首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite its recent expansion in eastern US forests, red maple (Acer rubrum L.) generally exhibits a low leaf photosynthetic rate, leaf mass per unit area (LMA) and leaf nitrogen concentration ([N]) relative to co-occurring oaks (Quercus spp.). To evaluate these differences from the perspective of leaf energy investment, we compared leaf construction cost (CC) and leaf maintenance cost (MC) with leaf photosynthetic rate at saturating photon flux density and ambient CO2 partial pressure (Amax) in red maple and co-occurring red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.). We also examined relationships among leaf physiological, biochemical and structural characteristics of upper-canopy leaves of these three species at lower (wetter) and upper (drier) elevation sites of a watershed in the Black Rock Forest, Cornwall, NY, USA. Although A(max), leaf [N], leaf carbon concentration ([C]) and LMA were significantly less in red maple than in either oak species at both sites, CC per unit leaf area of red maple was 28.2 and 35.4% less than that of red oak at the lower and upper site, respectively, and 38.8 and 32% less than that of chestnut oak at the lower and upper site, respectively. Leaf MC per unit leaf area, which was positively associated with leaf CC (r2 = 0.95), was also significantly lower in red maple than in either oak species at both sites. When expressed per unit leaf area, A(max) was positively correlated with both CC (r2 = 0.65) and MC (r2 = 0.59). The cost/benefit ratio of CC/Amax of red maple was significantly less than that of chestnut oak at the lower site, however, CC/A(max) did not exhibit any significant interspecific differences at the upper site. Expressed per unit leaf area, CC was correlated positively with LMA (r2 = 0.90), leaf [N] (r2 = 0.97), and leaf [C] (r2 = 0.89), and negatively correlated with leaf molar carbon to nitrogen ratio (r2 = 0.92). Combined with red maple's general success in many oak-dominated forests, our findings suggest that reduced leaf-level photosynthetic capacity and related leaf characteristics in red maple are partially balanced by lower energy and resource requirements for leaf biomass construction and maintenance, which could enhance the competitive success of this species.  相似文献   

2.
Parker WC  Dey DC 《Tree physiology》2008,28(5):797-804
A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.  相似文献   

3.
ABSTRACT

Certain important quality parameters of red maple (Acer rubrum) laminated veneer lumber (LVL) impregnated with three waterborne formulations: copper azole (CA-B), micronized copper azole (MicroCA or MCA) and alkaline copper quaternary (ACQ-D) bonded with phenol formaldehyde or cross-linked polyvinyl acetate (XPVAc) adhesives were evaluated. Pre-dipping of veneers before LVL production and two post-manufacturing procedures, viz., vacuum-pressure and post-dipping of LVL, were applied. Maximum copper retention in pre-dip-treated, vacuum-pressure and post-dip-treated LVL was 1.4, 9.7 and 1.7?kg/m3, respectively. Copper retention in MCA-treated LVL was relatively lower than soluble formulations. Various physical, mechanical and bonding properties of treated LVL such as density, water absorption, swelling, flexural properties, hardness, tensile shear strength, delamination and wood failure (%) were studied and compared with untreated LVL. Little to negligible deleterious effect was observed on properties of LVL due to these chemical treatments. Analysis of variance results showed that most of properties of red maple LVL were not significantly different compared with those of untreated LVL. Therefore, vacuum-pressure impregnation process can be used to treat the red maple LVL with novel micronized copper formulations for increasing the service life of such products against biodegradation without affecting techno-mechanical quality parameters.  相似文献   

4.
The detection of stem water content is necessary as it is an important indicator for measuring woody plant vitality. However, the relationship between stem water content, determined by non-destructive, real-time, and long-term monitoring, and woody plant vitality remains undefined. In this study, the response of woody plant vitality to stem water content under different stress (freeze–thaw, pest, or drought) was analysed by mining the dynamic characteristics of the stem water content in different woody plants at the temporal scales of year, month, and day. Compared with unstressed trees, stressed trees had contrasting diurnal patterns. The stem water content in Populus koreana Rehd. during the freeze period was much lower than that during the thaw period, and opposite diurnal variation trends were observed during the freeze and thaw periods. The stem water content in infected Lagerstroemia indica was lower than that in uninfected L. indica, and the amplitude of the diurnal variation curve was lower in infected than in uninfected L. indica. Under drought stress, the more severe the water shortage, the lower the stem water content in Malus micromalus. When it was below a certain threshold, the diurnal variation trend was opposite to that without water shortage. In conclusion, stem water content dynamics can be used to evaluate the cold, pest, and drought response of trees, which could monitor tree health and guide forest assessment.  相似文献   

