首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad), is a major threat to the anthurium cut flower industry worldwide. Two field trials in Hawaii evaluated the long-term persistence of Xad in artificially-infested crop residues. Xad survived in leaf, petiole, and root residues for as long as 4 months when tissues were left on the surface or buried 15cm deep. Survival was considerably shorter (approximately 20 days) outside of residues. Xad that was recovered from residues over a period of 4 months retained pathogenicity. Xad was isolated from living roots of naturally-infected plants which further suggests that roots left in the field after culling may be particularly important, but overlooked, inoculum source. This information is key to determining minimum fallow periods before replanting devastated fields.  相似文献   

2.
The degradation of imazapyr, flumetsulam and thifensulfuron applied at 500.40 and 30 g active ingredient (a.i.) ha-1, respectively, to silt loam soil was studied under laboratory and field conditions. Herbicide residues were analysed by a lentil ( Lens culinarits L.) bioassay. Results showed that temperature had a significant effect on herbicide degradation, whereas the impact of soil organic matter ami pH were less well defined. Half-lives for imazapyr, flumetsulam and thifensulfuron in soil samples from the 0-5 cm layer (6.4% organic carbon) at 15 °C were 125, 88 and 5.4 days, respectively, and 69, 30 and 3.9 days at 30°C. In soil sampled from the 15-20 cm layer (3.5% organic carbon) half-lives were 155. 70 and 6.4 days, respectively, at 15 °C and 77, 24 and 4.8 days at 30 °C, A field experiment investigated the degradation and teaching of each herbicide under two precipitation regimes [natural precipitation (208 mm), and natural precipitation plus 75 mm irrigation (283 mm) over 4 months to a soil depth of 25 cm. Thifensulfuron degraded rapidly, whereas residues of flumetsulam and imazapyr leached below 25 cm in both the low-and high-precipitasion treatments after 4 months. Significant imazapyr residues were still present in the soil to 25 cm depth after 3 months, A multi-component model for herbicide dissipation was developed and evaluated using data from the laboratory and field experiments.  相似文献   

3.
Mycosphaerella brassicicola (ringspot), Alternaria brassicicola and A. brassicae (dark leaf spot) and Xanthomonas campestris pv. campestris (black spot) can infect leaves of Brussels sprouts resulting in yield losses. Infections of outer leaves of sprouts cause severe losses in quality. Crop residues can be a major primary inoculum source of the pathogens. Their population dynamics were followed in residues of leaves and stalks of crops of Brussels sprouts during 24 months using real‐time PCR assays. Leaf residues on the soil surface or buried in soil decomposed within 4 months. However, residues of stalks were present in the field after 24 months. In such residues, M. brassicicola populations increased during the first 2 months, but decreased thereafter and the pathogen was found only occasionally in the second year. Alternaria brassicicola multiplied on stalks exposed on the surface of field soil and was present on such residues after 24 months. Survival was less on residues buried in soil. Alternaria brassicae population increased in stalks exposed on the soil surface during the first months but decreased thereafter under the detection limit. Xanthomonas campestris cv. campestris populations fluctuated in time but 1 × 104 cells mg?1 stalk residue were still found after 24 months. Additionally, the four pathogens were present in residues of 11 commercial rapeseed crops that were analysed. The observed variation in population sizes of the pathogens between individual pieces of crop residues indicates a stochastic spread of pathogens. Unravelling the underlying processes will support the development of novel methods for sustainable disease prevention.  相似文献   

4.
The extent of the risk of (Z)- and (E)-1,3-dichloropropene and their transformation products (Z)- and (E)-3-chloroallyl alcohol causing a hazard to the quality of groundwater pumped up for public water supply from below flower-bulb fields has been evaluated. The 1,3-dichloropropenes were incubated at 10°C in water-saturated subsoil material from three such fields. A first stage with gradual transformation was followed by a second stage with comparatively rapid transformation and after three months negligible amounts remained. The 3-chloroallyl alcohols were incubated at 15°C in soils from the root zone of the same fields. Complete transformation had occurred in about a week or even less. The 3-chloroallyl alcohols were also incubated in the water-saturated subsoil material at 10°C. Again, a first stage with gradual transformation was followed by a second stage with fast transformation. In most instances, the concentrations had fallen to a very low level within three months. It was concluded that it is unlikely that residues in the upper groundwater would permeate into the deeper groundwater pumped up for public water supply.  相似文献   

