首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic resonance (MR) imaging findings in 22 dogs and two cats with confirmed paraspinal infection of the thoracolumbar spine were characterized. These findings included extensive T2-hyperintense areas (24/24), abscessation (20/24), mild inherent T1-hyperintensity of muscle and abscesses (18/24), and postcontrast enhancement (24/24). Changes involved the vertebral canal in four patients. The longus coli muscles were affected in one cat. Thoracolumbar changes in the remaining 23 patients involved the iliopsoas and epaxial muscles in 23/23 and 19/23 patients, respectively. Iliopsoas muscle abscessation was unilateral in 12/23, and bilateral in 6/24 patients. Abscessation involved both epaxial and iliopsoas muscles in 2/23 patients and the epaxial muscles alone in one patient. A contrast-enhancing sinus tract within the deep thoracolumbar fascia was present in 10/23 patients. Lumbar vertebrae periosteal reactions were identified in 19/23 patients on MR images compared with 15/17 patients with radiography. A focal area of signal void suspected to represent foreign material was seen in 5/23 patients but foreign material was actually found in only two of these five. There was no recurrence of clinical signs following MR imaging and revision surgery. MR imaging permits the severity and extent of changes associated with paraspinal infection to be characterized and allows the location, number and any communication of sinus tracts to be documented.  相似文献   

2.
Twenty-one dogs with confirmed tumors of the spinal cord or paraspinal tissues were imaged with magnetic resonance (MR) imaging. Anatomical location, location in relation to the dura and the medulla (spinal cord), and bone infiltration were assessed on the MR images and compared to findings at surgery or necropsy. Localization of tumors in the intradural-extramedullary compartment was not always possible. Bone infiltration was correctly assessed in all but one dog, and the anatomical locations involved were accurately determined in all dogs. Sagittal T2-weighted images were helpful to determine the anatomical location. Transverse T1-weighted images pre and post Gd-DTPA administration were helpful for additional localization and definition of tumor extension.  相似文献   

3.
The accuracy of survey radiographs in the diagnosis of acute thoracolumbar disc disease in 36 Dachshunds was determined by comparison with lumbar myelographic findings using iohexol. The value of making radiographs immediately after injection of contrast medium and the effectiveness of oblique radiographs in determining the exact circumferential distribution of extruding or protruding disc material were assessed. The presence of a double contrast medium column, resistance to injection and the presence of cerebrospinal fluid flow during needle placement was also evaluated. The location of the affected disc was accurately determined on survey radiographs in only 26 dogs. The myelographic technique used in this study resulted in the correct intervertebral space being identified, together with the exact circumferential distribution of disc material, in 35 dogs. Survey radiographs alone are inadequate for localization of protruding or extruding disc material.  相似文献   

4.
In humans affected with inflammatory myopathies, regions of altered signal intensity are found on magnetic resonance (MR) images of affected muscles. Although electromyography (EMG) is more practical for muscle disease evaluation, and a muscle biopsy is the only manner in which a definitive diagnosis can be made, MR imaging has proven useful if a specific anatomic localization is difficult to achieve. Three dogs with focal inflammatory myopathy diagnosed with the assistance of MR imaging are discussed and the findings are compared with those found in humans. MR images of the affected muscles in each dog were characterized by diffuse and poorly marginated abnormal signal on T1- and T2-weighted images. Marked enhancement was noted in these muscles after contrast medium administration. An inflammatory myopathy was confirmed histologically in all three dogs. A good association existed between the MR images and muscle inflammation identified histopathologically. MR imaging may be a useful adjunctive procedure for canine inflammatory myopathies.  相似文献   