5.
We assessed the effects of a prescribed fire on the phytochemical characteristics and vigor of overstory chestnut oak, scarlet oak, and red maple, and measured the impact of potential changes on herbivore fitness. We compared foliar carbohydrates, tannins, nutrients, and fiber concentrations in foliage from burned and non-burned forest canopies. There were significant differences in most foliar characteristics between tree species. Total non-structural carbohydrate concentrations in scarlet oak and red maple foliage, and calcium levels in red maple foliage, were significantly lower in burned plots, but other phytochemical characteristics were largely unaffected by burning. Tree growth also varied with species. Burning increased chestnut oak relative growth, decreased scarlet oak growth, and had no affect on red maple growth. Scarlet oak and red maple foliage from burned and non-burned forest canopies were assayed for gypsy moth performance. Caterpillars fed foliage from scarlet oak, the preferred host, grew larger and developed more rapidly than did those fed red maple foliage. There were no significant burn treatment differences in caterpillar development within either tree species, suggesting that managers using prescribed fire to promote oak regeneration need not worry about enhancing forest stand susceptibility to gypsy moth. However, the fire in this study was of low to moderate intensity; more intense fires may alter foliar palatability.  相似文献   

6.
The aim of this study was to test the pathogenicity of two Spanish isolates of Heterobasidion annosum sensu stricto in 2‐year‐old Pinus pinaster seedlings. Two types of inocula (woodchips and sawdust) were used to infect the seedlings by two different routes (stem inoculation and soil infestation). The mortality rates of the stem‐inoculated seedlings differed significantly from controls, but those of the seedlings infected via soil infestation did not differ. For both types of inoculation, the lesions were longer, and wilting symptoms were more severe in the seedlings inoculated with H. annosum than in control seedlings. For stem inoculation, biomass allocation did not differ significantly between the infected and control seedlings. However, the percentage of fine roots was lower in seedlings infected via soil infestation than in the control seedlings. To our knowledge, this is the first pathogenicity test with H. annosum isolates and P. pinaster.  相似文献   

7.
To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees were known to exhibit mostly yellow foliar coloration and half historically displayed red coloration. Leaves from both girdled and control branches were harvested at peak color expression (i.e., little or no chlorophyll present). Disruption of phloem export by girdling increased foliar sucrose, glucose and fructose concentrations regardless of historical tree color patterns. Branch girdling also increased foliar anthocyanin expression from 50.4 to 66.7% in historically red trees and from 11.7 to 54.2% in historically yellow trees, the latter representing about a fivefold increase compared with control branches. Correlation analyses indicated a strong and consistent relationship between foliar red coloration and sugar concentrations, particularly glucose and fructose, in both girdled and control branches. Measures of xylem pressure potentials confirmed that girdling was a phloem-specific treatment and had no effect on water transport to distal leaves. Results indicate that stem girdling increased foliar sugar concentrations and enhanced anthocyanin expression during autumn in sugar maple foliage. Native environmental stresses (e.g., low autumn temperatures) that reduce phloem transport may promote similar physiological outcomes.  相似文献   

8.
One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%,61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smaliest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.  相似文献   

9.
This study was conducted to investigate the potential for modifying drought tolerance of Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese red pine (Pinus densiflora Sieb. et Zucc.). Three-year-old seedlings were controlled for five-months at three different soil water potentials ({ie73-1}). Japanese cypress exposed to high {ie73-2} was able to maintain higher photosynthesis (Phn), transpiration (Tr) and stomatal conductance to H2O (gH2O) in comparison to low {ie73-3} pretreatments, however, there was no significant difference in Phn for Japanese red pine. Soil water potential at the threshold from the maximum to limited Phn was higher in high {ie73-4} pretreatments than in low {ie73-5} pretreatments. Net photosynthesis, Tr and gH2O decreased more rapidly in high {ie73-6} pretreatments than in low {ie73-7} pretreatments. Transpiration decreased more significantly than Phn, thus, resulted in increased water use efficiency. All these factors are likely to result in significant improvements in the drought tolerance. Japanese red pine seems more drought-tolerant than Japanese cypress. Japanese cypress is suitable to soil of −0.05 MPa water potential, and Japanese red pine is suitable to −0.16 MPa and even dryer soils.  相似文献   

