首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.  相似文献   

2.
The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones) from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales—and particularly the so-called hapalindole-type alkaloids—including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., “toxic”) algae, and as promising leads for drug discovery.  相似文献   

3.
Cyanobacteria of the genus Lyngbya have proven to be prodigious producers of secondary metabolites. Many of these compounds are bioactive and show potential for therapeutic use. This review covers peptides and hybrid polyketide-non-ribosomal peptides isolated from Lyngbya species. The structures and bioactivities of 50 Lyngbya peptides which were reported since 2007 are presented.  相似文献   

4.
Chitooligosaccharides (CHOS) are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine. CHOS can be produced using chitin or chitosan as a starting material, using enzymatic conversions, chemical methods or combinations thereof. Production of well-defined CHOS-mixtures, or even pure CHOS, is of great interest since these oligosaccharides are thought to have several interesting bioactivities. Understanding the mechanisms underlying these bioactivities is of major importance. However, so far in-depth knowledge on the mode-of-action of CHOS is scarce, one major reason being that most published studies are done with badly characterized heterogeneous mixtures of CHOS. Production of CHOS that are well-defined in terms of length, degree of N-acetylation, and sequence is not straightforward. Here we provide an overview of techniques that may be used to produce and characterize reasonably well-defined CHOS fractions. We also present possible medical applications of CHOS, including tumor growth inhibition and inhibition of TH2-induced inflammation in asthma, as well as use as a bone-strengthener in osteoporosis, a vector for gene delivery, an antibacterial agent, an antifungal agent, an anti-malaria agent, or a hemostatic agent in wound-dressings. By using well-defined CHOS-mixtures it will become possible to obtain a better understanding of the mechanisms underlying these bioactivities.  相似文献   

5.
In this review, we summarized the distribution of the chemically investigated Oceanapia sponges, including the isolation and biological activities of their secondary metabolites, covering the literature from the first report in 1989 to July 2019. There have been 110 compounds reported during this period, including 59 alkaloids, 33 lipids, 14 sterols and 4 miscellaneous compounds. Besides their unique structures, they exhibited promising bioactivities ranging from insecticidal to antibacterial. Their complex structural characteristics and diverse biological properties have attracted a great deal of attention from chemists and pharmaceuticals seeking to perform their applications in the treatment of disease.  相似文献   

6.
Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes.  相似文献   

7.
Cyanobacteria or blue green algae are prokaryotic oxygenic phototrophs that require little moisture and diffused light for growth and are ubiquitous in nature. Both the heterocystous and non-heterocystous forms of cyanobacteria are reported to produce a large number of compounds with varying bioactivities including toxins such as microcystins, nodularins and neurotoxins. Extracts and exudates of cyanobacteria have been reported to inhibit hatching and to cause immobility and mortality of juvenile plant parasitic nematodes in vitro. Application of cyanobacteria in soil may reduce nematode infestation and increase plant yield. There are reports of several cyanobacterial formulations that are being developed and tested against plant pathogens but none have been commercialised. Screening of extracts or metabolites against plant parasitic nematodes is the initial step to determine the usefulness of cyanobacteria for nematode management. Therefore, a large scale screening programme is necessary for selection of strains with greater nematicidal potential. The nitrogen fixation abilities of some species of cyanobacteria also render them useful as biofertilizers. A combination of nitrogen fixation and nematode suppressive attributes can provide a dual advantage in several crops. Future research is needed in this direction to exploit these organisms for biorational management of plant parasitic nematodes.  相似文献   

8.
The structures, names, bioactivities and references of 138 briarane-type diterpenoids, including 87 new compounds, are summarized in this review. All the briarane-type compounds mentioned in this review article were obtained from gorgonian corals including the genus Briareum, Dichotella, Junceella and Verrucella. Some of these compounds showed potential bioactivities.  相似文献   

9.
Porifera, commonly referred to as marine sponges, are acknowledged as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention over the years. They are widespread in all continents, and several structurally unique compounds have been identified from this species. Terpenes, mainly sesterterpenoids, are the major secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have presented interesting biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial, and anti-inflammatory activities have been isolated and structurally characterized. This review provides an overview of almost 130 secondary metabolites from Phorbas sponges and their biological activities, and it covers the literature since the first study published in 1993 until November 2021, including approximately 60 records. The synthetic routes to the most interesting compounds are briefly outlined.  相似文献   