5.
Fonofos (O-ethyl S-phenyl ethylphosphonodithioate) was applied to an organic soil as band treatment at the rates of 1.12 and 2.24 kg/ha. The persistence of the insecticide and its translocation into onions and two rotation crops (lettuces and carrots) was studied under field conditions. Proportionally more residues persisted in the soil from the higher rate of application. In autumn, 4 months after soil treatment, about 40-48 % of the initially recovered levels of fonofos remained in soil. However, the amount of fonofos present at the harvest time, during the second growing season was only 16–26% of the insecticide concentration found in spring. Onions harvested 4 months after application of fonofos had no detectable residue (> 0.005 mg/kg) whereas lettuces and carrots grown in the following year contained fonofos in various amounts. At the lower rate of application the insecticide residues in lettuces and carrots were < 0.005 and 0.025 mg/kg, respectively, and those from the higher application rate were 0.012 and 0.036 mg/kg. About 72–80% of the residue could be removed by peeling the carrots. No residue of the oxygen analogue, O-ethyl S-phenyl ethylphos-phonothioate (I) was detected in any soil or crop samples.  相似文献   

6.
In 49 olive tree groves in southern Spain under non-tillage and treated in the autumn with simazine, a total of 315 weed species was identified. However, only eight annual specics reached a moderate mean infestation of infested ficlds. In each field the number of observed species ranged from 4 to 78. The most important annual species that survived simazine treatment were Lolium rigidum, Galium tricornutum and Sherardia arvensis and, locally in a few fields, others such as Amaranthus spp., Conyza spp., Pulicaria paludosa, Sinapis alba. Torilis arvensis and Rumex bucephalophorus. Sedum album, R. bucephalophorus, P. paludosa, Briza maxima and Hypericum perforatum were mainly found in slope soils with high altitude and low carbon content. Cyperus rotundus, Conyza banariensi, Amaranthus blitoides, Galium spurium and Diplotaxis virgata were found at high densities in irrigated fields. Simazine residues recorded 6 months after herbicide application were very low, amounting on average to levels less than 3% of the applied rate. In soil treated with simazine for 7 years. simazine degradation was much faster than in previously untreated soil, particularly at temperatures of 15-25°C.  相似文献   

7.
DDT residues in or on the roots and leaves of the herbage and the roots, bark, leaves and fruit of the trees are given for an apple orchard sprayed annually (1953–1969). The distribution of DDT in both the grass and the grass roots was in circular areas of residues, with maximum values at each trunk and decreasing radially to each alley. Of the spray applied at the green cluster stage 80% was deposited on the grass sward and very little, if any, directly on the soil surface. The pp′-DDT content of the grass fell rapidly with successive mowings (from which the cuttings remained in situ) from 400 μg/g at spraying to 2 μg/g after nine months. 33 g/ha pp′-DDT was found in the herbage roots (0.87% of the total residues in the soil). The residues in the bark (87.5 g/ha) were much lower than expected after 13 years spray application. There were increased amounts of pp′-DDE, pp′-TDE and pp′-TDEE relative to pp′-DDT, indicating some breakdown on the bark, but the chief losses were attributed to volatilisation and to removal by wind and rain. The residue content of root bark varied from 3 μg/g near the emerging trunk to 0.05 μg/g at a depth of 90 cm. The pp′-DDT content of leaves at leaf fall rose from <1 ng/g after a single spring spray to 8.33 μg/g following an additional spray in late June. There was a large loss of DDT from the canopy between the June spray and leaf fall (440–480 g/ha down to 25 g/ha), attributed to volatilisation. The amount of pp′-DDT on the fruit, after a single spray, was 3 ng/g fresh weight (80.9 mg/ha out of a total of 1.0–1.5 kg/ha used).  相似文献   

8.
Analytical methods are described for the determination of residues of chlorfenvinphos, diazinon, fonofos and phorate in soils and carrots. The insecticides, applied in June 1969 at 2 kg (a.i.)/ha, persisted longer in peaty loam than in sandy loam. After 7 months, the sandy loam contained 1% of the applied diazinon and 20–30% of the applied chlorfenvinphos, fonofos and phorate, the latter as its sulphone; the corresponding figures for the peaty loam were 10, 40–50, 40–50 and 30–40% respectively. None of the residues showed any substantial change from October to January. Although high initial concentrations (up to 50 ppm) of the residues in carrots were diluted by plant growth, it is shown that concentrations >1 ppm could be present in marketable crops 12–14 weeks after application at recommended rates. Carrots harvested 26 weeks after sowing contained <0.2 ppm of all insecticides. In contrast, during the first 15 weeks of crop growth the weights of residues in the carrots increased and remained approximately proportional to the square root of the carrot mean weight. Rates of uptake declined as carrot growth declined and subsequently the amounts of chlorfenvinphos, diazinon and fonofos residues in the carrots changed very little, while phorate sulphone steadily declined.  相似文献   

