首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of DM) and with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic O2 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.  相似文献   

2.
We determined the effect of processing method (dry-rolled [DR] vs steam-flaked [SF]) and degree of processing (flake density; FD) of SF sorghum grain on splanchnic (gut and liver) metabolism of energy-yielding nutrients by growing steers. Diets contained 77% sorghum grain, either DR or SF, with SF at densities of 437, 360, or 283 g/L (SF34, SF28, or SF22). Eight multicatheterized steers (340 kg initial BW) were used in a randomized complete block design. Net output or uptake of glucose, L-lactate, VFA, and beta-hydroxybutyrate (BHBA) were measured across portal-drained viscera (PDV), liver, and splanchnic (PDV plus liver) tissues. Net absorption of glucose across PDV was negative and similar for all treatments (average of -104 g/d). Decreasing FD of SF sorghum grain linearly increased (P < or = .04) net absorption and splanchnic output of L-lactate by 20 and 130%, respectively, and hepatic synthesis (P = .06) and splanchnic output (P = .01) of glucose by 50%. Reducing FD did not alter output or uptake of acetate or n-butyrate by gut and liver tissues, but linearly decreased (P = .06) splanchnic output of BHBA by 40%. Net absorption (P = .18) and splanchnic output (P = .15) of propionate tended to be increased linearly by 50% with decreasing FD. Neither processing method (SF vs DR) nor degree of processing (varying FD) altered hepatic nutrient extraction ratios or estimated net absorption and splanchnic output of energy. Maximal contribution of propionate, L-lactate, and amino acids (alpha-amino N) to gluconeogenesis averaged 49, 11, and 20%, respectively. Feeding steers SF compared to DR diets did not alter net output or uptake of energy-yielding nutrients across splanchnic tissues, except net absorption of acetate tended to be greater (P = .13) for steers fed DR. Increasing degree of grain processing in the present study, by incrementally decreasing FD, tended to linearly increase the net absorption of glucose precursors (propionate and lactate), resulting in linear increases in synthesis and output of glucose by the liver to extrasplanchnic tissues (e.g., muscle).  相似文献   

3.
Effects of growth hormone-releasing factor (GRF) and intake on net nutrient metabolism by portal-drained viscera (PDV) and liver were measured in six growing Hereford x Angus steers fed a 75% concentrate diet at two intakes in a split-plot design with 4-wk saline or GRF injection periods within 8-wk intake periods. Daily rations were fed as 12 equal meals delivered every 2 h. Steers were injected s.c. for 21 d with either saline or 10 micrograms/kg of (1-29)NH2 human GRF at 12-h intervals. Six hourly measurements of net nutrient flux (venous-arterial concentration different [VA] x blood flow) across PDV and liver were obtained 8 to 10 d after injections began. Energy and N balances were measured using respiration calorimetry during the last week of injections. Greater intake increased blood flow (P less than .01) and net visceral release or removal of most nutrients (P less than .10). Exceptions included a decrease (P less than .10) in net PDV glucose release with greater intake in saline-treated steers and a decrease (P less than .01) in net liver removal of lactate with greater intake. Treatment of steers with GRF decreased net liver removal of alpha-amino N (AAN; P less than .05) and ammonia N (NH3N; P less than .10) and release of urea N (UN; P less than .05), increased liver release of glutamate (P less than .05), and decreased net PDV release of NH3 N (P less than .10). Decreased liver extraction ratio for AAN in GRF-treated steers (P less than .01) implies a direct effect of GRF treatment on liver metabolism separate from changes in liver AAN supply. Proportions of body N retention not accounted for by net total splanchnic AAN release increased with GRF treatment. This suggests a change in peripheral utilization of dietary AAN supply or an increase in total splanchnic N retention.  相似文献   