5.
Magnetic resonance imaging (MRI) and computed tomography (CT) are commonly used to evaluate dogs with thoracolumbar myelopathy; however, relative diagnostic sensitivities for these two modalities have not been previously reported. The purpose of this prospective study was to compare diagnostic sensitivity and observer agreement for MRI and CT in a group of dogs with thoracolumbar myelopathy due to surgically confirmed intervertebral disk herniation (IVDH). All included dogs had magnetic resonance (MR) imaging followed by noncontrast CT using standardized protocols. Three experienced observers interpreted each imaging study independently without knowledge of clinical or surgical findings. The operating surgeon was aware of MR findings but not CT findings at the time surgical findings were recorded. Forty‐four dogs met the inclusion criteria. The sensitivity of CT was 88.6% (79.5%–94.2%) and of MR was 98.5% (95% confidence interval, 94.1%–99.7%) for diagnosis of intervertebral disk herniation. Specificity was not calculated, as all dogs had IVDH at surgery. Magnetic resonance imaging was more accurate than CT for identifying the site of intervertebral disk herniation‐associated spinal cord compression and differentiating disk extrusion vs. protrusion. Computed tomography was less accurate for lesion localization in per acute cases, as well as for chondrodystrophic, female, older and smaller (<7 kg) dogs. Inter‐rater agreement was good for lesion lateralization for both MR and CT (κ = 0.687, 95% CI = 0.552, 0.822, P = 0.002, and κ = 0.692, 95% CI = 0.542, 0.842, P = 0.003). Findings from the current study indicated that MR imaging was more sensitive and accurate than noncontrast CT for diagnosis and characterization of thoracolumbar myelopathy due to IVDH in dogs.  相似文献   

6.
7.
The distal row of carpal bones (C2, C3, and C4) from eight left intercarpal joints--four from Standardbred Trotters and four from Swedish Warmblood horses--were used to assess the potential of magnetic resonance (MR) imaging to detect cartilage and bone lesions. The joints used in the study were classified by macroscopic and radiographic examinations as having normal, mild, moderate, or severe articular cartilage lesions and bone sclerosis. Those classifications correlated well with the appearance of the MR images. Bone sclerosis in the MR images was observed as regions of decreased signal intensity. Upon quantitative analysis of the MR images there was a significant difference (p < 0.0001) in the MR signal intensity from areas where radiographic bone sclerosis was observed compared to areas of radiographic nonsclerotic bone. In addition, the MR images were used to pilot the location of histology slices through areas of interest that were then examined microscopically; hence, the lesions found from the MR imaging examination were verified microscopically. It was concluded that cartilage lesions and cartilage loss are related to the sclerotic state of the underlying bone. The MR protocols developed in this study were applied on five intact cadaveric carpal joints, and it was concluded that MR imaging could successfully be used in the intact joint to detect minor cartilage and bone lesions not visualized by either radiography or macroscopic examination. Hence, MR imaging can be used to delineate interactions between articular cartilage and subchondral bone over time and in vivo.  相似文献   

8.
We report the use of a low-field magnetic resonance (MR) imaging system for the detection of desmopathy of the collateral ligament of the distal interphalangeal joint and the long-term outcome. Twenty horses were studied and their medical records and MR images were reviewed retrospectively. Long-term follow-up information was obtained by telephonic questionnaires of owners, trainers, or referring veterinarians. Desmopathy of the medial collateral ligament (80%) and enthesopathy of the affected collateral ligament (80%) were common MR imaging features. Treatment consisted of stall rest followed by a rehabilitation period. Additional treatments included shoeing, extracorporeal shock wave therapy, application of a half limb or foot cast, and medication of the distal interphalangeal joint. Twelve (60%) horses returned to their previous level of exercise and maintained their previous level, whereas eight horses had a poor outcome. Low-field MR imaging in the standing patient can be used to detect collateral ligament desmopathy of the distal interphalangeal joint without a need for general anesthesia.  相似文献   

