首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pesticide movement to subsurface drains was monitored in two typical crop production areas in Germany. Field trials were conducted on two subsurfacedrained soils, a silt loam and a poorly structured sandy soil, under different climatic conditions. Over a period of one year, the drainflow was measured and the drain water was analysed for all applied herbicides. Different leaching behaviour was observed at the two field sites. Following autumn application of pendimethalin and isoproturon to the Soester Börde soil, maximum concentrations of about 62 μg litre?1 for isoproturon and 0.7 μg litre?1 for pendimethalin were observed in drainflow from this silt loam. The early occurrence of both herbicides in the drain water only two days after application is consistent with fast flow through macropores. In contrast, on the subsurfacedrained sandy soil in Brandenburg, isoproturon did not reach the drains until two months after autumn application and was found at maximum concentrations of only 1.4 μg litre?1; pendimethalin was not detected in the drain water. Pesticide movement after spring application seemed to be of minor importance. At both locations, spring application led to low concentrations of pesticides in the drainflow (pendimethalin < 0.01 μ litre?1; metolachlor ? 0.05 μ litre?1; chloridazon ? 0.15 μ litre?1; metamitron ? 0.02 μg litre?1; terbuthylazine ? 1.4 μ litre?1).  相似文献   

2.
BACKGROUND: Calibration by inverse modelling was performed with the MACRO transport and fate model using long‐term (>10 years) drainflow and isoproturon (IPU) data from western France. Two lack‐of‐fit (LOF) indices were used to control the inverse modelling: sum of squares (SS) and an alternative statistic called the vertical‐horizontal distance integrator (VHDI), which is designed to account for offsets in observed and predicted arrival times of peak IPU concentration. With these data, SS was artificially inflated because it is limited to comparison of predicted and observed IPU concentrations that are concurrent in time. The LOFs were used along with the index of agreement (d) and the correlation coefficient (r) to ascertain the fit of the calibrated models. RESULTS: Predicted arrival times of peak IPU concentration differed somewhat from observed times. All four indices indicated better model fit for the second of two validation periods when inverse modelling was controlled by VHDI rather than SS (SS = 26.4, d = 0.660, r = 0.606 and VHDI = 1.25). The VHDI statistic was markedly lower compared with the uncalibrated model (38.0) and SS calibration results (24.5). The final maximum predicted IPU concentration (44.5 µg L?1) for the calibration period was very similar to the observed value (44 µg L?1). CONCLUSION: VHDI is seen as an effective alternative to SS for calibration and validation of pesticide fate models applied to responsive systems. VHDI provided a more realistic assessment of model performance for the transient flows and short‐lived concentrations observed here, and also effectively substituted for the objective function in inverse modelling. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
A field experiment at Cockle Park, Northumberland on a clay loam soil (Dunkeswick series) cropped with winter wheat investigated the effects of drainage and season of application on pesticide movement. Isoproturon, mecoprop, fonofos and trifluralin were applied in two consecutive seasons at normal agricultural rates to three hydrologically isolated plots each of 0.25 ha. Two of the plots were mole-drained and the third was an undrained control. Surfacelayer flow and drainflow from each plot were monitored at 10-min intervals. Samples of flow were analysed for pesticides to evaluate transport of applied chemicals from the site. Despite widely differing properties (Koc 20–8000 ml g?1, t1/2 10–60 days), all four pesticides were found in surface-layer flow and mole drainflow from the site. Maximum concentrations of pesticides in flow ranged from 0.1 to 121 μg litre?1 (aqueous phase) and < 0.2 to 48 μg litre?1 (particulate phase). Over two contrasting seasons, total losses of pesticides in flow followed total amounts of flow and were approximately four and five times larger, respectively, in 1990/91 than in 1989/90. The maximum loss occurred from the undrained plot and was 2.8 g isoproturon (0.45% of that applied). Total losses of autumn-applied pesticides from an undrained plot were up to four times greater than losses from a mole-drained plot. Mole drainage decreased movement of pesticides from this slowly permeable soil by reducing the amount of surfacelayer flow. Maximum concentrations of mecoprop and isoproturon in drainflow were 10–20 times larger following spring application than after application in autumn. Bypass flow down soil cracks was an important process by which pesticide was lost from the site, with transport to the drainage system via mole channels (55 cm depth) after less than 0.5 and 6.7 mm net drainage in the two winters.  相似文献   

