首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 We studied the long-term effects (12 years) of municipal refuse compost addition on the total organic carbon (TOC), the amount and activity of the microbial biomass (soil microbial biomass C, BC and metabolic quotient qCO2) and heavy metal bioavaiability in soils as compared to manuring with mineral fertilizers (NPK) and farmyard manure (FYM). In addition, we studied the relationships between among the available fraction [Diethylenetriaminopentacetic acid (DTPA) extractable] of heavy metals and their total content, TOC and BC. After 12 years of repeated treatments, the TOC and BC of control and mineral fertilized plots did not differ. Soils treated with FYM and composts showed a significant increase in TOC and BC in response to the increasing amounts of organic C added. Values of the BC/TOC ratio ranged from 1.4 to 2, without any significative differences among soil treatments. The qCO2 increased in the organic-amended soil and may have indicated microbial stress. The total amounts of metals in treated soils were lower than the levels permitted by the European Union in agricultural soils. DTPA-extractable metals increased in amended soils in response to organic C. A multiple regression analysis with stepwise selection of variables was carried out in order to discriminate between the influence exerted on DTPA-extractable metals by their total content, TOC and BC. Results showed that each metal behaved quite differently, suggesting that different mechanisms might be involved in metal bioavailability Received: 31 October 1997  相似文献   

2.
昆山市农业土壤基本性质与重金属含量及二者的关系   总被引:14,自引:2,他引:12  
陈凤  濮励杰 《土壤》2007,39(2):291-296
研究了昆山市农业土壤基本性质和土壤中的重金属含量,并对二者的相关关系进行了分析。结果表明:昆山市农业土壤基本全为壤土,土壤pH值平均为6.50,土壤有机质平均含量为30.53g/kg,土壤CEC平均值为17.51cmol/kg,且各区之间变幅不大;昆山市主要污染重金属Cd、Pb和Hg全量大小排序基本为黄泥土>青泥土>青紫土>乌栅土;土壤重金属含量和土壤理化性质间的关系复杂,如全量As与pH值、有机质含量和全N含量呈极显著负相关,而全量Hg与土壤中有机质含量、全N含量、碱解N含量、CEC呈极显著正相关。  相似文献   

3.
Soil C balances were calculated in a field experiment started in 1956. Treatments include a fallow and soils receiving different N fertilizers or organic amendments. By assuming the absence of a priming effect, the degree of mineralization of crop residues and organic amendments was calculated. Crop residue mineralization was not affected by a more than 50% decrease in the size of the microbial biomass in soil fertilized with (NH4)2SO4, which had caused the pH of this soil to drop from 6.6 to 4.4. More C had accumulated per unit C input in peat-and sewage sludge-amended soils than in any of the other soils, suggesting that peat and sewage sludge were more resistant to microbial attack. Recalcitrance of substrate C was an adequate explanation for the low ratio of biomass C to soil C in the peat-amended soils, but not in the sewage sludge-amended soil. There was a close linear relationship (r=0.94) between the content of microbial biomass C in the soil measured in 1990 and cumulative C losses from the soil since 1956. Compared to the relationship between soil biomass C and soil organic C concentrations, the linear relationship between microbial C and cumulative C losses suggested that the significantly reduced biomass in the sewage sludge-amended soil was at least partially due to the presence of toxic substances (presumably elevated heavy metal concentrations) in this soil and was probably not affected by the somewhat low pH (5.3) in this soil.  相似文献   

4.
The size of the microbial biomass and dehydrogenase activity were measured in air-dried and rewetted apple orchard surface soils with accumulation of Cu, Pb, and As due to the application of Bordeaux mixtures and lead arsenate. The largest amounts of total Cu, Pb, and As found in the soils used were 1,108, 1,271, and 209 mg kg-1 soil, respectively. The amounts of 0.1 M HCl-extractable heavy metals were strongly correlated with the total amounts, while those of 0.1 M CaCl2-extractable heavy metals, except for As, increased significantly with decreasing soil pH. The amounts of microbial biomass C and N, expressed on a soil organic C and total N basis, respectively, were each negatively correlated with the amounts of total and 0.1 M HCl-extractable Cu. On the other hand, the dehydrogenase activity was not affected by the amounts of total and 0.1 M HCl-extractable heavy metals, and was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu and positively with the soil pH. Higher significant correlations were observed when the dehydrogenase activity was calculated per unit of soil organic C. Thus the microbial biomass was adversely affected by the slightly soluble fractions of Cu accumulated in apple orchard soils, whereas the dehydrogenase activity was affected by the water-soluble and exchangeable Cu of which amount depended on the soil pH. It is suggested that the microbial biomass and dehydrogenase activity expressed on a soil organic matter basis could become useful indicators for assessing the effects of heavy metals on the size and activity of the microbial biomass in soils differing in organic matter contents.  相似文献   

