首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

2.
从热传导的物理规律出发,建立微波加热过程中木材内部热传导模型,并通过理论模拟揭示不同微波加热方式对预处理中木材内部温度分布的影响规律。结果表明:微波处理过程中,木材内部的温度分布规律及均匀性与微波加热方式直接相关;当采用单向微波辐射的方式进行加热时,沿着微波入射方向,木材温度逐渐降低,木材内部温差较大,且温度分布均匀性较差;当使用双向微波辐射的方式进行加热时,木材内能形成内高外低的温度梯度,且温度分布均匀性较好。  相似文献   

3.
Microwave heating was used as the heat source for butyrylation of wood with the aim of reducing the reaction time. The photostability and dimensional stability of butyrylated wood were also investigated in this study. Chemical changes of wood were confirmed by cross polarization/magic angle spin 13C-nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) after butyrylation by microwave heating. Results from DRIFT with the Si-Carb sampling technique revealed that, using microwave heating, a higher degree of butyrylation of maple wood occurred in the middle of the specimen than on the outer surface. The increase in yellowness index of butyrylated wood treated with microwave heating was much less than that of untreated wood after the lightfastness test, indicating that photoyellowing of wood is effectively inhibited by butyrylation using microwave heating. The dimensional stability of wood was also improved after modification.  相似文献   

4.
Condensation of lignin during heating of wood   总被引:3,自引:0,他引:3  
Summary The structural change of lignin during heating of wood was investigated quantitatively by a method combining nucleus exchange and nitrobenzene oxidation. Lignin modification during heating was mainly a diphenylmethane type condensation. About 40 and 75% of noncondensed units in protolignins were converted to diphenylmethane type units by heating of dry and wet wood meals up to 220 °C, respectively. On the other hand, during heating of modified lignin (dioxane lignin) various types of modifications in addition to diphenylmethane type condensation occurred. Lignin modification via the diphenylmethane type condensation was proposed as a new route for its utilization.  相似文献   

5.
We evaluated radio frequency (RF) dielectric heating for eradication of pinewood nematodes (PWN) in infested wood. Thirteen temperatures were tested (from ambient to 70 °C) on small wood samples (2.5 × 3.8 × 0.64 cm) to determine the minimum lethal temperature (100 % mortality), which was 56 °C [based on infra-red (IR) thermal images data 55.5–57.4 °C] with a 1 min hold time. We also used thermal probes inside the wood to confirm that temperatures were ≥56 °C. Thirty additional samples were tested bracketing the minimum lethal temperature using 54, 56 and 58 °C with additional replications to produce the minimum sample size equivalent of 100 % mortality of at least 93,616 nematodes to satisfy the Probit 9 efficacy requirement. This minimum lethal temperature was further verified by treating infested large wood blocks (10.2 × 10.2 × 25.4 cm). All samples that met or exceeded the 56 °C lethal temperature for the required 1 min hold time (as measured by probes inserted in the wood and on the wood surface by IR) produced 100 % mortality. The sample size required to show Probit 9 efficacy was also satisfied. This study supports the consideration of RF in addition to microwave (MW) dielectric heating as alternative treatments of wood packaging material for inclusion in ISPM No. 15, provided the treatment delivers the target lethal temperature throughout the profile of the material in industrial scale operations.  相似文献   

6.
To obtain new information about the mechanical and physical properties of dry wood in unstable states, the influence of heating history on viscoelastic properties and dimensional changes of dry wood in the radial, tangential, and longitudinal directions was studied between 100° and 200°C. Unstable states of dry wood still existed after heating at 105°C for 30 min and were modified by activated molecular motion in the first heating process to temperatures above 105°C. This phenomenon is thought to be caused by the unstable states reappearing after wetting and drying again. Dry wood components did not completely approach the stable state in the temperature range tested, because they did not entirely surpass the glass transition temperatures in most of the temperature range. In constant temperature processes at 135° and 165°C, E′ increased and E″ decreased with time regardless of the direction. This indicated that the unstable states of dry wood components were gradually modified with time at constant temperatures. On the other hand, anisotropy of dimensional change existed and dimension increased in the longitudinal direction, was unchanged in the radial direction, and decreased in the tangential direction with time at constant temperatures. Part of this report was presented at the 13th Annual Meeting of the Chubu Branch of the Japan Wood Research Society, Shizuoka, August 2003  相似文献   