10.
This paper examines the maple syrup production potential of American forests by analyzing Forest Inventory & Analysis (FIA) data provided by the US Forest Service on the resource of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) trees in twenty states. The analysis is based on tree species and size (diameter at breast height, or dbh), ownership category, jurisdiction, the density of maple trees in a stand, and the distance of the stand to an access road. Although there are over 2 billion sugar and red maple trees of tappable size growing in US forests, when narrowed down according to the attributes of an optimal ‘sugarbush’, there are 100 million potential taps from sugar maples alone and 286 million potential taps with sugar and red maples combined. Overall, 45 % of the tappable-size maple trees are found in stands whose density is not high enough to support commercial sap extraction whereas only 6 % are found in stands that are at least 1.6 km from an access road. The ten states with commercial maple syrup industries have a much higher percentage of their maple trees occurring in stands of optimal density and also contain a higher percentage of sugar maple than red maple trees. States that are utilizing the highest percentage of their potential sugarbushes include Vermont and Maine, whereas states that have significant room for expansion include Michigan, New York, and Pennsylvania.  相似文献   

11.
《Southern Forests》2013,75(4):213-220
This study tested the hypothesis that water stress increases the hydraulic efficiency of Eucalyptus nitens × E. grandis saplings as a result of osmotic and elastic adjustments. Eucalyptus nitens × E. grandis clones (NH00, NH58, NH69 and NH70) were potted in coarse river sand supplemented with a slow-release fertiliser, drip-irrigated four times daily and exposed to full sunlight for eight months. Thereafter, irrigation was withheld twice for seven consecutive days from half of the saplings of each clone, with a seven-day recovery period (regular irrigation) in-between. Relative soil moisture content did not correlate with stomatal conductance (gs) at pre-dawn and at midday. Leaves of plants subjected to the water-stress treatment wilted in 7 d, and the reduction in gs was significant at midday with no significant differences between clones. Stomatal conductance and all traits derived from pressure-volume graphs (e.g. osmotic potential at full turgor) were constant in the control treatment. There were no clear patterns in osmotic and elastic adjustments in both treatments. Root hydraulic conductance was constant between treatments and clones. However, water stress reduced shoot hydraulic conductance and stem hydraulic conductivity with significant interclonal effects. Plant biomass, leaf area and leaf weight ratio were significantly lower in the water-stressed plants, but there were no differences between the clones. In conclusion, the water-stress treatment did not introduce significant differences in stomatal conductance and tissue-water relations of Eucalyptus nitens × E. grandis clones. Interclonal variation in water-stress response was found in shoot hydraulic traits, and clone NH58 may be more suitable for planting across sites prone to moderate water stress.  相似文献   

12.
Yang S  Tyree MT 《Tree physiology》1993,12(3):231-242
A new method is presented for measuring whole-shoot hydraulic conductance, K(T) (kg s(-1) MPa(-1)). The method was also used to determine other conductance values in maple (Acer saccharum Marsh.) stem segments of differing diameter including: K(h) (absolute conductance or conductance per unit pressure gradient, kg s(-1) m MPa(-1)), K(s) (specific conductance or K(h) per unit wood area, kg s(-1) m(-1) MPa(-1)), and LSC (leaf specific conductance or K(h) per unit leaf area, kg s(-1) m(-1) MPa(-1)). A regression of K(T) versus stem basal diameter, D (m), gave K(T) = 5.998 x 10(-2) D(1.402) (R(2) = 0.986 for D from 0.001 to 0.1 m) and a regression for leaf area, A(L) (m(2)), gave A(L) = 4.667 x 10(3) D(2.007) (R(2) = 0.981 for D from 0.001 to 0.3 m). More than 50% of the resistance to water flow in large shoots (0.1 m in diameter and 8 to 10 m long) was contained in branches less than 0.012 m in diameter, i.e., in the distal 1.5 m of branches. We used the regressions to predict the steady state difference in pressure potential, P, between the base of a shoot of diameter D and the average pressure potential at the apices of the shoot; the relation is given by P = 7.781 x 10(4) E D(0.605), where E is the average evaporative flux density (kg s(-1) m(-2)) in the leaves attached to the shoot. After comparing the predictions of this equation to field observations of E and leaf water potential and stomatal conductance, we concluded that the hydraulic conductance of large maple shoots is sufficiently low to prevent maximum stomatal conductance in maple leaves.  相似文献   