4.
The effect of feed intake level (.6, 1.0, and 1.6 x maintenance energy and protein requirements, M) on splanchnic (portal-drained viscera [PDV] plus liver) metabolism was evaluated in six multicatheterized beef steers (398 +/- 27 kg), using a double 3 x 3 Latin square design. On the last day of each 21-d experimental period, six hourly blood samples were collected from arterial, portal, and hepatic vessels. Due to catheter patency, PDV fluxes were measured on five steers, and liver and splanchnic fluxes on four steers. Increasing intake elevated (P < .01) splanchnic release of total (T) amino acids (AA), through increases (P < .01) in PDV release of both essential (E) and nonessential (NE) AA, in spite of a tendency (P < .20) for increased liver removal of NEAA. The PDV release of AA N represented 27 and 51% of digested N for 1.0 and 1.6 x M, respectively. At 1.0 and 1.6 x M, the liver removed 34% of total AA released by the PDV. For individual AA, portal flux of most EAA increased (P < .05) with feed intake, and the increase (P < .10) in splanchnic flux was accompanied by increased arterial concentration for all EAA except histidine, lysine, and methionine. This suggests that these might be limiting AA for this diet. On a net basis, most individual NEAA were released by the PDV except glutamate and glutamine, which were removed by the digestive tract. There was a net removal of NEAA by the liver, except for aspartate and especially glutamate, which were released. Ammonia release by the PDV tended (P < .20) to increase with intake and represented 69, 53, and 45% of digested N at .6, 1.0, and 1.6 x M, respectively. Urea removed by the PDV, unaffected by intake, represented 32, 33, and 21% of the digested N. Arterial glucose concentration increased linearly (P < .01) with greater intake, whereas net liver and splanchnic glucose release increased in a quadratic (P < .05) manner. Net PDV glucose release represented 26% of net glucose hepatic release at 1.6 x M. Intake elevated (P < .10) both insulin and glucagon arterial concentrations, resulting from a larger increment of portal release (P < .01) than hepatic removal (P < .05). Intake-based variations in IGF-I and NEFA arterial concentrations (P < .05) were not related to changes in splanchnic metabolism. These results clearly show the crucial role of the splanchnic tissues in regulating the profile and quantity of AA and concentrations of glucose and pancreatic hormones reaching peripheral tissues.  相似文献   

5.
Effects of growth hormone-releasing factor (GRF) and intake on arterial concentrations and net visceral metabolism of hormones were measured in six growing Hereford x Angus steers using a split-plot design with 4-wk injection periods within 8-wk intake periods. Steers were fed a 75% concentrate diet at two intakes and were injected s.c. twice daily with saline or GRF (10 micrograms/kg of BW). Arterial concentrations of growth hormone (GH) were measured on d 1 and d 8 to 10 of injections. Eleven measurements, obtained at 30-min intervals, of arterial concentration and net flux of hormones across portal-drained viscera (PDV) and liver were obtained on d 8 to 10 of injections (six hourly measurements were used for insulin-like growth factor-I [IGF-I] and somatostatin). The area under the GH curve and average and peak GH concentrations were increased (P less than .01) by GRF and were greater (P less than .10) at low than at high intake. Liver removal of GH was not affected by GRF or intake. Arterial IGF-I concentration was increased (P less than .05) by GRF and not affected by intake. Treatments did not affect IGF-I flux across the liver. Arterial insulin concentration was greater (P less than .05) at high than at low intake, in part because of greater (P less than .01) PDV release. Increased (P less than .10) arterial insulin concentration in GRF-treated steers was not attributable to significant changes in PDV or liver net flux. Arterial glucagon concentration was greater (P less than .01) at high than at low intake, in part because of greater (P less than .05) PDV glucagon release and decreased (P less than .10) liver extraction ratio. Effects of intake on arterial concentration of insulin and glucagon were in part due to changes in visceral metabolism, but GRF did not affect PDV or liver hormone metabolism.  相似文献   