7.
The effect of heating on the hygroscopicity of Japanese cedar wood was investigated as a simple evaluation of thermal degradation in large-dimension timber being kiln-dried at high temperatures (>100°C). Small wood pieces were heated at 120°C in the absence of moisture (dry heating) and steamed at 60°, 90°, and 120°C with saturated water vapor over 2 weeks, and their equilibrium moisture contents (M) at 20°C and 60% relative humidity (RH) were compared with those of unheated samples. No significant change was induced by steaming at 60°C, while heating above 90°C caused loss in weight (WL) and reduction in M of wood. The effects of steaming were greater than those of dry heating at the same heating temperature. After extraction in water, the steamed wood showed additional WL and slight increase in M because of the loss of water-soluble decomposition residue. The M of heated wood decreased with increasing WL, and such a correlation became clearer after the extraction in water. On the basis of experimental correlation, the WL of local parts in large-dimension kiln-dried timber was evaluated from their M values. The results indicated that the thermal degradation of inner parts was greater than that of outer parts.  相似文献   

8.
以N,N-二甲基甲酰胺(DMF)为溶剂、吡啶为催化剂,采用桐马酸酐甲酯(MEMA)对杨木粉(PWP)表面接枝化学改性。研究了反应物料配比、反应温度、反应时间及催化剂用量对杨木粉改性反应的影响,并通过接触角测量、元素分析、红外光谱(FT-IR)、13C固体核磁共振光谱(13C CP-MAS NMR)及扫描电子显微镜(SEM)表征了改性杨木粉的结构与表面性能。实验结果表明:以MEMA与PWP质量比7.5∶1,催化剂吡啶用量为杨木粉质量的5%,120℃反应6 h,制备的桐马酸酐甲酯改性杨木粉的质量增加率为20%~25%;改性后杨木粉疏水性增强。  相似文献   

9.
Dimensional changes of acetylated wood were measured during wet–dry cycling and heating to clarify the reversible and irreversible effects of those after-treatments. During wet–dry cycling, the acetylated wood showed slight swelling in its completely dry condition, while its weight decreased slightly. Similar swelling was recognized when the acetylated wood was heated dry above 140°C. On the other hand, the anomalous effects of wet–dry cycling and heating disappeared after soaking in acetone. It was considered that the rearrangement of hydrophobic wood polymers during wet–dry cycling and heating induced the expansion of voids, whereas the wood polymers recovered their initial conformation after soaking in organic liquids. The wet volume of acetylated wood also exhibited reversible changes during wet–dry cycling. Just after the acetylation, the wood was highly swollen in acetic anhydride. The swollen volume of acetylated wood was reduced by leaching in water, and additional decrease in the wet volume resulted from the following drying or boiling. However, the reduced wet volume was recovered almost completely after acetone-soaking. These results suggested that the water molecules remaining in the hydrophobic region expanded the wet volume of acetylated wood, while such weakly bound water was easily removable by drying or boiling.  相似文献   

10.
The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by incubating at 180℃ for different periods with subsequent recovery levels. Both X-ray diffraction and infrared absorption of those samples have been measured. Relative crystalline increases at early stage of heating fixation, and then decreased gradually. Hemicellulose and lignin decomposition were induced by the fixation process, especially at 180℃, and lignin was degraded actively. Furthermore, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions underlying them vary, which is consistent with the difference of fixation mechanisms.  相似文献   