9.
Magnaporthe oryzae is the fungal plant pathogen that causes rice blast. The sources of primary inoculum and overwintering mode of the fungus remain largely unknown. The effect of rice residues on the onset of blast epidemics and the potential for survival of M. oryzae in the residues were studied in upland conditions in Madagascar. Blast disease was observed in a 3‐year field experiment in three treatments: with either infected or uninfected rice residues on the soil surface, or without rice residues. Leaf blast incidence was significantly higher in the treatment with infected rice residues than in the two other treatments at the early stages of the epidemic. In a second set of trials, the survival of M. oryzae on rice residues was monitored. Infected rice stems were placed by lots in three places: on the mulch of rice residues, under the mulch, and buried at a depth of 10 cm in the soil. Each month, samples were taken from the field and tested for sporulation. The survival of the blast fungus decreased rapidly on the stems buried in the soil but remained high for the other conditions. Sporulation of the fungus was observed on stems left on the mulch for up to 18 months. It is concluded that under field conditions, the presence of infected rice residues could initiate an epidemic of blast. The results of this study may help in designing effective management strategies for rice residues infected by M. oryzae.  相似文献   

10.
For evaluation of soil residues of ethofumseate [(±)2-ethoxy-2,3-dihydro-3,3-dimethylbenzofuran-5-yl-methylsulphonate], spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.) were sown in soil planted 11 months previously with sugar-beet (Beta vulgaris L.) and previously treated with band or broad-cast applications of the herbicide at rates of 1.68-4.48 kg/ha. The height of barley and wheat was suppressed only where ethofumesate was applied broadcast and the soil was not ploughed after sugar-beet harvest. Three months after sowing, the 4.48 kg/ha rate suppressed the height of barley 18% and wheat 34%. In another experiment, barley grew normally on soil treated the previous year with pre-planting and post-emergence applications of ethofumesate where ploughing followed sugar-beet harvest. For all treatments, yields of straw and grain were not significantly lower than those of the untreated check plots. The dissipation of ethofumesate 24 weeks after application to sugar-beet was 89–100% when applied on a band compared to 85-95% when applied broadcast.  相似文献   

11.
Field bioassays were conducted to assess the toxicity of three insecticides, chlorpyrifos, cypermethrin and pirimicarb, to four species of springtails, Isotoma viridis, Isotomurus palustris, Folsomia candida (Collembola: Isotomidae) and Sminthurus viridis (Collembola: Sminthuridae). Spray residues on two soil types (a sandy clay loam and a sandy soil) were obtained in the field, in the presence and absence of a wheat crop canopy, after spray application by a commercial tractor-mounted sprayer. Collembola were then confined for 24-h periods on the sprayed soils in a constant laboratory environment at 1, 2, 3, 8 and 15 days after treatment. Residual insecticide toxicity was compared between species, insecticides, soils and exposure conditions (crop or no crop) using the age of residue at which median mortality occurred (DAT50). Cypermethrin and pirimicarb residues were of low toxicity, causing less than 10% mortality, whereas residues of chloryprifos were toxic to all four species of Collembola on both soil types and in both exposure treatments. Interspecific differences in collembolan susceptibility to chlorpyrifos residues gave the ranking (from most to least susceptible) S. viridis>F. candida>Isotomurus palustris>Isotoma viridis. Residues on the sandy soil were more toxic than those on the sandy clay loam. These results are discussed in terms of how field bioassay approaches may be used to determine pesticide residual toxicity to microarthropods. We conclude that field bioassays offer a feasible method for evaluating the toxicity of pesticides and the persistence of toxic effects on Collembola. Advantages and disadvantages of this method are considered.  相似文献   