6.
The net release of insulin, glucagon and somatostatin by the portal-drained viscera (PDV) and their net uptake by the liver in response to 3-d abomasal infusions of casein were measured in seven multicatheterized beef steers. The steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals (13.1 Mcal ME/d and 95 g N/d). In two separate experiments, the abomasal infusion of 300 g casein/d (300C) or 150 g casein/d (150C) was compared to a water infusion. Plasma flow was measured by indicator dilution and net flux by venoarterial concentration difference x plasma flow. Arterial plasma concentrations of insulin were increased (P less than .02) by either 300C or 150C. The 300C increased (P less than .03) PDV insulin release but did not affect hepatic uptake, resulting in an increased (P less than .03) total splanchnic (TSP) insulin flux. The 300C increased (P less than .05) plasma concentrations of glucagon as the result of decreased (P less than .06) hepatic extraction ratio and not as the result of increased portal release. The portal and hepatic flux of somatostatin measured as somatostatin-like immunoreactivity (SLI) were highly variable and not affected by casein infusions. Arterial plasma concentrations of somatomedin-C were not responsive to abomasal casein infusions. The abomasal infusion of 300C resulted in increased plasma concentrations of insulin via increased PDV release and increased plasma glucagon via decreased hepatic extraction ratio.  相似文献   

7.
The objective of this experiment was to compare net nutrient absorption and oxygen consumption by portal-drained viscera (PDV) of catheterized Holstein steers (333 kg) when fed alfalfa or orchardgrass silage at two equalized intakes. The design was a 4 X 4 Latin square with a 2 X 2 factorial arrangement of alfalfa or orchardgrass fed at 65 or 90 g dry matter/kg.75 live weight daily. Blood flow through PDV (dilution of p-aminohippurate), net nutrient absorption and oxygen consumption (venoarterial concentration differences times blood flow) were measured hourly for 12 h, followed by measurement of N and energy balance over 7 d. Compared with orchardgrass, steers when fed alfalfa absorbed more NH3-N (P less than .05), branched-chain volatile fatty acids (P less than .10) and n-valerate (P less than .05). Silage type did not affect (P greater than .10) blood flow to or O2 consumption by PDV or net absorption of glucose, L-lactate, acetate, propionate, urea-N, alpha-amino N or most amino acids. Oxygen consumption by PDV as a percentage of whole-animal O2 consumption was not different (P greater than .10) for steers when fed orchardgrass (27.2) or when fed alfalfa (23.6). Interrelationships between N and energy metabolism were responsible for the increased (P less than .05) metabolizable energy/kilogram silage dry matter and increased (P = .10) N retention by steers when fed alfalfa compared with orchardgrass. The PDV accounted for a substantial portion of whole-animal O2 consumption.  相似文献   

8.
Changes in net portal and hepatic nutrient flux and oxygen consumption in response to 3-d abomasal casein infusions were studied in seven multicatheterized beef steers. Steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals. Blood flow (para-aminohippurate dilution) and net flux (venoarterial concentration difference x blood flow) across portal-drained viscera (PDV) and hepatic tissues were measured on d 3 of the abomasal infusions. In two experiments, the response to 300 (300C) and 150 (150C) g casein/d were compared, respectively, to a control water infusion. The 300C increased (P less than .05) arterial blood concentrations of alpha-amino N (AAN), urea N and ammonia; 150C increased (P less than .05) arterial urea N. Urinary urea N excretion was increased (P less than .01) by 300C and 150C. Although 300C increased net PDV release of AAN (P less than .07) and alanine (P less than .10), there was no net change in total splanchnic (TSP) flux due to an increased net hepatic uptake of AAN (P less than .01) and alanine (P less than .05). Net PDV glucose flux was decreased (P less than .05) by 300C, but net hepatic glucose flux was not affected by either level of casein. The 150C increased TSP oxygen consumption (P less than .05) and hepatic oxygen extraction (P less than .10). Approximately 26 and 30% of the casein N infused abomasally appeared in the portal blood as AAN for 150C and 300C, respectively. The sum of net PDV ammonia and AAN fluxes accounted for 47 and 88% of the N infused for 150C and 300C, respectively. These data emphasize the importance of intestinal and liver tissues in regulating the flux of nitrogenous compounds absorbed from the diet.  相似文献   