13.
Reaction kinetics of fixation of CCA-C (chromated copper arsenate type C) preservative was studied at 30°C in ground wood of trembling aspen, red pine, and red maple at treatment retentions of 4.0, 6.4, 9.6, and 30 kg/m3, and red maple pre-extracted with hot water at retentions of 6.4 and 30 kg/m3. Reaction orders of cumulative Cr, Cu, and As reactions decreased gradually during the fixation if calculated by Van’t Hoff’s method. With Essen’s method, CCA fixation was best approximated as follows: Cr—3rd order reaction during the first 24 h, and 1st order reaction for the rest of the fixation period; Cu—2nd order reaction; and As—1st order reaction in red pine and aspen, and 2nd order in red maple. Rates of reaction decreased with increased CCA solution concentration for Cr and Cu, and increased for As, except in red maple. Reaction rates for all CCA elements were significantly higher in rapidly fixing red maple than in regularly fixing red pine and aspen, and were higher in unextracted than pre-extracted red maple. Modeling of CCA fixation kinetic for the whole fixation period enabled comparison of fixation reactions among wood species, preservative components, and treatment retentions.  相似文献   

14.
New technologies in time-domain reflectometry offer a reliable means of measuring soil water content. Whether these same technologies can be used or adapted to estimate the water content of other porous media, such as the woody tissue of forest trees, has not been thoroughly addressed. Therefore, curves relating the apparent dielectric constant (K(a)) to volumetric water content (g cm(-3)) were constructed for large-diameter stems of red maple (Acer rubrum L.), white oak (Quercus alba L.), chestnut oak (Q. prinus L.), and black gum (Nyssa sylvatica Marsh.). This information was combined with previously published data and a proposed "universal" calibration equation for wood was derived. Stainless-steel rods (15-cm wave guides) were inserted into 160 trees (30 to 49 per species) growing in an upland oak-hickory forest and stem water contents estimated monthly during 1994 and 1995 with a time-domain reflectometer (TDR). Volumetric water contents in April ranged from 0.28 g cm(-3) for red maple to 0.43 g cm(-3) for black gum, with no evidence that water content changed as a function of stem diameter. Stem water contents estimated during 1994 (a wet year) increased from May to July, reached a maximum in midsummer (0.41 to 0.50 g cm(-3)), and then decreased in November. During 1995 (a dry year), stem water contents for red maple and black gum (two diffuse-porous species) decreased from May to August, reached a minimum in September (0.29 to 0.37 g cm(-3)), slightly increased in October and November, and then decreased in December. A different trend was observed during 1995 for white oak and chestnut oak (two ring-porous species), with water contents remaining fairly stable from May to August, but decreasing abruptly in September and again in December. Stem water contents estimated with a TDR broadly agreed with gravimetric analyses of excised stem segments and increment cores, although there was evidence that overestimation of water content was possible with TDR as a result of wounding following wave guide installation. Nonetheless our results hold promise for the application of TDR to the study of stem water content and to the study of whole-plant water storage.  相似文献   

15.
We investigated the effects of altered precipitation on leaf osmotic potential at full turgor (Psi(pio)) of several species in an upland oak forest during the 1994 growing season as part of a Throughfall Displacement Experiment at the Walker Branch Watershed near Oak Ridge, Tennessee. The main species sampled included overstory chestnut oak (Quercus prinus L.), white oak (Q. alba L.), red maple (Acer rubrum L.); intermediates sugar maple (A. saccharum L.) and blackgum (Nyssa sylvatica Marsh.); and understory dogwood (Cornus florida L.) and red maple. The precipitation treatments were: ambient precipitation; ambient minus 33% of throughfall (dry); and ambient plus 33% of throughfall (wet). Except in late September, midday leaf water potentials (Psi(l)) were generally high in all species in all treatments, ranging from -0.31 to -1.34 MPa for C. florida, -0.58 to -1.51 MPa for A. rubrum, and -0.78 to -1.86 MPa for Q. prinus. Both treatment and species differences in Psi(pio) were evident, with oak species generally exhibiting lower Psi(pio) than A. saccharum, A. rubrum, C. florida, and N. sylvatica. The Psi(pio) of C. florida saplings declined in the dry treatment, and Q. prinus, Q. alba, and A. saccharum all exhibited a declining trend of Psi(pio) in the dry treatment, although Psi(pio) of Q. prinus leaves increased in late August, corresponding to a recovery in soil water potential. Cornus florida exhibited osmotic adjustment with the largest adjustment coinciding with the period of lowest soil water potential in June. The only other species to exhibit osmotic adjustment was Q. prinus, which also maintained a lower baseline Psi(pio) than the other species. We conclude that a 33% reduction of throughfall is sufficient both to alter the water relations of some species in the upland oak forest and to enable the identification of those species capable of osmotic adjustment to a short-term drought during a wet year.  相似文献   