12.
Freshly matured, seeds of the four summer annuals Ambrosia artemisiifolia, Polygonum pensylvanicum, Amaranthus hybridus and Chenopodium album were buried in soil at (12/12 h) daily thermoperiods of 15/6, 20/10, 25/15, 30/15 and 35/20°C and at a constant temperature of 5°C. After 0, 1, 3 and 5 months, seeds of each species at each temperature were exhumed and tested at a 14-h daily photoperiod at all six temperatures. Fresh seeds of A. artemisiifolia and P. pensylvanicum did not germinate at any temperature, those of A, hybridus germinated to 4 and 64% at 30/15 and 35/20°C, respectively, and those of C. album to 11–20% at 25/15, 30/15 and 35/20°C. Seeds of A. artemisiifolia and P. pensylvanicum, which germinate only in spring, required exposure to low (5, 15/6°C) temperature to after-ripen completely (i.e., to gain the ability to germinate over a wide range of temperatures), and little or no after-ripening occurred at high (25/15, 30/15 and 35/20°C) temperatures. Seeds of A. hybridus and C. album, which germinate in spring and summer, required exposure to low temperature to after-ripen completely, but at high temperatures they rapidly gained the ability to germinate at high temperatures. Regardless of the burial temperatures and species, when after-ripening occurred, seeds firs germinated at high and then at low temperatures. The minimum germination temperature for a species decreased with after-ripening temperature and with an increase in the length of the burial period.  相似文献   

13.
The study deals with the effect of common, annually-used pesticides on soil microorganisms, pesticide residues in soil, and carrot (Daucus carota) yields in Central Finland. Linuron residues in carrot roots were also analysed. Thiram+lindane and dimethoate were applied from 1973–1981 at the commercially recommended doses on experimental plots of carrots, linuron was applied at twice the recommended rate from 1973–1979 and at the normal rate thereafter and in addition TCA was applied in 1978. Maleic hydrazide was used in the years 1973–1976, and glyphosate after 1977. The numbers of different soil microorganisms, their activities and the pesticide residues were studied from autumn 1978 to 1981. The pesticide treatments reduced the growth of soil algae but increased the total number of microorganisms and the number of aerobic spore-forming bacteria. Linuron residues in the soil were 0.9–2.8 mg kg?1 in the growing season and 1.2–1.7 mg kg?1 in the autumn, 3 months after application. The residues of glyphosate in the soil were 0.7 mg kg?1 in the autumn, 41 days after the treatment, and had declined to a level of about 0.2 mg kg?1 by the following summer. In the pesticide-treated plots the carrot yield was only 20–60% of the yield in the hand-weeded plots. The herbicide programme controlled most of the annual weeds but not couchgrass Elymus repens and milk sow-thistle Sonchus arvensis.  相似文献   

14.
The effect of microclimate variables on development ofClonostachys rosea and biocontrol ofBotrytis cinerea was investigated on rose leaves and crop residues. C.rosea established and sporulated abundantly on inoculated leaflets incubated for 7–35 days at 10°, 20° and 30°C and then placed on paraquat—chloramphenical agar (PCA) for 15 days at 20°C. On leaflets kept at 10°C, the sporulation after incubation on PCA increased from 60% to 93% on samples taken 7 to 21 days after inoculation, but decreased to 45% on material sampled after 35 days. A similar pattern was observed on leaves incubated at either 20° or 30°C. The sporulation ofC. rosea on leaf disks on PCA was not affected when the onset of high humidity occurred 0, 4, 8, 12 or 16 h after inoculation. However, sporulation was reduced to 54–58% on leaflets kept for 20–24 h under dry conditions after inoculation and before being placed on PCA. The fungus sporulated on 68–74% of the surface of leaf disks kept for up to 24 h at high humidity after inoculation, but decreased to 40–51% if the high humidity period before transferral to PCA was prolonged to 36–48 h. The growth ofC. rosea on leaflets was reduced at low inoculum concentrations (103 and 104 conidia/ml) because of competition with indigenous microorganisms, but at higher concentrations (105 and 106 conidia/ml) the indigenous fungi were inhibited. Regardless of the time of application ofC. rosea in relation toB. cinerea, the pathogen’s sporulation was reduced by more than 99%. The antagonist was able to parasitize hyphae and conidiophores ofB. cinerea in the leaf residues. AsC. rosea exhibited flexibility in association with rose leaves under a wide range of microclimatic conditions, and in reducingB. cinerea sporulation on rose leaves and residues, it can be expected to suppress the pathogen effectively in rose production systems.  相似文献   