4.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

5.
Twelve lysimeters with a surface area of 0.5 m2 and a length of 60 cm were taken over mole drains from a Denchworth heavy clay soil and divided into two groups with either a standard agricultural tilth or a finer topsoil tilth. The influence of topsoil tilth on leaching of the herbicide isoproturon and a bromide tracer was evaluated over a winter season. The effect of variations in soil moisture status in the immediate topsoil on leaching of isoproturon, chlorotoluron and linuron was investigated in the following winter season. Here, water inputs were controlled such that lysimeters received 50 mm at a maximum intensity of 2 mm h?1 over a 4‐week period with herbicides applied on day 15. Three treatments received the water either all prior to application, all after application, or evenly spread over the 4‐week period. Leaching losses of the three herbicides were monitored for a subsequent drainage event. Analysis of covariance showed a significant effect of topsoil tilth and total flow on both the maximum concentrations (P = 0.034) and total losses (P = 0.012) of isoproturon in drainflow. Both concentrations and losses were c 35% smaller from lysimeters with the finer tilth. However, generation of the fine tilth in the field was restricted by a wet autumn and this is not considered a reliable management option for reducing pesticide losses from heavy clay soils. In the second experiment, variation in soil moisture content prior to and after application did not have any significant effect (P < 0.05) upon subsequent losses of the three herbicides to drains. © 2001 Society of Chemical Industry  相似文献   

6.
The effect of the monooxygenase inhibitor, 1-aminobenzotriazole (ABT) on isoproturon phytotoxicity and metabolism was studied in resistant (R) and susceptible (S) biotypes of Phalaris minor and in wheat (Triticum aestivum). Addition of ABT (2·5, 5 and 10 mg litre-1) to isoproturon (0·25, 0·5, 1, 2 and 4 mg litre-1) in the nutrient solution significantly enhanced the phytotoxicity of isoproturon against the R biotype. Isoproturon at 0·25 mg litre-1 reduced the dry weight (DW) of the S biotype by 77%, whereas the R biotype required 4·0 mg litre-1 for similar reduction. Addition of 10 mg litre-1 of ABT to the 0·25 mg litre-1 isoproturon caused 71 and 82% reduction in DW of R and S biotypes, respectively. Wheat was more sensitive to the mixture of isoproturon and ABT than the R biotype of P. minor. Reduced concentrations of ABT in the mixture from 10 to 2·5 mg litre-1 increased the DW of the R biotype more than that of the S biotype. The R biotype metabolised [14C]isoproturon at a faster rate than the S biotype. ABT (5 mg litre-1) inhibited the degradation of [14C]isoproturon in both biotypes of P. minor and in wheat. In the presence of ABT, about half of the applied [14C]isoproturon remained as parent herbicide in all the three species after two days. The metabolites were similar in the R and S biotypes and wheat as determined by co-chromatography with reference standards and mass spectroscopy (MS). ABT inhibited the appearance of the hydroxy and monomethyl metabolites and their conjugates in all the test plants. These results suggest that the activity of the enzymes responsible for the degradation of isoproturon is greater in the R than in the S biotype of P. minor, resulting in its rapid detoxification. Incorporation of the monooxygenase inhibitor ABT into the nutrient solution greatly inhibited the degradation of [14C]isoproturon in the R biotype and increased its phytotoxicity. Both hydroxylation and N-dealkylation reactions were found to be sensitive to ABT; inhibition of hydroxylation was greater than that of demethylation. Since ABT could not completely suppress isoproturon degradation, it is possible that more than one monooxygenase is involved. © 1998 SCI  相似文献   

7.
The fumigant toxicity of various volatile constituents of essential oils extracted from sixteen Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae L (Coleoptera: Curculionidae), was determined. The most potent toxicity was found in the essential oil from Mentha arvensis L var piperascens (LC50 = 45.5 µl litre?1 air). GC–MS analysis of essential oil from M arvensis showed it to be rich in menthol (63.2%), menthone (13.1%) and limonene (1.5%), followed in abundance by β‐pinene (0.7%), α‐pinene (0.6%) and linalool (0.2%). Treatment of S oryzae with each of these terpenes showed menthone to be most active (LC50 = 12.7 µl litre?1 air) followed by linalool (LC50 = 39.2 µl litre?1 air) and α‐pinene (LC50 = 54.9 µl litre?1 air). Studies on inhibition of acetylcholinesterase activity of S oryzae showed menthone to have a nine‐fold lower inhibitory effect than menthol, despite menthone being 8.1‐fold more toxic than menthol to the rice weevil. Different modes of toxicity of these monoterpenes towards S oryzae are discussed. © 2001 Society of Chemical Industry  相似文献   