9.
An experiment was performed using lambs fitted with chronic indwelling catheters in appropriate blood vessels for portal-drained visceral (PDV) flux measurements. The objective of the experiment was to evaluate PDV nutrient flux in alfalfa-fed and intragastrically infused lambs and to evaluate the effects of amount of energy and N infused on PDV nutrient metabolism. Lambs were fed alfalfa or infused with 1.64 and 10.9; 1.82 and 12.3; or 2.37 and 15.0 Mcal GE and g N/d, respectively. Arterial concentrations and PDV fluxes of glucose, L-lactate, acetate and portal blood flow were not different (P greater than .10) between alfalfa-fed and infused lambs. Net flux of alpha-amino N, ammonia N and branched-chain VFA were lower (P less than .05) and net flux of propionate, butyrate and total VFA were higher for intragastric infusion vs alfalfa. No consistent differences in PDV fluxes were noted among the three levels of energy and N infused, although the energy and N levels tested were near maintenance requirements. Nitrogen retention increased as level of energy and N infusion increased. Approximately 47, 70 and 22% of ruminally infused acetate, propionate and butyrate, respectively, were found on a net basis in portal blood as VFA. Measurements of net nutrient utilization by the PDV that eliminate the influence of ruminal fermentation are possible. How the changes in PDV tissues due to intragastric infusion influence these estimates is unknown.  相似文献   

10.
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six catheterized Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.  相似文献   

11.
Three lambs were used in a repeated Latin square design to determine the influence of isoenergetic infusions of propionate or glucose on portal-drained visceral flux (PDV) of nutrients and concentrations of insulin, glucagon, growth hormone and prolactin. Lambs were fitted with appropriate catheters for blood sampling and maintained on total intragastric infusion of nutrients. Basal VFA, casein, mineral and vitamin infusions (isocaloric and isonitrogenous) were supplemented with an additional 22 +/- .5 kcal/h from propionate, glucose or a combination of propionate plus glucose. Ruminal fluid proportion and arterial blood concentration and PDV flux of propionate increased (P less than .10) by 17 mol/100 mol, .02 mM and 40 mmol/h, respectively, with infusion of an additional 61 mmol/h of propionate. Regression equations predicted that, on a net basis, 67% of ruminally infused propionate and 43% of abomasally infused glucose appeared in portal blood. Arterial L-lactate, beta-hydroxybutyrate and acetate concentrations, and beta-hydroxybutyrate flux were increased (P less than .10) by .34 mM, .20 mM, .50 mM and 4.2 mmol/h, respectively, with infusion of 33 mmol/h of added glucose. Net utilization of glucose by the PDV was approximately 4.4 mmol/h when no glucose was infused. Increased infusion of propionate resulted in a 22.2-micrograms/h increase in PDV flux of insulin (P less than .08) but had no effect on arterial insulin, glucagon and prolactin concentrations (P greater than .10). Arterial growth hormone increased by 3.8 ng/ml with increasing glucose infusion (P less than .08).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Six Holstein steers (mean +/- SE BW = 344 +/- 10 kg) fitted with hepatic, portal, and mesenteric vein and mesenteric artery catheters and a ruminal cannula were used in a 6 x 6 Latin square design to evaluate the effects of increasing ruminal butyrate on net portal-drained visceral and hepatic nutrient flux. Steers were fed a 40% brome hay, 60% concentrate diet in 12 portions daily at 1.25 x NEm. Water (control) or butyrate at 50, 100, 150, 200, or 250 mmol/h was supplied continuously via the ruminal cannula. Simultaneous arterial, portal, and hepatic blood samples were taken at hourly intervals from 15 to 20 h of ruminal infusion. Portal and hepatic blood flow was determined by continuous infusion of P-aminohippurate, and net nutrient flux was calculated as the difference between venous and arterial concentrations times blood flow. Ruminal and arterial concentrations and total splanchnic flux of butyrate increased (P less than .01) with increased butyrate infusion. Arterial concentrations of acetate (P less than .10), alpha-amino-N (P less than .05), and glucose (P less than .01) decreased with increased butyrate, whereas arterial beta-hydroxybutyrate (P less than .01) and acetoacetate (P less than .05) increased. Increased butyrate produced an increased portal-drained visceral flux of acetoacetate and an increased net hepatic flux of beta-hydroxybutyrate. Urea N and glucose net portal and hepatic fluxes were not affected by ruminal butyrate. Alpha-amino-N uptake by the liver decreased with increased butyrate (P less than .10). Simple linear regression (r2 = .985) indicated that 25.8% of ruminally infused butyrate appeared in portal blood as butyrate. Only 14% could be accounted for as net portal-drained visceral flux of acetoacetate plus beta-hydroxybutyrate.  相似文献   