15.
Spraying programmes for apple scab and mildew control sometimes had residual effects for one or even two years. Thus, benomyl (0.025% a.i.) and pyridinitril (0.035% a.i.) drastically reduced the subsequent incidence of cankers caused by Nectria galligena on young wood. Apple scab fruit infection, caused by Venturia inaequalis, was also less on trees on which benomyl had been used in the previous season. In the bark of such trees, toxic residues equivalent to 1 to 4 μg benomyl/g fresh wt. were detected by bioassay 7 months after spraying.  相似文献   

16.
A series of trials in which cattle were either treated dermally or dosed orally with clenpirin [2-(3,4-dichlorophenylimino)-l-n-butyl pyrrolidine] was undertaken. Tissue fat from steers and butter fat from milking cattle were sampled and residue levels determined colorimetricaliy. Residues following a single application of clenpirin (9 litres/beast at 0.25% w/v) reached an average maximum of 2.0 mg/kg in body fat and then declined to 0.2 mg/kg after 14 days. Multiple applications (9 litres/beast at 0.25% w/v) resulted in a progressive buildup of residues in body fat to about 30 mg/kg after 4 treatments. When steers were dosed orally with technical clenpirin at 700 mg/beast/day for 15 days the average fat level reached 0.7 mg/kg. In a series of trials with milking cattle a single dermal exposure (0.23-0.3% w/v aqueous emulsion) yielded residues in butter fat ranging from 1 5.5-51 1 mg/kg at the first sampling 5 h after treatment. Six days later these had declined to about 0.8 mg/kg.  相似文献   

17.
建立一种超高效液相色谱-串联质谱同时检测大米中甲氨基阿维菌素苯甲酸盐等15种常用农药残留的方法,考察了基质效应、提取溶剂种类、提取方法以及不同净化方法对15种农药回收率的影响。样品经V (乙腈) : V (丙酮) : V (水) = 16 : 2 : 2混合溶液匀浆提取,分散固相萃取法净化,电喷雾正离子 (ESI+) 模式电离,多反应监测 (MRM) 模式检测,外标法定量。结果表明:在0.005~1 mg/L范围内,甲氨基阿维菌素苯甲酸盐等15种农药的质量浓度与对应的峰面积间线性关系良好,相关系数 (r) ≥ 0.99;在0.01、0.1、1和4 mg/kg 4个添加水平下,15种农药在大米中的平均回收率在82%~116%之间,相对标准偏差在1.2%~12%之间 (n = 5)。方法检出限为0.000 5~0.005 mg/kg,定量限为0.01 mg/kg。用该方法对上海市郊20个批次的大米样品进行测定,均未检出农药残留超标。该方法操作简单、快速、准确,适用于大米中甲氨基阿维菌素苯甲酸盐等15种常用农药残留的同时检测。  相似文献   

18.

Developing effective management strategies that restore degraded soils requires an evaluation of the quality of the litter residues. This study relates the chemical composition of the biomass components to the decomposition rates for Piliostigma reticulatum (DC.) Hochst., a native shrub, under field and laboratory conditions. The rates were determined by mass loss. The changes in the specific surface area of the residue in relation to mass loss ranged from 15 X 10 -5 to 45 X 10 -5 which was similar to crop residues in other studies. At field conditions, P. reticulatum mass loss was higher (80% of the initial mass lost over eight months) than that under controlled conditions (50%). Such fast decomposition of residues offers the potential for farmers to stop burning these residues because high amounts of residues will not likely accumulate and cause interference with tillage and planting operations. Further studies are needed on the role of soil fauna on decomposition, mineralization of nutrients from these residues, and the potential for incorporating residues into the system without burning.  相似文献   

19.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

20.
Freshly harvested seeds of Poa annua L. collected in south Louisiana were stored in moist soil at seven temperatures between 5°C and 35°C. At monthly intervals, seed lots were removed and germinated at each of the seven temperatures. Seed were dormant for at least 1 month at all test temperatures. Seeds stored for 2 months at 30 and 35°C showed conditional dormancy; there was 100% germination at 10 or 15°C, and poorer germination at 5 or 20°C. Seeds started to lose viability after 2 months at 35°C and were dead after 7 months. In seeds stored at 10–30°C, there were increased percentages and a wider range of germination temperatures as storage time or storage temperatures increased. Seeds stored at 10°C remained dormant for 9 months, but by 12 months of storage the seeds germinated only at 5 or 10°C. Nearly all seeds stored at the same temperatures in air dry soil remained dormant for 6 months, regardless of storage temperature. These results differ from other reports of low temperatures breaking seed dormancy in Poa annua L. and suggest an adaptation to subtropical climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号