首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

2.
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH 4 + oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH 4 + oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH 4 + oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown.  相似文献   

3.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

4.
The effects of zero, minimum and conventional tillage on soil physical properties and on the growth and yield of mungbean (Vigna radiata L.) grown after lowland rice (Oryza sativa L.) were studied in field experiments conducted during the 1984 and 1985 dry seasons (DS) at two Philippine sites (clay loam, Vertic Tropaquept, with shallow water table and sandy loam, Aeric Tropaquept, with deep water table). Effects on maize (Zea mays L.) were studied only in 1984 on clay loam soil.All parameter measurements were not significantly different with minimum and conventional tillage. Tillage, averaged over minimum and conventional and in both seasons, significantly lowered bulk density (10%) and increased aeration porosity (120%) of the 0–0.10 m clay loam soil layer. In sandy loam soil in 1985, it decreased bulk density by 7% and increased aeration porosity by 61%. Tillage only slightly affected the matric suction, strength and temperature of both soils.Maize seedling emergence was 15% higher with zero tillage than with minimum and conventional tillage. Tillage, however, did not affect mungbean emergence. It significantly increased maize plant height (42%) and root length (61%) as compared with no tillage. In mungbean, tillage increased plant height (18%) and root length (60%), as averaged over both sites and seasons. In clay loam soil, tillage increased grain yield of maize by 242%. On the same field, tillage increased mungbean grain yield by 78% in 1984 and 20% in 1985. In sandy loam, tillage produced 38% more mungbean grains than without tillage.  相似文献   

5.
Field experiments were conducted on sandy clay loam soil at New Delhi, during the winter season of 2007 and 2008 to investigate the effect of tillage, irrigation regimes, i.e. sub-optimal, optimal and supra-optimal water supply, and integrated nutrient management practices (INM) on soil enzymatic activities after cultivation of wheat (Triticum aestivum). Soil glucosidase (54.5%), urease (88.8%), acid phosphatase (97.4%) and alkaline phosphatase (85.3%) activities increased significantly under conservation tillage compared with conventional tillage fields. An optimal water supply (i.e. three irrigations) led to a significant increase in soil enzymatic activity over sub-optimal (i.e. two) and supra-optimal (five) irrigation. Urease activity was slightly lower in the sub-optimal irrigations, but higher in supra-optimal irrigations by 15.5% than in optimal irrigation in conventional tillage. This study suggests that inorganic and organic nutrient combinations with conservation tillage and optimal water supply significantly improved soil enzymatic activities.  相似文献   

6.
This paper reviews some research studies on tillage methods influencing soil and moisture conservation in the eastern African countries of Kenya, Tanzania, Malawi and Ethiopia during the past four decades. Most of these studies were conducted in marginal rainfall (semi arid) areas and on shallow soils of various textures (sandy clay loam, sandy clay, clay and loam). The studies were meant to establish the effects of tillage and residue management practices on physico-chemical soil properties (i.e. structure, bulk density, soil moisture and organic matter contents), runoff and infiltration.

This review emphasizes the importance of appropriate tillage and residue management methods (contour bunds and terraces, minimum tillage, tied ridging, mulching and conventional tillage) in providing soil conditions favourable for soil moisture conservation and subsequent crop performance and yield on smallholder farms.  相似文献   