13.
Our objectives were to determine effects of grain processing on splanchnic (gut tissues and liver) N metabolism and whole-body N balance by growing steers and to ascertain the relative contributions of ruminal and intestinal tissues to net absorption and utilization of N-containing nutrients. Seven beef steers (348 kg initial BW), surgically implanted with appropriate catheters, were fed diets containing 77% steam-flaked (SF) or dry-rolled (DR) sorghum grain. Blood flows and net output or uptake of ammonia N, urea N, and alpha-amino N (estimate of amino acids) were measured across portal-drained viscera (PDV or gut tissues) and intestinal, ruminal, hepatic, and splanchnic tissues (PDV + hepatic). The experimental design was a crossover between DR and SF diets, with six samplings of blood at 2-h intervals on 2 d for each steer. Nitrogen intake (139 +/- 3 g/d), output in urine (43 +/- 2 g/d), and retention (40 +/- 3 g/d) were similar for both processing treatments. When steers were fed SF sorghum compared to DR sorghum, N retention as a percentage of N intake was numerically greater (P < 0.12), output of fecal N was numerically lower (P < 0.13), and urinary urea N was lower (P < 0.04). For SF vs DR, net uptake of alpha-amino N by liver was higher (P < 0.04; 20 vs 9 g/d) and was numerically lower (P < 0.16) for ruminal tissues (15 vs 33 g/d). Feeding steers SF compared to DR tended to increase net transfer (cycling) of blood urea N to PDV (57 vs 41 g/d; P < 0.07), increased cycling to intestinal tissues (15 vs 6 g/d; P < 0.05), and numerically increased transfer to ruminal tissues (42 vs 32 g/d; P < 0.12) but did not alter other net output or uptake of N across splanchnic tissues. Total urea N transfer (blood + saliva) was similar for both treatments. Net uptake of alpha-amino N by ruminal tissues was about 30% of the net amount of alpha-amino N absorbed across the intestinal tissues. In summary, most of the blood urea N cycled from the liver to gut tissues was transferred to ruminal tissues for potential microbial protein synthesis, and the net ruminal utilization of alpha-amino N was about 30% of that absorbed from intestinal tissues. Feeding growing steers SF compared to DR sorghum diets numerically increased whole-body N retention (percentage of N intake) by about 15% and tended to increase transfer of blood urea N to the gut by about 40%, which could increase the supply of high-quality microbial protein for absorption.  相似文献   