8.
The performance of low concentrations of methyl bromide against diapausing larvae of Ephestia elutella at 15 and 25°C was assessed in extended exposure periods. At concentrations of 1.9 mg litre?1 and below, test batches required higher concentration-time (ct) products for 100% kill at 25°C than at 15°C. The minimum concentration at which the concentration: time relationship still applied was between 1.3 and 1.9 mg litre?1 at 15°C, whereas at 25°C it was between 2.7 and 4.0 mg litre?1. For many individuals within each population sample, however, lower concentrations at moderate dosage levels remained lethal. At 25°C, a ct product of about 90 mg litre?1 h gave between 53 and 77% kill at 6.1, 4.0, 2.7 and 1.9 mg litre?1. The trends observed suggest that the most tolerant members of the population have an enhanced ability to detoxify methyl bromide at the higher temperature. The implications of the results for the build-up of resistance and for practical control measures are discussed.  相似文献   

9.
Warehouse moth (Ephestia elutella) larvae in diapause were exposed at 15°C to methyl bromide at 8 mg litre?1 for 14.5 h and then immediately exposed at a lower concentration. The exposure at 8 mg litre?1 killed 44–69% of the larvae treated. Subsequent concentrations down to 1.1 mg litre?1 obeyed Haber's rule (concentration × time= k, a constant for mortality), but a higher concentration-time product (ct) was required for over 90% kill at 0.8 mg litre?1. Only concentrations down to 1.9 mg litre?1 obey Haber's rule if there is no prior exposure at a higher concentration. Although minimum effective concentrations are lower at 15°C than at 25°C, exposure at a higher concentration depresses the subsequent level to a similar extent at each temperature. The contribution to the efficacy of a treatment, of low concentrations persisting at the end of fumigation, is thus likely to be even greater at moderate to low temperatures than at 25°C. The implications for the development of resistance to methyl bromide are discussed.  相似文献   

10.
11.
The influence of a number of commercial nonionic polyoxyethylene surfactants on the foliar penetration and movement of two systemic fungicides, ethirimol and diclobutrazol, was studied in outdoor-grown wheat plants at different growth stages and post-treatment temperatures in two consecutive growing seasons. Both fungicides were applied as ca 0·2 μl droplets of aqueous suspension formulations containing 0·5 g litre?1 of 14C-labelled active ingredient; surfactants were added to these suspensions at concentrations ranging from 0·2-10 g litre?1. To achieve optimum uptake of each fungicide the use of surfactants with different physicochemical properties was required. For diclobutrazol, a lipophilic compound, uptake of radiolabel was best with surfactants of low mean molar ethylene oxide (E) content (5-6) but it was necessary to use concentrations of ca 5 g litre?1 to attain this. The surfactant threshold concentration for uptake enhancement of radiolabel from ethirimol formulations (< 2 g litre?1) was much lower than that for diclobutrazol but surfactants with E contents > 10 induced the greatest amount of uptake. For both fungicides, surfactants with an aliphatic alcohol hydrophobe were generally more efficient in promoting their uptake than those with a nonylphenol moiety. The sorbitan-based surfactant ‘Tween 20’ proved to be an effective adjuvant only for the ethirimol formulation; the uptake enhancing properties of the block copolymer ‘Synperonic PE/F68’ were weak. Uptake performance could not be related to the spreading properties of the respective formulations on the wheat leaf surface or to differences in solubilisation of the two fungicides by the surfactants. Although surfactants could substantially increase the amount of acropetal transport of radiolabel from both fungicides, none of those tested specifically promoted it; a constant proportion of the radioactive dose absorbed by a treated leaf was usually exported away from the site of application. The results are discussed in the light of current theories about the mode of action of surfactants as spray adjuvants.  相似文献   