7.
Abstract

Soil carbon (C) content in agro‐ecosystems is important in a global context because of the potential for soil to act as a sink for atmospheric CO2. However, soil C storage in agro‐ecosystems can be sensitive to land management practices. The objective of this study was to examine the impact of land management systems on C and nitrogen (N) cycling in an Ultisol in Alabama. Soil samples (0–10, 10–20, and 20–30 cm depths) were collected from a Marvyn sandy loam soil (fine‐loamy, siliceous, thermic Typic Hapludults) under five different farm scale management systems for at least 5 years. The five systems were cotton (Gossypium hirsutum L.) production managed with 1) conventional tillage only, 2) conventional tillage with a grazed winter cover crop (wheat, Triticum aestivum L.), 3) conservation tillage with a winter cover crop grown for cover only with strip tillage; or taken out of cotton production with either 4) long‐term fallow (mowed), or 5) Conservation Reserve Program with loblolly pine (Pinus taeda L.) (CRP‐pine). Total N, total organic C (TOC), total P, and soil C:N ratios were determined. Potential C mineralization, N mineralization, C turnover and C:N mineralization ratios were determined on samples during a 30‐day laboratory incubation study. The fallow system had significantly higher TOC concentration (7.7 g kg‐1 C) while the CRP‐pine system had lower TOC concentration (3.1 g kg‐1 C) compared with the farmed management systems (=4.7 g kg‐1 C). The fallow system had a significantly lower C turnover at all three soil depths compared with the other management systems. At the 0–10 cm depth, the highest C:N mineralization ratio levels were observed in management systems receiving the most tillage. Our results indicate that for Ultisols in the Southeast the use of surface tillage in land management systems is a controlling factor which may limit soil C sequestration.  相似文献   

8.
There is limited knowledge of biochemical processes in low carbon content soils of semiarid regions under different land use and management. This study investigated several enzyme activities of C, N, P, and S transformations in semiarid soils with different clay (10–21 %) and sand (59–85 %) contents that were under conservation reserve program (CRP), native rangeland (NR), and cropland (CL) under sunflowers (Eriophyllum ambiguum (Gray)), continuous cotton (Gossypium hirsutum L.), or in rotations with wheat (Triticum aestivum L.) or sorghum (Sorghum bicolor L.) in West Texas, USA. Soils under CRP and NR showed higher total C and N contents than cultivated soils under continuous cotton, but soil pH (6.7–8.4) was not affected by the management or land use studied. The activities of β‐glucosidase, β‐glucosaminidase, arylamidase, acid and alkaline phosphatase, phosphodiesterase, and arylsulfatase (mg product (kg soil)–1 h–1) were lower in CL under continuous cotton compared to cotton in rotation with other crops, CRP, and NR. The enzyme activities were also lower when compared to soils from other regions. Linear regression analyses indicated positive correlations between enzyme activities and total C (r values up to 0.96, P < 0.01). There was a positive relationship between enzyme activities and total N, but soil pH showed the opposite trend. Enzyme activities were significantly intercorrelated with r values up to 0.98 (P < 0.001). The specific enzyme activities (mg product (g organic C)–1) were lower in continuous cotton in comparison to the uncultivated soils (i.e., NR and CRP) reflecting differences in organic matter quantity and quality due to cultivation. Among the enzymes studied, the specific activities of β‐glucosidase and arylamidase showed a more pronounced decrease with increasing soil depth. In general, soils under CRP or wheat‐cotton rotations revealed higher enzyme activities than soils under the common agricultural practice for these regions, i.e., continuous cotton under conventional tillage.  相似文献   

9.
The continuous use of heavy machinery and vehicular traffic on agricultural land led to an increase in soil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. A pot experiment was conducted under greenhouse conditions to study the effects of induced soil compaction on growth and yield of two wheat (Triticum aestivum) varieties grown under two different soil textures, sandy loam and sandy clay loam. Three compaction levels [C0, C1, and C2 (0, 10 and 20 beatings)], two textural classes (sandy loam and sandy clay loam), and two genotypes of wheat were selected for the experiment. Results indicated that induced soil compaction adversely affected the bulk density (BD) and total porosity of soil in both sandy loam and sandy clay loam soils. Compaction progressively increased soil BD from 1.19 Mg m?3 in the control to 1.27 Mg m?3 in C1 and 1.40 Mg m?3 in C2 in sandy loam soil while the corresponding increase in BD in sandy clay loam was 1.56 Mg m?3 in C1 and 1.73 Mg m?3 in C2 compared to 1.24 Mg m?3 in the control. On the other hand, compaction tended to decrease total porosity of soil. In case of sandy loam, porosity declined by 5% and 17% in C1 and C2, respectively, and declined in sandy clay loam by 29% and 54%, respectively. Averaged over genotypes and textures, shoot length decreased by 15% and 26% at C1 and C2, respectively, and straw yield decreased by 21% and 61%, respectively. The compaction levels C1 and C2 significantly decreased grain yield by 12% and 41%, respectively, over the control. The deleterious effect of compaction was more pronounced on root elongation and root mass, and compaction levels C1 and C2 decreased root length by 47% and 95% and root mass by 41% and 114%, respectively, over the control. Response of soil texture to compaction was significant for almost all the parameters, and the detrimental effects of soil compaction were greater in sandy clay loam compared to sandy loam soil. The results from the experiment revealed that soil compaction adversely affected soil physical conditions, thereby restricting the root growth, which in turn may affect the whole plant growth and grain yield. Therefore, appropriate measures to avoid damaging effects of compaction on soil physical conditions should be practiced. These measures may include soil management by periodic chiseling, controlled traffic, conservation tillage, addition of organic manures, and incorporating crops with deep tap root systems in a rotation cycle.  相似文献   