11.
Data on thermal-death kinetics of bark beetles are essential to develop phytosanitary heat treatments for pine wood and pine wood packaging materials. Using a heating block system, effects of different heating rates between 44 and 50°C at 2°C intervals on destruction of Dendroctonus armandi adult insect were examined. Heat resistance of the insects was found to increase at low heating rates (0.1 or 0.5°C/min). Therefore, the thermal-death kinetics of the beetles were determined at a high heating rate of 5.0°C/min which simulated the rapid dielectric heating of wood products. Results showed that the thermal death curve of D. armandi followed a zero-order reaction kinetic model, indicating the heat destruction rate of the beetle at different treatment temperatures to be independent of their population size. The required thermal holding times to result in destruction of the entire population were 40, 8, 4, and 2?min at 44°C, 46°C, 48°C, and 50°C, respectively. The evaluated thermal-death kinetic data are useful in developing effective beetle elimination quarantine protocols for the wood. A 50°C ?2?min heat treatment with a heating rate of ~5°C/min can be effectively used for disinfesting bark wood materials.  相似文献   

12.
Heat treatment of wood in absence of oxygen and under mild conditions allows for obtaining a material with many interesting properties, such as enhanced dimensional stability and increased biological durability. The aim of this work was to study the influence of a thermal treatment on the antioxidant activity of the extractives of two wood species – beech and spruce – by using the DPPH method and quantifying the formation of phenoxyl radicals using ESR as wood and extractives are exposed to light irradiation. The relationship between the kinetics of formation of free radicals in the extracts of heat-treated wood and the antioxidant properties is discussed. Links with colour modification are discussed.  相似文献   

13.
作为一种替代溴甲烷熏蒸木材的技术,湿热蒸汽处理具有突出的环保性。试验通过智能换热站提供湿热蒸汽,设计了钢材框架悬挂耐高温气囊的试验装置,对原木、樟子松拼板、樟子松锯材和单板层积材进行湿热蒸汽处理,并对木材内部升温进行动态监测。利用温度记录仪收集了各温度监测点4 h内的温度实时数据,以及耐高温气囊内部的环境温度实时数据,对湿热蒸汽环境下木质材料不同位置的升温过程进行比较分析,结果表明:木质材料与湿热蒸汽的接触面积是影响其升温速率的关键因素;较大尺寸的木质材料升温速率更高;人造板材与天然木材升温速率基本相同。  相似文献   

14.
This paper characterizes wood and charcoal made from Hymenaea aurea, Mimosa scabrella, Tabebuia capitata and Eucalyptus alba by scanning electron microscopy and near infrared for the purpose of developing a technique to identify the source of charcoal samples. Ten test samples were prepared for each species, oriented in transverse, radial and tangential section. Samples were carbonized in a muffle furnace with a final temperature of 450 °C and a heating rate of 1.66 °C/min. The microscopic structures of the wood and charcoal samples were verified by scanning electron microscopy, and spectra were obtained with a spectrophotometer, equipped with an integrating sphere and operating in transmittance mode. The spectra of the wood samples present characteristic bands of lignocellulosic material, while the spectra of the charcoal samples show small or nil absorption in the near-infrared region. The near-infrared spectroscopy technique was efficient in discriminating the four species studied.  相似文献   

15.
The influences of heating history, cooling method, and cooling set on microstructures and the mechanical properties of water-swollen wood were studied by measuring viscoelastic properties and dimensional changes while elevating temperatures between 20°C and 90°C. Both the viscoelastic properties and dimensional changes of waterswollen wood in the first heating process were quite different from those in the other heating processes. The results revealed that the molecular state of green wood around room temperature was stabilized and could not return to this state if drying or heating was carried out. Cooling methods greatly affected the viscoelastic properties, while they hardly affected dimensional changes when the temperature was elevated. Localized stress in the microstructures of water-swollen wood produced by quenching affected the mechanical properties in the heating process, while external stress less than the proportional limit caused by a cooling set had no effect. This revealed that much greater localized stress linked to the instability of waterswollen wood than the external stress in relation to the cooling set occurred. Part of this report was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

16.
Wettability of medium density fiberboard (MDF) surface affects paint or adhesive application and is, thus, of importance in the course of furniture manufacturing. This study investigated the effects of wood species, digester conditions and defibrator disc distance on the wettability properties. It was found that the wettability of the MDF significantly decreased with increasing the defibrator disc distance and increased with the increment in the severity of the digestion conditions. The highest wettability was found for samples made of beech wood having an average contact angle value of 74.5°, followed by poplar wood (76.5°), birch wood (79.7°), the mixture (1:1) of scots pine and beech wood (82.9°), and scots pine wood (86.4°), respectively.  相似文献   