14.
Four calves (avg wt 161 kg) were surgically fitted with indwelling catheters in the femoral artery and femoral, portal, hepatic and mesenteric veins to study the effects of subclinical ammonia toxicity on portal-drained viscera (PDV) and hepatic (HEP) net flux of key metabolites and pancreatic hormones. Hyperammonemia was induced via administration of ammonium chloride (NH4Cl; 12 mumol.kg BW-1.min-1) via the femoral vein catheter for 240 min; infusions were preceded (PRE) and followed (POST) by 60- and 180-min control periods, respectively. Blood samples were obtained from the arterial catheters, and portal and hepatic vein catheters. Net flux rates were calculated by multiplying venoarterial differences by blood flow. Arterial plasma ammonia N peaked (P less than .01) at 327 micrograms/dl; hepatic ammonia extraction increased (P less than .01) from 10 to 23% during NH4Cl infusion. Arterial plasma glucose concentrations increased (P less than .05) during NH4Cl infusion (90.5 vs 82.6 mg/dl) concomitant with trends toward a reduction in net HEP glucose output. Portal-drained visceral release of insulin did not increase (P greater than .10) during NH4Cl infusion despite the steady rise in circulating glucose concentration; however, cessation of NH4Cl infusion resulted in a 109% increase (P less than .05) in PDV insulin release at +60 min POST. Plasma L-lactate, nonesterified fatty acids, urea N and glucagon concentrations and net fluxes were variable throughout the experiment. Results tend to indicate that hyperammonemia reduced hepatic glucose output and glucose-mediated pancreatic insulin release.  相似文献   

15.
Four steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, and the right ruminal vein were used to study VFA absorption from bicarbonate buffers incubated in the washed reticulorumen, and metabolism by splanchnic tissues. Portal and hepatic vein blood flows were determined by infusion of p-aminohippurate into the mesenteric vein. The steers were subjected to four experimental treatments in a Latin square design. The treatments were Control (ruminal bicarbonate buffer with [mmol/kg]: acetate = 72; propionate = 30; isobutyrate = 2.1; butyrate = 12; valerate = 1.2; caproate = 0; and heptanoate = 0); Val (same as control except for valerate = 8 mmol/kg); Cap (same as control except for caproate = 3.5 mmol/kg); and Hep (same as control except for heptanoate = 3 mmol/kg). All buffers were incubated for 90 min in the rumen, and ruminal VFA absorption rates were maintained by continuous intraruminal infusion of VFA. The arterial concentrations of valerate and heptanoate showed a small increase (< or = 1 micromol/L; P < 0.05) with inclusion of the respective acid in the ruminal buffer, but no change (P = 0.57) in arterial concentration of caproate was detected. Valerate increased (P < 0.05) the net portal flux of butyrate and valerate, as well as the net splanchnic flux of propionate, butyrate, and valerate. With Cap and Hep, the net portal flux of caproate and heptanoate accounted for 54 and 45% of ruminal disappearance rates, respectively, indicating that these acids were extensively metabolized by the ruminal epithelium. Caproate was ketogenic both in the ruminal epithelium and in the liver, and Cap increased (P < 0.05) the arterial concentration, ruminal vein minus arterial concentration difference, net hepatic flux, and net splanchnic flux of 3-hydroxybutyrate. The net hepatic flux of glucose decreased (P = 0.02) with Cap and Hep compared with Control and Val; however, no effect (P = 0.14) on the net splanchnic flux of glucose could be detected. We conclude that the strong biological activity of valerate, caproate, and heptanoate warrant increased emphasis on monitoring their ruminal presence and their potential systemic effects on ruminant metabolism.  相似文献   