10.
This study investigated the impacts of cropping systems of cotton (Gossypium hirsutum L.; Ct) and peanut (Arachis hypogaea L.; Pt) on a Brownfield fine sandy soil (Loamy, mixed, superactive, thermic Arenic Aridic Paleustalfs) in west Texas, United States. Samples (0–12 cm) were taken 2 and 3 years after establishment of the plots from PtPtPt, CtCtPt and PtCtCt in March, June and September 2002, and in March 2003. Soil total N and aggregate stability were generally not different among the cropping systems. The pH of the soils was >8.0. Continuous peanut increased soil organic C, microbial biomass C (Cmic) and the activities of -glucosidase, -glucosaminidase, acid phosphatase, alkaline phosphatase, phosphodiesterase and arylsulfatase compared to the peanut-cotton rotations. The arylsulfatase activity of the fumigated field-moist soil and that resulting from the difference of the fumigated minus non-fumigated soil were greater in PtPtPt, but arylsulfatase activity of non-fumigated soil was unaffected by the cropping systems. Soil Cmic showed a different seasonal variation to enzyme activities during the study. Enzyme activities:microbial biomass ratios indicated that the microbial biomass may not have produced significant amounts of enzymes or that newly released enzymes did not become stabilized in the soil (i.e., due to its low clay and organic matter contents). Fungal (18:26c and 18:19c) and bacterial (15:0, a15:0, and a17:0) FAMEs were higher in PtPtPt than in CtCtPt or PtCtCt cropping systems. Our results suggest that the quality or quantity of residues returned to the soil under a peanut and cotton rotation did not impact the properties of this sandy soil after the first 3 years of this study.  相似文献   

11.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

12.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

13.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

14.
不同质地耕层土壤有效态微量元素含量特征   总被引:2,自引:0,他引:2  
[目的]研究不同土壤质地下耕层土壤有效态微量元素含量特征,为合理制定农田土壤施肥方案和提高土壤养分资源利用率提供依据。[方法]以库车县不同质地耕层土壤(0—20cm)为调查对象,采用统计方法对土壤微量元素有效态含量特征进行分析。[结果](1)土壤有效态微量元素在壤土、砂壤土、黏土、黏壤土及砂土中含量差异显著(p0.05),且壤土和砂壤土的有效态微量元素含量相对较高;(2)土壤微量元素有效性综合指数排列顺序依次为:砂壤土(1.51)砂土(1.44)黏土(1.42)壤土(1.41)黏壤土(1.27);(3)土壤有机质与土壤有效态微量元素均具有极其显著的相关性(p0.01),pH值则与有效铜和有效锰相关显著(p0.05)。[结论]在不同土壤质地下,微量元素铁和锌含量较为缺乏,锰和铜含量则相对较为丰富,故应依据这一特性进行土地科学管理和施肥。  相似文献   