9.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

10.
Eighteen Doberman pinscher dogs with clinical signs of cervical spondylomyelopathy (wobbler syndrome) underwent cervical myelography and magnetic resonance (MR) imaging. Cervical myelography was performed using iohexol, followed by lateral and ventrodorsal radiographs. Traction myelography was performed using a cervical harness exerting 9 kg of linear traction. MR imaging was performed in sagittal, transverse, and dorsal planes using a 1.5 T magnet with the spine in neutral and traction positions. Three reviewers independently evaluated the myelographic and MR images to determine the most extensive lesion and whether the lesion was static or dynamic. All reviewers agreed with the location of the most extensive lesion on MR images (100%), while the agreement using myelography was 83%. The myelogram and MR imaging findings agreed in the identification of the affected site in 13-16 dogs depending on the reviewer. MR imaging provided additional information on lesion location because it allowed direct examination of the spinal cord diameter and parenchyma. Spinal cord signal changes were seen in 10 dogs. Depending on the reviewer, two to four dogs had their lesions classified as dynamic on myelography but static on MR images. Myelography markedly underscored the severity of the spinal cord compression in two dogs, and failed to identify the cause of the signs in another. The results of this study indicated that, although myelography can identify the location of the lesion in most patients, MR imaging appears to be more accurate in predicting the site, severity, and nature of the spinal cord compression.  相似文献   

11.
Magnetic susceptibility artifacts as a result of metal debris from shoeing are a common problem in magnetic resonance imaging of the equine foot. Our purpose was to determine the suitability of radiography as a screening tool for the presence and location of metallic particles in the equine foot and to predict the size of the resultant magnetic susceptibility artifact. Radiography had 100% sensitivity for detection of metal particles ≥1 mm diameter. Metal particles of known diameter were placed within the hoof wall of 22 cadaver feet and scanned with a low‐field strength MR imaging unit (0.21 T). Magnetic resonance images were characterized by a signal void with a hyperintense rim and adjacent image distortion at the level of the known metal location. T2* weighted sequences were the most and fast spin echo (FSE) sequences the least affected. For all four sequences (T1 gradient echo [GRE]; T2*W GRE; T2 FSE; and short tau inversion recovery FSE), linear relationships were observed between particle and resultant artifact size. Magnetic susceptibility artifact size, location and superimposition on clinically relevant anatomic structures can be predicted radiographically for particles larger than 1 mm. If metal debris cannot be removed, the least artifact‐prone FSE sequences should be selected.  相似文献   

12.
The usefulness of myelography with multiple views (lateral, ventrodorsal, left and right oblique view) in the diagnosis of the exact circumferential location of herniated disc material around the spinal cord in 80 dogs diagnosed with thoracolumbar intervertebral disc herniation at surgery was assessed by comparison of clinical and surgical findings. The circumferential location of the compressing mass was diagnosed in 94% of dogs on myelography. The oblique view was of more benefit than the ventrodorsal view in diagnosing the circumferential distribution of the compressing mass. Only the oblique view contributed to a diagnosis of lateralization of the compressing mass in 45% of dogs. Fourteen percent of dogs had clinical lateralization contralateral to myelographic lateralization. The myelographic localization agreed with the surgical localization in 97% of dogs with regard to the exact location of herniated disc material. The presence of clinical lateralization contralateral to myelographic lateralization and a high proportion of agreement of myelographic and surgical localization documents that myelography with multiple views is useful and essential to accurately determine the circumferential location of disc material around the spinal cord.  相似文献   

13.
We describe the magnetic resonance (MR) imaging aspects of normal canine optic nerve, the diameter of the optic nerve as measured on MR images, and optimal MR sequences for the evaluation of the optic nerve using a 0.2 T MR unit. Three millimeter contiguous slides of the normal canine orbital region were acquired in transverse and dorsal oblique planes using a variety of tissue weighting sequences. It was apparent that detailed anatomic assessment of the optic nerve can be performed with low‐field MR imaging, but none of the sequences provided unequivocal superior image quality of the optic nerve. The mean diameter of the optic nerve sheath complex was 3.7 mm and of the optic nerve 1.7 mm. The intraorbital and intracanalicular parts of the optic nerve are consistently visible and differentiation between the optic nerve and optic nerve sheath complex is possible using low‐field MR systems.  相似文献   