16.
Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on portal-drained visceral (PDV) nutrient flux, nutrient digestibility, and total N balance in beef steers. Multi-catheterized steers were used to determine effects of intraruminal dosing (Exp. 1; n = 4; 319 +/- 5 kg of BW) or feeding (Exp. 2; n = 10; 4 Holstein steers 236 +/- 43 kg of BW and 6 Angus steers 367 +/- 46 kg of BW) SRU or urea on PDV nutrient flux and blood variables for 10 h after dosing. Intraruminal dosing of SRU (Exp. 1) prevented the rapid increase in ruminal ammonia concentrations that occurred with urea dosing (treatment x time P = 0.001). Although apparent total tract digestibilities of DM, OM, NDF, and ADF were not affected by treatment (P > 0.53, Exp. 2), SRU increased fecal N excretion (49.6 vs. 45.6 g/d; P = 0.04) and reduced apparent total tract N digestibility (61.7 vs. 66.0%; P = 0.003). Transfer of urea from the blood to the gastrointestinal tract occurred for both treatments in Exp. 1 and 2 at all time points with the exception for 0.5 h after dosing of urea in Exp. 1, when urea was actually transferred from the gastrointestinal tract to the blood. In both Exp. 1 and 2, both urea and SRU treatments increased arterial urea concentrations from 0.5 to 6 h after feeding, but arterial urea concentrations were consistently less with SRU (treatment x time P < 0.001, Exp. 1; P = 0.007, Exp. 2). Net portal ammonia release remained relatively consistent across the entire sampling period with SRU treatment, whereas urea treatment increased portal ammonia release in Exp. 1 and tended to have a similar effect in Exp. 2 (treatment x time P = 0.003 and P = 0.11, respectively). Urea treatment also increased hepatic ammonia uptake within 0.5 h (treatment x time P = 0.02, Exp. 1); however, increased total splanchnic release of ammonia for the 2 h after urea treatment dosing suggests that PDV ammonia flux may have exceeded hepatic capacity for removal. Slow-release urea reduces the rapidity of ammonia-N release and may reduce shifts in N metabolism associated with disposal of ammonia. However, SRU increased fecal N excretion and increased urea transfer to the gastrointestinal tract, possibly by reduced SRU hydrolysis or effects on digestion patterns. Despite this, the ability of SRU to protect against the negative effects of urea feeding may be efficacious in some feeding applications.  相似文献   

17.
Two comparative slaughter trials and a metabolism trial were conducted. Treatments consisted of: 1) 0 fat, 0 monensin; 2) 4% yellow grease, 0 monensin; 3) 0 fat, 33 mg/kg monensin and 4) 4% yellow grease, 33 mg/kg monensin. Trial 1 involved 104 crossbred beef steers (267 kg) in a 140-d comparative slaughter trial. There were no interactions (P greater than .20) between supplemental fat and monensin on steer performance. Monensin supplementation decreased rate of weight gain (P less than .10) and feed intake (P less than .05) with no effect on energy value of the diet (P greater than .20). Fat supplementation increased (P less than .01) rate of weight gain 12.5% and increased the net energy for maintenance (NEm) and net energy for gain (NEg) value of the diet 8.5 and 9.4%, respectively. Trial 2 involved 154 Holstein steers (290 kg) in a 94-d comparative slaughter trial. There were no interactions between supplemental fat and monensin (P greater than .20). Monensin supplementation did not affect rate or composition of gain (P greater than .20), but supplementation reduced (P less than .05) feed intake and feed required per unit weight gain 3.6%. Fat supplementation increased (P less than .01) fat and energy gain 12.5 and 10.3%, respectively, and the NEm and NEg content of the diet 7.5 and 8.4%, respectively. Trial 3 utilized four crossbred beef steers (220 kg) with cannulas in the rumen, proximal duodenum and distal ileum. There were no interactions between supplemental fat and monensin with respect to site of digestion (P greater than .20). Supplemental fat did not affect (P greater than .20) organic matter, starch, fiber or N digestion. Intestinal digestibility of fat averaged 77.3%. Monensin increased (P less than .10) intestinal digestibility of fat 7.4%. There were negative associative effects between supplemental fat and monensin on ruminal acetate:propionate ratios and estimated methane production. It was concluded that the feeding value of feed fat is underestimated in tables of feed standards currently in use, and that the net effects of monensin on these estimates are additive.  相似文献   