17.
This article presents an experimental study into thermal softening and thermal recovery of the compression strength properties of structural balsa wood (Ochroma pyramidale). Balsa is a core material used in sandwich composite structures for applications where fire is an ever-present risk, such as ships and buildings. This article investigates the thermal softening response of balsa with increasing temperature, and the thermal recovery behavior when softened balsa is cooled following heating. Exposure to elevated temperatures was limited to a short time (15 min), representative of a fire or postfire scenario. The compression strength of balsa decreased progressively with increasing temperature from 20° to 250°C. The degradation rates in the strength properties over this temperature range were similar in the axial and radial directions of the balsa grains. Thermogravimetric analysis revealed only small mass losses (<2%) in this temperature range. Environmental scanning electron microscopy showed minor physical changes to the wood grain structure from 190° to 250°C, with holes beginning to form in the cell wall at 250°C. The reduction in compression properties is attributed mostly to thermal viscous softening of the hemicellulose and lignin in the cell walls. Post-heating tests revealed that thermal softening up to 250°C is fully reversible when balsa is cooled to room temperature. When balsa is heated to 250°C or higher, the post-heating strength properties are reduced significantly by decomposition processes of all wood constituents, which irreversibly degrade the wood microstructure. This study revealed that the balsa core in sandwich composite structures must remain below 200°–250°C when exposed to fire to avoid permanent heat damage.  相似文献   

18.
等离子体改性技术作为一种高效、绿色的处理工艺已广泛应用于催化剂合成、表面活化、化合物镀膜等研究及应用领域。其对木质材料改性研究从上世纪90年代至今已取得许多重要的实验及理论成果,可综述为:1)木质材料等离子体改性的特性; 2)木质材料等离子体改性的机理; 3)等离子体改性木质材料的设备及工艺。文中在整理近年文献资料的基础上分析了文献中相互矛盾的结论,并对未来等离子体改性木质材料的研究方向提出建议。  相似文献   

19.
以烘干法和压干法两种干燥方式处理的8种地采暖用实木地板为试验材料,与烘干法作对比,探究压干法对地采暖用实木地板尺寸稳定性的影响;通过木材水分吸湿特性分析压干法提高地采暖用实木地板尺寸稳定性机理。结果表明:采用压干法能明显提高地采暖用实木地板尺寸稳定性,但对径向耐湿尺寸稳定性改善不大。相比烘干法,采用压干法干燥的番龙眼、印茄、朴木、栎木4个树种的地采暖用实木地板径向收缩率分别降低53.8%、60.0%、47.1%、44.4%,轴向收缩率分别降低70.9%、55.6%、37.0%、37.5%,轴向膨胀率分别降低43.2%、31.8%、23.4%、16.5%。这与木材半纤维素的降解、分子链结构活性的增强和纤维素结晶度增加有关。  相似文献   

20.
The aim of this paper was to investigate pore-size distributions in the nano-diameter range of wood and their alteration due to thermal modification of wood using thermoporosimetry, and to find out what consequences can be derived regarding the biological durability. Thermoporosimetry is a technique that is based on the measurement using differential scanning calorimetry (DSC). The method is based on the fact that frozen water contained within small pores is at elevated pressure and therefore has a depressed melting temperature as a function of the appropriate pore diameter. In addition, the fiber saturation points (FSP) were determined by DSC. The former were performed in an isothermal-step method and the latter using the continuous heating-up method. Native and thermally modified twin samples of Norway spruce (Picea abies (L.) Karst.), Sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelsior L.) were analyzed. The results clearly show that the pore shares of wood for the measurable diameter range between 4 and 400 nm decrease considerably in all studied wood species due to thermal modification of the wood. Furthermore, thermal modification of wood leads to a decreased FSP for all studied wood species. For evaluation as well as reproducibility of the results of pore-size distribution and FSP, the consideration of sensible heat and specific heat of fusion plays an important role. If this is not done, it can lead to misinterpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号