14.
The purpose of this study was to establish the normal percutaneous ultrasonographic appearance of anatomic structures within the equine sacroiliac region. Percutaneous ultrasonography was performed in a cranial-to-caudal direction in 10 normal adult live horses. The following structures were examined in detail: supraspinous ligament, lumbar and sacral spinous processes, thoracolumbar fascia and its caudal extension, tubera sacralia, ilial wings, dorsal and lateral portions of the dorsal sacroiliac ligaments, lateral part of the sacrum, and the lateral sacral crest. After ultrasonography, all animals were euthanized and detailed dissection of the lumbosacropelvic region was performed in six horses. Four lumbosacropelvic specimens were frozen and sectioned transversely for evaluation of cross-sectional anatomy. Gross anatomic findings were correlated with ante-mortem ultrasonographic images. On percutaneous ultrasonography, all horses had tubera sacralia with a mild-to-moderate roughened surface with occasional irregular hyperechoic mineralizations located within the apophyseal cartilage of younger horses. At the level of the tuber sacrale the caudal extension of the thoracolumbar fascia joined the dorsal portion of the dorsal sacroiliac ligament and assumed two different configurations relative to the dorsal portion of the dorsal sacroiliac ligament, with the predominant configuration of the thoracolumbar fascia located medial to the dorsal portion of the dorsal sacroiliac ligament. The less frequently encountered configuration had the thoracolumbar fascia positioned dorsal to the dorsal portion of the dorsal sacroiliac ligament. Caudal to the tuber sacrale the dorsal portion of the dorsal sacroiliac ligament and thoracolumbar fascia consolidated to form a single, fused structure with a common insertion on the sacral spinous processes. A large variability in linear fiber pattern, echogenicity (small focal hypoechoic areas), ligament height, and cross-sectional measurements was identified in the fused dorsal portion of the dorsal sacroiliac ligament and thoracolumbar fascia of normal horses. Diagnosing mild-to-moderate desmitis of the fused dorsal portion of the dorsal sacroiliac ligament and thoracolumbar fascia based solely on ultrasonography may therefore be difficult. To correlate ultrasonography with histology, samples of a fused dorsal portion of the dorsal sacroiliac ligament and thoracolumbar fascia with bilateral hypoechoic lesions were submitted for histology and revealed diffuse mild-to-moderate loss of fiber density, multifocal fibrocyte degeneration, and cartilagenous metaplasia with multifocal, mild myofiber mineralization, which was compatible with age-related changes. As controls, sections of ultrasonographically normal fused dorsal portion of the dorsal sacroiliac ligament and thoracolumbar fascia from three horses demonstrated similar but milder histologic findings, which were considered normal.  相似文献   

15.
Thoracolumbar spinal magnetic resonance imaging (MRI) examinations in dogs frequently include the region of the cisterna chyli within the field of view. It is important to be aware of the appearance and location of this structure to avoid confusing it for a pathologic periaortic lesion. MRI examinations of the thoracolumbar spine were reviewed in 30 dogs. The cisterna chyli was identified in 26 dogs and was most commonly located caudal to the diaphragmatic crura at the level of L4; afferent and efferent lymphatics were seen in all dogs. Transverse T2-weighted images were the most useful to locate the cisterna chyli. It was isointense to fluid on T2-weighted images and isointense to muscle on T1-weighted images. Mild contrast enhancement was seen in three dogs. The cisterna always wrapped around the aorta, but varied in shape, with the most common being the wide right dorsolateral ellipse. The thoracic duct was also visible in 30 dogs. MRI may have potential for noninvasive evaluation of the abdominal and thoracic lymphatic ducts in dogs.  相似文献   

