development approach to enhance resource use efficiency through these resource conservation technologies and boost the paddy productivity in the region. Results of two OFTs conducted during Kharif 2006 in the Mandi District of Himachal Pradesh on different seed rates under different sowing methods on VL Dhan-221 and Sukaradhan-1 (HPR-1156) cultivars suitable for rainfed upland conditions revealed that the seed rate at 80 kg ha?1 sown in rows 20 cm apart resulted in the greatest average paddy productivity to the tune of 25.6 q ha?1 besides greater profitability, followed by a seed rate at 60 kg ha?1 sown in rows 20 cm apart (25.2 q ha?1), over the earlier State Agricultural University (SAU)–recommended practice, that is, seed rate at 100 kg ha?1 in rows 20 cm apart. This refinement in the seed rate was accepted by the participating farmers of the region. The greatest average benefit/cost (B/C) ratio was observed in plots with seed rate at 60 kg ha?1 sown in rows 20 cm apart. Based on these results and data compilation from other locations of the state, now the SAU has refined the seed rate from earlier recommendation of 100 kg ha?1 to 60 kg ha?1 in rows 20 cm apart as well as 80 kg ha?1 through broadcast method under rainfed upland paddy in Himachal Pradesh. Results of two OFTs conducted during Kharif 2009 on integrated nutrient management in rainfed upland paddy revealed that farmyard manure (FYM) at 10 t ha?1 + nitrogen, phosphorus, and potassium (N, P, K) at 15:30:30 kg ha?1 at sowing followed by 15 kg N ha?1 15 days after sowing (DAS) and remaining the N [i.e., 30 kg N ha?1] at tillering (45–50 DAS) resulted in the greatest grain yield of 29.85 and 31.67 q ha?1 in VL Dhan-221 and HPR-1156, respectively, with respective greater yields of 35.99 and 36.51% over farmers’ practice, besides better profitability. To further standardize fertilizer N split doses and assess their effect on paddy productivity, another OFT was conducted during Kharif 2010 under rainfed upland paddy conditions in HPR-1156. The results revealed that NPK at 60:30:30 kg ha?1 (whole of P and K as basal, 50% N at 15 DAS, 25% N each at 45–50 DAS and 70–75 DAS splits) resulted in better grain yield (34.3 q ha?1) and net profitability (?29,786 ha?1) over other treatments. Overall, it is concluded that these resource conservation technologies developed under the OFT participatory approach can enhance the rainfed upland paddy productivity and strongly show that there is dire need to split the N requirement of rainfed upland paddy in 2–3 splits to reduce the fertilizer N losses, enhance resource-use efficiency, and increase productivity and profitability in Himachal Pradesh, India.  相似文献   

18.
Improper sulfur (S) and potassium (K) fertilizer management, particularly with continued soil nutrient mining, is one of the major factors contributing to low seed yield of canola in northwestern Pakistan. A field experiment was conducted in 2007?2008 on a S and K deficient clay loam soil at the Research Farm of NWFP (Northwest Frontier Province) Agricultural University, Peshawar, Pakistan, with an objective to determine seed yield and yield components response of Brassica oilseed rape versus mustard to S and K application. Twenty treatments in a randomized complete block design were consisted of two oilseed rape (B. napus canola) and mustard (B. juncea canola) genotypes at three rates each of S (15, 30, and 45 kg S ha?1) and K (30, 60, and 90 kg K ha?1) fertilizers plus one control (no S and K applied). Seed yield and yield components increased significantly with K and S fertilization as compared to the zero-S/zero-K control. Both genotypes responded positively for seed yield and yield components to K and S fertilization, but the magnitude of response varied with levels of S and K, as well as combined K + S applications. It is concluded that a combination of 60 kg K + 30 kg S ha?1 would improve seed yield and yield components of rape and mustard in the study area and contribute significantly to increased production. Growing B. napus was better than B. juncea in the study area, because B. napus produced significantly higher seed yield and yield components than B. juncea, indicating that yield components are the most important criteria for selection of Brassica genotypes for higher seed yield.  相似文献   

19.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

20.
Field experiments were carried out during rainy (kharif) and winter (rabi) seasons (June–April) of 2008–2010 at Indian Agricultural Research Institute (IARI), New Delhi, to study the productivity, nutrients uptake, iron (Fe) use-efficiency and economics of aerobic rice-wheat cropping system as influenced by mulching and Fe nutrition. The highest yield attributes, grain and straw yields (5.41 tonnes ha?1 and 6.56 tonnes ha?1, respectively) and nutrient uptake in rice was recorded with transplanted and puddled rice (TPR) followed by aerobic rice with Sesbania aculeata mulch. However, residual effect of aerobic rice with wheat straw mulch was more pronounced on yield attributes, grain and straw yields (4.20 and 6.70 tonnes ha?1, respectively) and nutrient uptake in succeeding wheat and remained at par with aerobic rice with Sesbania mulch. Application of iron sulfate (FeSO4) at 50 kg ha?1 + 2 foliar sprays of 2% FeSO4 was found to be the best in terms of all the yield attributes, grain and straw yield (5.09 and 6.17 tonnes ha?1, respectively) and nutrient uptake and remained at par with 3 foliar sprays of 2% FeSO4. Although residual effect of iron application failed to increase the yield attributes, yield and nutrient uptake nitrogen, phosphorus and potassium (N, P, K) except Fe. The highest system productivity, nutrient uptake, gross returns, net returns, B: C ratio and lowest cost of cultivation were recorded with aerobic rice with wheat straw and Sesbania aculeata mulch. Application of FeSO4 at 50 kg ha?1 + two foliar sprays of 2% FeSO4 was found better in respect of system productivity, nutrient uptake, gross returns, net returns, B:C ratio and cost of cultivation in aerobic rice-wheat cropping system. The Fe use efficiency values viz. partial factor productivity (kg grain kg?1 Fe), agronomic efficiency (kg grain increased kg?1 Fe applied), agrophysiological efficiency (kg grain kg?1 Fe uptake), physiological efficiency (kg biomass kg?1 Fe uptake), apparent recovery (%) utilization efficiency and harvest index (%) of applied Fe were significantly affected due to methods of rice production and various Fe nutrition treatments in aerobic rice and aerobic rice-wheat cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号