12.
The aqueous solubilities and octanol–water partition coefficients (KOW) of the benzoylphenylurea (BPU) insecticides teflubenzuron, chlorfluazuron, flufenoxuron and hexaflumuron were determined in comparison with the more extensively studied diflubenzuron. Both teflubenzuron and hexaflumuron were substantially less water‐soluble (9.4 (± 0.3) µg litre−1 and 16.2 (± 0.5) µg litre−1 in water, respectively) than the value previously reported for diflubenzuron (89 (± 4) µg litre−1 in water). Log KOW values for diflubenzuron, teflubenzuron, hexaflumuron, flufenoxuron and chlorfluazuron were 3.8, 5.4, 5.4, 6.2 and 6.6, respectively, as determined using reverse‐phase HPLC. Photodegradation of hexaflumuron, teflubenzuron and diflubenzuron in water indicated hexaflumuron to be the most rapidly degraded of the three compounds at pH 7.0 (t1/2 = 8.6 (± 0.4) h) and pH 9.0 (t1/2 = 5 (± 1) h); diflubenzuron was the slowest of the three pesticides to degrade in pH 7.0 (17 (± 4) h) and pH 9.0 (8 (± 2) h) buffered water. In a solar simulator using river water buffered to pH 9.0, teflubenzuron, hexaflumuron and diflubenzuron half‐lives were 20 (± 4), 15 (± 2) and 12 (± 1) h, respectively; dark controls showed no loss of parent BPU over similar time periods. © 2000 Society of Chemical Industry  相似文献   

13.
The effects of the fungicides benomyl, thiophanate-methyl and triadimefon on the chrysomelid beetle Gastrophysa polygoni were investigated in the laboratory. Contact with a suspension of benomyl (1.5 g a. i. litre?1 did not affect the hatchability of the eggs. Larvae were reared on shoots of knotgrass (Polygonum aviculare) that had been sprayed with suspensions of benomyl, ranging in concentration from 0.1 to 5.0 g a. i. litre?1. The mortality to the adult stage, of larvae reared on shoots treated with concentrations of benomyl of 0.5 g a. i. litre?1 and above, was significantly higher than that of control larvae. At concentrations of 2.0 g a. i. litre?1 and above, no larvae survived to the adult stage. The LD50 was 0.78 g a. i. benomyl litre?1. The LT50 values at concentrations of 1.0, 2.0 and 5.0 g a. i. benomyl litre?1 were 22.6, 12.6 and 5.3 days, respectively. The mean weights of adults bred from larvae that had been reared on shoots treated with benomyl (0.5 and 1.0 g a. i. litre?1) were significantly less than those of adults bred from control larvae. The mortality of larvae, reared on shoots of P. aviculare treated with triadimefon (0.5 g a. i. litre?1) or thiophanate-methyl (1.0 g a. i. litre?1), was also significantly higher than that of control larvae. Females kept on plants of P. aviculare treated with benomyl (1.5 g a. i. litre?1) laid similar numbers of eggs to those kept on untreated plants, and the hatchability of the eggs was not affected.  相似文献   