10.
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.  相似文献   

11.
One new phenylalanine derivative 4′-OMe-asperphenamate (1), along with one known phenylalanine derivative (2) and two new cytochalasins, aspochalasin A1 (3) and cytochalasin Z24 (4), as well as eight known cytochalasin analogues (5–12) were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12) were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus.  相似文献   

12.
Chinese bayberry (Myrica rubra Sieb. et Zucc.) is a subtropical fruit tree native to China and other Asian countries, and culture of this Myricaceae plant has been recorded in Chinese history for more than 2000 years. Bayberry fruit is delicious with attractive color, flavor, and high economic value. Compared with other berries, bayberry fruit is a rich source of cyanidin-3-glucoside (C3G, e.g., 64.8 mg/100 g fresh weight in ‘Biqi’ cultivar), which accounts for at least 85 % of the anthocyanins in the fruit. Bayberry is also a plant with high medicinal value since different organs have been used historically as folk medicines. Research efforts suggest bayberry extracts contain antioxidants that exhibit bioactivities counteracting inflammation, allergens, diabetes, cancer, bacterial infection, diarrhea and other health issues. Bayberry compounds have been isolated and characterized to provide a better understanding of the chemical mechanisms underlying the biological activities of bayberry extracts and to elaborate the structure-activity relationships. As the identification of compounds progresses, studies investigating the in vivo metabolism and bioavailability as well as potential toxicity of bayberry extracts in animal models are receiving more attention. In addition, breeding and genetic studies of bayberry with high accumulation of health-benefiting compounds may provide new insight for the bayberry research and industry. This review is focused on the main medicinal properties reported and the possible pharmaceutically active compounds identified in different bayberry extracts.  相似文献   

13.
Investigation of minor metabolites in the extracts of the red alga Sphaerococcus coronopifolius collected from the rocky coasts of Corfu Island in the Ionian Sea yielded two new diterpene alcohols, sphaerollanes I, and II (1, 2) featuring neodolabellane skeletons, and the new sphaeroane diterpene alcohol 16-hydroxy-9S*-acetoxy-8-epi-isosphaerodiene-2 (3), along with two previously reported metabolites 4, 5. The structures of the new natural products, as well as their relative stereochemistry, were elucidated on the basis of extensive spectral analysis, including 2D-NMR experiments.  相似文献   

14.
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.  相似文献   

15.
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.  相似文献   

16.

Background

Although the nematode Caenorhabditis elegans is a major model organism in diverse biological areas and well studied under laboratory conditions, little is known about its ecology. Therefore, characterization of the species’ natural habitats should provide a new perspective on its otherwise well-studied biology. The currently best characterized populations are in France, demonstrating that C. elegans prefers nutrient- and microorganism-rich substrates such as rotting fruits and decomposing plant matter. In order to extend these findings, we sampled C. elegans continuously across 1.5 years from rotting apples and compost heaps in three North German locations.

Results

C. elegans was found throughout summer and autumn in both years. It shares its habitat with the related nematode species C. remanei, which could thus represent an important competitor for a similar ecological niche. The two species were isolated from the same site, but rarely the same substrate sample. In fact, C. elegans was mainly found on compost and C. remanei on rotten apples, possibly suggesting niche separation. The occurrence of C. elegans itself was related to environmental humidity and rain, although the correlation was significant for only one sampling site each. Additional associations between nematode prevalence and abiotic parameters could not be established.

Conclusions

Taken together, our findings vary from the previous results for French C. elegans populations in that the considered German populations always coexisted with the congeneric species C. remanei (rather than C. briggsae as in France) and that C. elegans prevalence can associate with humidity and rain (rather than temperature, as suggested for French populations). Consideration of additional locations and time points is thus essential for full appreciation of the nematode's natural ecology.  相似文献   

17.
18.
Eight streptophenazines (A–H) have been identified so far as products of Streptomyces strain HB202, which was isolated from the sponge Halichondria panicea from the Baltic Sea. The variation of bioactivities based on small structural changes initiated further studies on new derivatives. Three new streptophenazines (I–K) were identified after fermentation in the present study. In addition, revised molecular structures of streptophenazines C, D, F and H are proposed. Streptophenazines G and K exhibited moderate antibacterial activity against the facultative pathogenic bacterium Staphylococcus epidermidis and against Bacillus subtilis. All tested compounds (streptophenazines G, I–K) also showed moderate activities against PDE 4B.  相似文献   

19.
Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies.  相似文献   

20.
Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016–2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号