18.
Ten multicatherized steers were used in a completely random design to determine the effect of previous BW gain on blood flow, acid-base balance, and oxygen consumption across portal-drained viscera and liver of growing beef steers fed a high-grain diet. Treatments were high (1.31 +/- 0.09 kg/d) or low (0.68 +/- 0.07 kg/d) daily BW gain during an 82-d winter wheat pasture grazing period and a subsequent 37-d transition period. Blood flow, blood gas measurements, and oxygen consumption were determined on d 0, 14, 28, 42, and 64 of a high-grain finishing period. Compensatory growth was evident in low-gain steers; ADG (1.50 vs. 1.11 kg/d, P < 0.05) and gain efficiency (0.221 vs. 0.109 kg/kg, P < 0.01) were greater from d 14 through 28 than for high-gain steers. Arterial base tended (P < 0.12) to be greater in low-gain than in high-gain steers, whereas calculated HCO3- (mmol/L; P < 0.20) did not differ between treatments. Arterial O2 concentration was not different (P < 0.97) between treatments but increased (P < 0.001) with increasing days on feed. Portal blood flow increased with days on feed (P < 0.001) but did not differ (P < 0.34) between treatments. Hepatic blood flow scaled to metabolic BW was 19.7% greater (P < 0.02) in low-gain than in high-gain steers. Across the feeding period, O2 consumption and CO2 flux by PDV, liver, and total splanchnic tissue (TST) did not differ (P < 0.33) between treatments. However, TST O2 consumption (mmol/[h x kg BW(0.75)]) tended (P < 0.12) to be greater in low- than in high-gain steers. Compensating steers' arterial blood acid-base measurements did not change with days on feed, indicating that they were not more susceptible to metabolic acidosis than high-gain steers. However, steers that had lower BW gain before high-grain feeding exhibited increased hepatic blood flow and TST O2 consumption (metabolic BW basis) during the finishing period compared with high-gain steers. Greater hepatic blood flow and energy expenditure by TST of previously restricted steers might have facilitated compensatory growth.  相似文献   

19.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

20.
Splanchnic metabolism of energy-yielding nutrients and their uptake by the hind limb were studied in finishing lambs receiving ryegrass harvested at grazing stage (ear at 10 cm) with or without barley supplementation. Six ruminally cannulated and multicatherized lambs (40.2 +/- 1.5 kg) were fed with frozen ryegrass (RG) at 690 kJ of metabolizable energy intake (MEI) x d(-1) x BW(-0.75) successively with and without barley supplementation (RG + B), according to a triplicated Latin square design. Barley supplementation represented 21% of DM intake and increased the MEI by 32% (P < 0.002). In ruminal fluid, barley supplementation increased the acetate and butyrate concentrations by 21.2 and 49.6%, respectively (P < 0.04), without modifying those of propionate. Thus, molar proportions of acetate and butyrate were not modified, and those of propionate tended (P < 0.06) to decrease from 26 to 23%. As a result, the net portal appearance of propionate was not modified. Net portal appearance of butyrate and beta-hydroxybutyrate increased (P < 0.03), and that of acetate was not modified. Consequently, hepatic uptake of butyrate increased and probably spared acetate from hepatic metabolism. The hepatic fractional extraction of propionate decreased (P < 0.03), whereas the net flux of lactate switched from a net release to a net uptake, suggesting an alteration in the contribution of gluconeogenic substrates to glucose synthesis without modification in net hepatic glucose release. As a consequence, barley supplementation increased net splanchnic release of acetate (P < 0.02), propionate (P < 0.001), and beta-hydroxybutyrate (P < 0.01) by 60, 157, and 78%, respectively. In addition, the net splanchnic release of insulin increased (P < 0.03) because of a decrease (P < 0.02) in its hepatic extraction. Despite those changes, the net uptake of nutrients by the hind limb was not modified and even decreased in the case of glucose (P < 0.02), suggesting a stimulation of lipogenesis in adipose tissues. Results from the present study suggested that supplementation of a ryegrass-based diet would likely have little effect on the orientation of muscle energy metabolism and on meat quality because the net uptake of nutrients by the hind limb was unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号