14.
BACKGROUND: Piperazine derivatives possess pharmacological properties, yet the acaricidal activity of these compounds has not been investigated. This study was conducted to evaluate the colour alteration and acaricidal activity of piperazine derivatives against Dermatophagoides spp. and Tyrophagus putrescentiae (Schrank) using filter paper and fumigant methods. RESULTS: In a fumigant bioassay, 1‐phenylpiperazine (7.83 µg cm?2) against D. farinae (Hughes) was found to be 4.7 times more toxic than DEET (36.84 µg cm?2), followed by benzyl benzoate (9.72 µg cm?2), piperazine (11.41 µg cm?2), 1‐ethoxycarbonylpiperazine (20.14 µg cm?2) and 1‐(2‐methoxyphenyl)piperazine (22.14 µg cm?2). In a filter paper bioassay, 1‐(2‐methoxyphenyl)piperazine (3.65 µg cm?2) was 5.7 times more toxic than DEET (20.64 µg cm?2), followed by 1‐ethoxycarbonylpiperazine (4.02 µg cm?2), 1‐phenylpiperazine (4.75 µg cm?2), benzyl benzoate (7.83 µg cm?2) and piperazine (10.59 µg cm?2). Similar results have been exhibited with piperazine derivatives against D. pteronyssinus (Troussart). However, no activity against T. putrescentiae was observed for piperazine derivatives, except for piperazine. CONCLUSIONS: These results indicate that piperazine derivatives may be suitable as vapour‐phase acaricide fumigants owing to their high volatility, acaricidal activity and safety. 1‐Phenylpiperazine was found to be an excellent mite indicator based on the colour change it induced. Taken together, these findings indicate that piperazine derivatives may be used to replace existing problematical acaricides owing to their activity and ability to act as a mite indicator. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
BACKGROUND: The purpose of this work was to determine residues of acaricides in recycled Spanish beeswax. RESULTS: Chlorfenvinphos, fluvalinate, amitraz, bromopropylate, acrinathrin, flumethrin, coumaphos, chlorpyrifos, chlordimeform, endosulfan and malathion residues were determined by GC‐µECD/NPD/MS detection. Owing to the extreme instability of amitraz, this analyte was transformed into the stable end‐metabolite 2,4‐dimethylaniline, later derivatised with heptafluorobutyric anhydride and determined by GC‐µECD/MS. Recoveries from spiked samples ranged from 86 to 108%, while quantification limits varied from 0.10 to 0.30 mg kg?1 using GC‐µECD/NPD, and from 12 to 85 µg kg?1 by GC‐MSD. Of a total of 197 samples analysed, only eight samples (4%) were free of residues of chlorfenvinphos (0.019–10.6 mg kg?1), fluvalinate was present in 93.6% of samples analysed (0.027 –88.7 mg kg?1), while coumaphos was confirmed in only five of the 134 samples analysed at concentrations of less than 195 µg kg?1. The remaining acaricides were identified with different levels of incidence at concentrations from 12 to 231 µg kg?1. CONCLUSIONS: Residues of acaricides were found in an extensive number of beeswax samples. The contamination with chlorfenvinphos and tau‐fluvalinate was very relevant, particularly as chlorfenvinphos is not legally authorised for use in beekeeping. The possible impacts of the main acaricides detected on larval and adult honey bees are discussed. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The content of the herbicides atrazine and hexazinone was measured in drainage water from seven to ten-year-old plantations grown with Abies nordmanniana (Steven) Spach on two clayey soils in Denmark. The concentrations of atrazine varied between 0.06 and 7.79 μg litre?1. The concentrations of hexazinone were different at the two locations, ranging from 0.07 to 2.09 μg litre?1 at Bremersvold and from 3.47 to 42.66 μg litre?1 at Koege. Metabolites of both herbicides were identified.  相似文献   

17.
Uptake of aminotriazole (3-amino-1,2,4-triazole) by bean leaves (Phaseolus vulgaris var. Canadian Wonder) was not greatly influenced by the addition to the spray solution of dimethylformamide (DMF), ethylene glycol and polypropylene glycol 400 (PPG 400) over the concentration range 1.0–50.0 ml litre?1. However, the addition of polyoxyethylene 20 sorbitan monolaurate (polysorbate 20) (0.2–1.0 g litre?1) to spray solutions of the above additives and glycerol (5.0 ml litre?1; except for DMF, 50.0 ml litre?1) substantially increased uptake to 80–100% in all cases at 50 ± 10% relative humidity (r.h.). Similar penetration figures were recorded when a range of polysorbate surfactants (polysorbate 20, 40, 60, 80 and 85; 0.2 g litre?1) were applied to spray solutions containing either dimethyl sulphoxide (DMSO) or glycerol (5.0 ml litre?1). Humidity was found to have a critical effect upon the humectant-surfactant combinations tested, i.e. DMSO + polysorbate 20, ethylene glycol+ polysorbate 20 and PPG + 400-polysorbate 20 (5.0 ml litre?1+0.2 g litre?1). With DMSO + polysorbate 20 the following uptake figures were recorded: < 30% r.h., 3.1 %; 45 ± 10% r.h., 86.8%; 55–65% r.h., 48.2 % and 100% r.h., 0.3%. Similar trends were recorded with all three humectant-surfactant combinations. Further studies revealed that the adverse effect of humidity on DMSO-polysorbate mixtures could be at least overcome partially by regulating the DMSO concentration.  相似文献   