15.
Inverse linear relationships between soil strength and yield in Coastal Plain soils that have subsurface genetic hard layers have previously been developed for corn (Zea mays L.), soybean (Glycine max L. Merr.), and wheat (Triticum aestivum L.) grown under management systems that include annual or biannual non-inversion deep tillage. In a field study in the southeastern Coastal Plains of the USA, we tested this relationship for cotton (Gossypium hirsutum L.) grown in wide (0.96 m) rows, hypothesizing that root growth and lint yield of cotton would increase with a decrease in soil strength associated with annual deep tillage or cover crop. Root growth and yield were evaluated for treatment combinations of surface tillage or none, deep tillage or none, and rye (Secale cereale L.) cover crop or none. Root growth increased (r2=0.66–0.68) as mean or maximum soil strength decreased. Cotton lint yield was not significantly affected by the treatments. Lack of yield response to tillage treatment may have been the result of management practices that employed a small (3 m wide) disk in surface-tilled plots and maintained traffic lanes, both of which help prevent re-compaction. These results indicate that less than annual frequency of subsoiling might be a viable production practice for cotton grown in traditionally wide (0.96 m) rows on a Coastal Plain soil (fine loamy Acrisol–Typic Kandiudult). Thus, annual subsoiling, a practice commonly recommended and used, need not be a blanket recommendation for cotton grown on Coastal Plain soils.  相似文献   

16.
Abstract

Variations in the plant growth media were achieved by combining kaolinite clay (<lμm esd.), silt (2–50μm esd.) and sand (100–250 μm esd.) in various ratios. Peds of different sizes were separated from an Okolona clay soil and used as a growth media. A layer (3 cm thickness) of the sand, silt or clay and their combinations were intercalated between sandy loam soil material in a lucite coated cardboard carton. After 21 days the plants were harvested and analyzed for a number of growth parameters and related to the physical and micromorphology of the central control layer.

Germination and emergence of sorghum seed were delayed in the finer aggregates. An increase in aggregate size increased the root elongation. An examination of thin sections showed that most of the roots in the finer aggregates were grown in interpedal regions whereas in the larger aggregates roots were found in both the intrapedal as well as interpedal regions.

An increase in clay content of the central layer reduced the root growth. Silt also reduced root growth but not to the extent of the clay. Maximum root growth and penetration occurred in the mixture containing about 50 percent sand. Better root growth was observed in a sandy to sandy loam texture than clay to clay loam texture.  相似文献   

17.
Energy requirements for soil tillage are closely linked to soil properties, such as clay, water and soil organic carbon (SOC) contents. Long‐term application of inorganic fertilizer and organic amendments affects SOC content but little is known about seasonal differences in tillage draught requirements of soils subject to contrasting nutrient management regimes. We assessed autumn and spring tillage draught following harvest of early‐sown and timely sown winter wheat grown on a sandy loam in the Askov Long‐Term Experiment on Animal Manure and Mineral Fertilizers. Draught force was related to soil texture, soil water and SOC content, shear strength and bulk density, nutrient management, and yield of the preceding winter wheat. Contents of clay and SOC ranged from 8.9 to 10.6% and from 0.98 to 1.36%, respectively. In the autumn and spring, SOC normalized by clay content explained 38 and 5% of the variation in specific draught, respectively. Specific draught did not differ significantly among individual fertilization treatments. SOC was closely correlated with clay and water contents and bulk density, and with yield of the preceding wheat. Draught force was significantly smaller in the spring than in the autumn. In the autumn when soils were drier (?700 hPa), tillage draught was correlated with several soil characteristics, whereas water content was the dominating parameter in the spring when soils were wetter (?100 hPa). The range of SOC contents observed in this study aligns with that observed in Danish sandy loams under intensive cultivation, and within this range, SOC per se had little effect on draught requirements.  相似文献   