16.
17.
Fibrocartilage degeneration is the earliest pathologic finding in navicular disease but remains difficult to detect, even with magnetic resonance (MR) imaging. We hypothesized that injection of the navicular bursa with saline would improve accuracy of MR imaging evaluation of palmar fibrocartilage. Thoracic limbs were collected from 11 horses within 6 h of death. Imaging was performed with a 1.5 T magnet using sagittal 2D proton density and transverse 3D FLASH sequences with fat saturation. For the purpose of determining sensitivity and specificity of the MR images, fibrocartilage was classified as normal or abnormal, based on combination of the findings of gross and microscopic pathology. Thickness of fibrocartilage was measured on histologic sections and corresponding transverse FLASH MR images before and after injection of saline. A paired Student's t- test was used for comparison of measurements. Partial thickness fibrocartilage loss was present in 6 of 22 limbs. Sensitivity of precontrast MR images for detection of lesions was 100% while specificity was 6%. Saline MR arthrography resulted in both sensitivity and specificity of 100% based on consensus review. Mean histologic fibrocartilage thickness was 0.75±0.12 mm. Mean fibrocartilage thickness on precontrast transverse FLASH images was 0.93±0.065 and 0.73±0.09 mm on postsaline images. The histologic cartilage thickness was signficantly different from that in precontrast images ( P <0.001) but not in images acquired after saline injection ( P =0.716). Based on our results, and using pulse sequences as described herein, navicular fibrocartilage can only be evaluated reliably for the presence of partial thickness lesions after intrabursal injection of saline.  相似文献   

18.
A 9‐month‐old domestic shorthair cat had progressive ambulatory paraparesis, proprioceptive ataxia, and thoracolumbar hyperesthesia. An extradural mass affecting the left pedicle and lamina of the second lumbar vertebra (L2) causing marked spinal cord impingement was identified in magnetic resonance (MR) images. The mass was predominantly calcified in computed tomographic (CT) images. A hemilaminectomy was performed to resect the mass. Clinical signs were greatly improved at 12‐month follow‐up. The histopathologic diagnosis was vascular hamartoma. To our knowledge, this is the first report describing the MR characteristics of a vascular hamartoma associated with the vertebral column.  相似文献   

19.
Forty‐six dogs with either cervical (C1–C5 or C6–T2) or thoracolumbar (T3–L3) acute myelopathy underwent prospective conventional computed tomography (CT), angiographic CT, myelography, and CT myelography. Findings were confirmed at either surgery or necropsy. Seventy‐eight percent of lesions were extradural, 11% were extradural with an intramedullary abnormality, 7% were intramedullary, 2% were intradural–extramedullary, and 2% had nerve root compression without spinal cord compression. Intervertebral disc herniation was the most frequent abnormality regardless of signalment or neurolocalization. Twenty‐one of 23 Hansen type I disc extrusions but none of the Hansen type II disc protrusions were mineralized. Two chondrodystrophic dogs had acute myelopathy attributable to extradural hemorrhage and subarachnoid cyst. CT myelography had the highest interobserver agreement, was the most sensitive technique for identification of compression, demonstrating lesions in 8% of dogs interpreted as normal from myelography and enabling localization and lateralization in 8% of lesions incompletely localized on myelography due to concurrent spinal cord swelling. None of the imaging techniques evaluated permitted definitive diagnosis of spinal cord infarction or meningomyelitis but myelography and CT myelography did rule out a surgical lesion in those cases. While conventional CT was adequate for the diagnosis and localization of mineralized Hansen type I disc extrusions in chondrodystrophic breeds, if no lesion was identified, plegia was present due to concurrent extradural compression and spinal cord swelling, or the dog was nonchondrodystrophic, CT myelography was often necessary for correct diagnosis.  相似文献   

20.
Diagnostic imaging techniques (conventional radiography, computed tomography and magnetic resonance imaging) are an essential tool in the diagnostic work-up of ear diseases. Conventional radiography is commonly used, but often lacks sensitivity. Computed tomography (CT) and magnetic resonance (MR) are complementary imaging studies of the middle ear, labyrinth, internal auditory canal and their contents. CT provides excellent images of bony structures and is indicated where osseous changes are of greatest diagnostic importance. MR is superior in imaging soft tissue components including intralabyrinthine fluid. Therefore, more than one of these imaging techniques may be required in order to make a diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号