18.
BACKGROUND: Recent studies have focused on materials derived from plant extracts as mite control products against house dust and stored food mites because repeated use of synthetic acaricides had led to resistance and unwanted activities on non‐target organisms. The aim of this study was to evaluate the acaricidal activity of materials derived from Lycopus lucidus against Dermatophagoides farinae, D. pteronyssinus and Tyrophagus putrescentiae. RESULTS: The LD50 values of L. lucidus oil were 2.19, 2.25 and 8.45 µg cm?2 against D. farinae, D. pteronyssinus and T. putrescentiae. The acaricidal constituent of L. lucidus was isolated by chromatographic techniques and identified as 1‐octen‐3‐ol. In a fumigant method against D. farinae, the acaricidal activity of 1‐octen‐3‐ol (0.25 µg cm?2) was more toxic than N,N‐diethyl‐m‐toluamide (DEET) (36.84 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (0.29 µg cm?2), 1‐octen‐3‐yl butyrate (2.32 µg cm?2), 1‐octen‐3‐yl acetate (2.42 µg cm?2), 3,7‐dimethyl‐1‐octene (9.34 µg cm?2) and benzyl benzoate (10.02 µg cm?2). In a filter paper bioassay against D. farinae, 1‐octen‐3‐ol (0.63 µg cm?2) was more effective than DEET (20.64 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (1.09 µg cm?2). CONCLUSION: 1‐Octen‐3‐ol and 3,7‐dimethyl‐1‐octen‐3‐ol could be useful as natural agents for the management of three mite species. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The potential to mineralize 2,4‐dichlorophenoxyacetic acid (2,4‐D), mecoprop, isoproturon and terbuthylazine was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. Laboratory microcosms were incubated for 258 days under aerobic conditions at 10 °C with soil and chalk from 0.15–4.45 m below the surface. The [ring‐U14C]‐labeled herbicides were added to obtain a concentration of 6 µg kg?1 and mineralization was measured as evolved [14C]carbon dioxide. The herbicides were readily mineralized in soil from the plough layer, except for terbuthylazine, which was mineralized only to a limited extent. In the chalk, lag periods of at least 40 days were observed, and a maximum of 51%, 33% and 6% of the added 2,4‐D, mecoprop and isoproturon, respectively, were recovered as [14C]carbon dioxide. Large variations in both rate and extent of mineralization were observed within replicates in chalk. No mineralization of terbuthylazine in chalk was observed. As a measure of the general metabolic activity towards aromatic compounds, [ring‐U14C]‐benzoic acid was included. It was readily mineralized at all depths. © 2000 Society of Chemical Industry  相似文献   

20.
The depletion of zeta‐cypermethrin residues in bovine tissues and milk was studied. Beef cattle were treated three times at 3‐week intervals with 1 ml 10 kg?1 body weight of a 25 g litre?1 or 50 g litre?1 pour‐on formulation (2.5 and 5.0 mg zeta‐cypermethrin kg?1 body weight) or 100 mg kg?1 spray to simulate a likely worst‐case treatment regime. Friesian and Jersey dairy cows were treated once with 2.5 mg zeta‐cypermethrin kg?1 in a pour‐on formulation. Muscle, liver and kidney residue concentrations were generally less than the limit of detection (LOD = 0.01 mg kg?1). Residues in renal‐fat and back‐fat samples from animals treated with 2.5 mg kg?1 all exceeded the limit of quantitation (LOQ = 0.05 mg kg?1), peaking at 10 days after treatment. Only two of five kidney fat samples were above the LOQ after 34 days, but none of the back‐fat samples exceeded the LOQ at 28 days after treatment. Following spray treatments, fat residues were detectable in some animals but were below the LOQ at all sampling intervals. Zeta‐cypermethrin was quantifiable (LOQ = 0.01 mg kg?1) in only one whole‐milk sample from the Friesian cows (0.015 mg kg?1, 2 days after treatment). In whole milk from Jersey cows, the mean concentration of zeta‐cypermethrin peaked 1 day after treatment, at 0.015 mg kg?1, and the highest individual sample concentration was 0.025 mg kg?1 at 3 days after treatment. Residues in milk were not quantifiable beginning 4 days after treatment. The mean concentrations of zeta‐cypermethrin in milk fat from Friesian and Jersey cows peaked two days after treatment at 0.197 mg kg?1 and 0.377 mg kg?1, respectively, and the highest individual sample concentrations were 2 days after treatment at 0.47 mg kg?1 and 0.98 mg kg?1, respectively. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号