16.
In order to improve the management of temperate alley cropping, it is important to study the growth and physiological responses of plants arising from competition across the crop-tree interface. Maize (Zea mays L.) was established between rows of seven-year-old silver maple (Acer saccharinum L.) trees in north-central Missouri, USA with four imposed treatments: (1) an unmodified control with a standard rate of N fertilization (179.2 kg N (as NH4NO3) ha−1), (2) trenching with root barrier installed, (3) supplemental fertilization treatment (standard N + 89.6 kg ha−1 N), and (4) a combination of trenching with root barrier and supplemental fertilization. Whereas soil N status had little effect on maize physiology and yield at the interface, competition for soil water was substantial in both years. Without a root barrier, soil water content, predawn and midday water potential, and midday net photosynthesis of maize plants adjacent to the tree row were reduced compared with those of plants in the alley center, but no differences across the maize crop were evident in the presence of a barrier. Grain yield of border row maize plants lacking an adjacent barrier was depressed compared with that for maize plants with a root barrier present (8.42 vs. 6.59 Mg ha−1 in 1997; 5.38 vs. 3.91 Mg ha−1 in 1998). However, the barrier did not completely restore yield to that in the alley center, suggesting that reductions in light near the tree row also limited production. Top ear height showed a similar pattern of response to the presence of a root barrier. Silver maple trees responded to root barrier installation with reduced annual diameter growth and reduced water status on some sample days. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy position and soil water potential in the rooting zone.  相似文献   

18.
Container-grown seedlings of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) in their first year of growth were overwintered outdoors. Tolerance of roots and stems to freezing was compared from late summer to the following spring. Mitotic activity in the apical bud was related more closely to air temperature than to bud dormancy as defined by days to bud break. In all species, stem hardening was observed before days to bud break reached a maximum. Dormancy release (days to bud break equal to zero) of yellow birch coincided with loss of stem hardening in the spring. Roots hardened more slowly, had a lower frost tolerance than stems in fall and winter, and dehardened earlier than stems in the spring. There were differences in stem and root hardiness among the species, with yellow birch being the most tolerant, followed by sugar maple and red oak. Primarily because of root sensitivity to frost, winter was a critical period for all three species, but particularly for red oak.  相似文献   

19.
We hypothesized that seedlings grown under water-limited conditions would develop denser wood than seedlings grown under well-watered conditions. Three Eucalyptus species (E. grandis Hill (ex Maiden), E. sideroxylon Cunn. (ex Woolls) and E. occidentalis Endl.) were grown in a temperature-controlled greenhouse for 19 weeks with watering treatments (well-watered and water-limited) applied at six weeks. The water-limitation treatment consisted of four drought cycles. Wood density increased by between 4 and 13% in the water-limited seedlings, but this increase was mainly due to extractive compounds embedded in the cell wall matrix. Once these compounds were removed, the increase was 0-9% and was significant for E. grandis only. Water-limitation significantly reduced mean vessel lumen area; however, this was balanced by a trend toward greater vessel frequency in water-limited plants, and consequently there was no difference in the proportion of stem area allocated to vessels. Conduit efficiency value was lowest in the water-limited plants, indicating that there was a cost in terms of stem hydraulic conductivity for decreasing vessel lumen area. Wood density was negatively correlated with vessel lumen fraction in well-watered plants, but this relationship broke down in the water-limited plants, possibly because of the significantly larger proportion of the stem taken up by pith in water-limited seedlings. Diurnal variation in leaf water potential was positively correlated with wood density in well-watered plants. This relationship did not hold in the water-limited plants owing to the collapse of the pressure gradient between soil and leaf. We conclude that drought periods of greater than 1 month are required to increase wood density in these species and that increases in wood density appear to result in diminished capacity to supply water to leaves.  相似文献   

20.
The effect of municipal solid waste (MSW) leachate spray irrigationon a mature northern hardwood forest was investigated. Canopyfoliar samples and stem increment cores were collected fromtwo indicative species, sugar maple (Acer saccharum Marsh.)and American beech (Fagus grandifolia Ehrh.), within each ofa heavily sprayed, lightly sprayed and control area. Foliarconcentrations of N and P were significantly higher in bothmaple and beech foliage within the sprayed areas when comparedto an unsprayed area (control). Levels of Mg and K were markedlyhigher in maple but not beech foliar samples within the heavilysprayed areas when compared to foliage sampled within the unsprayedcontrol. While no significant trends were observed within themaple foliage, both Fe and B levels increased significantlyin beech foliar samples obtained from within the heavily sprayedarea in comparison to foliage samples from the control. Directporometric measurements of the transpiration rate and diffusive(stomatal) resistance of canopy and understory plant leavesrevealed a significant increase in diffusive resistance anda decline in transpiration rate with leachate spraying. Afterfour years of spraying a significant effect of leachate applicationon radial stem growth of both maple and beech trees has notbeen observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号