18.
Soil tilth has been defined in terms of a ‘Physical Index’ based on the product of the ratings of eight physical properties — soil depth, bulk density, available water storage capacity, cumulative infiltration or apparent hydraulic conductivity, aggregation or organic matter, non-capillary pore space, water table depth and slope. The Physical Index and a tillage guide were used to identify the tillage requirements of different soils varying in texture from loamy sand to clay in the semi-arid tropics. The physical index was 0.389 for a loamy sand, 0.518 for a black clay loam and 0.540 for a red sandy loam soil and the cumulative rating indices in summer and winter seasons were 45 and 44 for loamy sand, 52 and 51 for red sandy loam and 54 and 52 for black clay loam soils, respectively. The compaction of the loamy sand by eight passes of a 490 kg tractor-driven roller (0.75 m diameter and 1.00 m length) increased the physical index to 0.658 and chiselling of the red sandy loam and black clay loam increased the physical indices to 0.686 and 0.729, respectively. The grain yields of rainfed pearl millet and guar and irrigated pearl millet, wheat and barley increased significantly over the control (no compaction) yields by compaction.

The chiselling of the soils varying in texture from loamy sand to clay at 50 to 120-cm intervals up to 30–40 cm depth, depending upon the row spacing of seedlines and depth of the high mechanical impedance layer, increased the grain yields of rainfed and irrigated maize on alluvial loamy sand, rainfed maize on alluvial sandy loam and red sandy loam, rainfed sorghum on red sandy loam and black clay loam, irrigated sorghum on black clay loam and rainfed black gram on red sandy loam, pod yield of rainfed groundnut, tuber yield of irrigated tapioca and fresh fruit yield of rainfed tomato on red sandy loam and sugarcane yield on black clay soil, significantly over the yields of no-chiselling systems of tillage such as disc harrow and country plough.  相似文献   


19.
A field study was undertaken to determine the effects of different plant species on soil microbial biomass and N transformations in a well drained silty clay loam (Typic Dystrochrept) and a poorly drained clay loam (Typic Humaquept). The crop treatments were faba bean (Vicia faba L.), alfalfa (Medicago sativa L.), timothy (Phleum pratense L.), bromegrass (Bromus inermis L.), reed canarygrass (Phalaris arundinacea L.), and wheat (Triticum aestivum L.). Measurements of microbial biomass C, denitrification capacity, and nitrification capacity were performed periodically in the top 2–10 cm of soil. On most sampling dates, all three parameters were higher under perennial than under annual species. The nitrification capacity was positively affected by the level of N applied to each species (r=0.65** for the silty clay loam and 0.84*** for the clay loam) and not directly by the plant. The differences found in microbial biomass C were significantly correlated with the water-soluble organic C present under each plant species (r=0.74*** for the silty clay loam and 0.90*** for the clay loam), suggesting differences in C deposition in the soil among plant species. In the silty clay loam, the denitrification capacity was positively related to the amount of organic C found under each plant species, while in the clay loam, it was dependent on the amount of N applied to each species. There was less denitrification activity per unit biomass under legume species than under graminease, suggesting that, depending on their composition, root-derived materials may be used differently by soil microbes.  相似文献   

20.
The herbicide glyphosate, supplied as Roundup (Monsanto Canada Inc.), was tested for effects on nitrification in four soils from Atlantic Canada. These included a sandy loam (pH 6.8), two silt loam (pH 6.4 and 5.8) agricultural soils and a clay loam forest soil (pH 3.5). Glyphosate was tested at normal field exposure rates (FR) and levels up to 200 times higher. FR values ranged from 19.83 to 29.26 ppm (jig glyphosate g?1 soil). Glyphosate had no deleterious effects on nitrification in any soil when tested at FR concentrations. In the sandy loam soil nitrification was significantly stimulated at a glyphosate level 50 times higher than FR. With this soil and one of the silt loam soils (pH 6.4) glyphosate levels of 100 times FR and higher were required for a significant inhibition of nitrification. With the other silt loam soil (pH 5.8) glyphosate significantly inhibited nitrification at concentrations 10 times FR and higher. Nitrification in the acidic forest soil was very low and accurate toxicity data could not be obtained. The EC50 of glyphosate towards nitrification in soil ranged from 1435 to 2920 ppm, which corresponds to exposure levels from 67 to 150 times higher than recommended field application rates. The use of glyphosate in agriculture and forestry should have no toxic effects on nitrification in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号