5.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

6.
The influence of a humic deposit (Gyttja, G) alone (applied at 25 kg ha−1) and in combination with mineral fertilizer (G + NP) on soil organic matter content, pH, electrical conductivity, total N content, calcium carbonate content, enzyme activities (urease, β-glucosidase, arylsulphatase, and alkaline phosphatase), microbial biomass C, soil respiration, and availability of Cd, Pb, Ni, and Zn was examined through a 180-day incubation period and compared with the behavior of no treatment (control) and NP treatment. A significant increase in organic matter content was observed in soils treated with G + NP. Compared with G and NP alone, the G + NP-amended soils showed higher values of the selected microbiological properties.Diethylenetriaminepentaacetic-acid-extractable Cd, Pb, Ni, Cu, and Zn increased significantly with increasing rates of NP, but the addition of G + NP resulted in a considerable decrease in the amount of extractable metals during the incubation period (P<0.05). Based on these results, it can be concluded that the organic matter applied in the gyttja led to an increase in the metal adsorption capacity of the amended soils. This material can be used to reduce the availability and mobility of heavy metals in the soils intensively amended with mineral fertilizers. A combination of G with NP can, therefore, be considered as an alternative approach in the applications of organomineral fertilization.  相似文献   

7.
The influences of lignin application on soil properties of three different soils, Jiangxi soil (Ultisol, Hapludult), Heilongjiang soil (Alfisol, Entioboralf) and Beijing soil (Alfisol, Haplustalf), and metal accumulation in wheat (Triticum aestivum L.) were studied in a pot experiment. By lignin amendment, soil pH, organic matter (OM) and cation exchange capacity (CEC) increased, except for CEC in the Beijing soil. Analysis showed that available P and K in lignin-amended soils were also elevated, except for P in the Jiangxi soil. A three-step sequential extraction procedure proposed by the Standards, Measurements and Testing Programme (formerly BCR) of the European Commission was used to investigate the fraction redistribution of heavy metals in soils with lignin application. The fractions were specified as B1: water soluble, exchangeable and carbonate bound, and weakly adsorbed; B2: Fe-Mn oxide bound; and B3: organic matter and sulfide bound. Generally, the heavy metal content of the B2 fraction decreased whereas that of the B3 fraction increased. Lignin application to arable soils can not only improve plant growth in vitro, but also reduce the accumulation of the heavy metals Cu, Zn, Cd, Pb, Cr and Ni in wheat plants.  相似文献   

8.
The use of annually sown pastures to provide winter forage is common in dairy farming in many regions of the world. Loss of organic matter and soil structural stability due to annual tillage under this management may be contributing to soil degradation. The comparative effects of annual ryegrass pastures (conventionally tilled and resown each year), permanent kikuyu pastures and undisturbed native vegetation on soil organic matter content, microbial size and activity, and aggregate stability were investigated on commercial dairy farms in the Tsitsikamma region of the Eastern Cape, South Africa. In comparison with soils under sparse, native grassy vegetation, those under both annual ryegrass and permanent kikuyu pasture had higher soil organic matter content on the very sandy soils of the eastern end of the region. By contrast, in the higher rainfall, western side, where the native vegetation was coastal forest, there was a loss of organic matter under both types of pasture. Nonetheless, soil organic C, K2SO4-extractable C, microbial biomass C, basal respiration, arginine ammonification and fluorescein diacetate hydrolysis rates and aggregate stability were less under annual than permanent pastures at all the sites. These results reflect the degrading effect of annual tillage on soil organic matter and the positive effect of grazed permanent pasture on soil microbial activity and aggregation. Soil organic C, microbial biomass C, K2SO4-extractable C, basal respiration and aggregate stability were significantly correlated with each other. The metabolic quotient and percentage of organic C present as microbial biomass C were generally poorly correlated with other measured properties but negatively correlated with one another. It was concluded that annual pasture involving conventional tillage results in a substantial loss of soil organic matter, soil microbial activity and soil physical condition under dairy pastures and that a system that avoids tillage needs to be developed.  相似文献   

9.
海南省农用地土壤重金属含量与土壤有机质及pH的相关性   总被引:10,自引:2,他引:8  
研究了海南省农用地土壤有机质含量、pH值和土壤中重金属含量,并对其相关关系进行了分析.结果表明:海南省农用地土壤有机质含量总体上处于中等水平,全省有机质平均含量为22.99 g/kg,各地区之间含量差异较大,土壤pH平均值为5.20;5种重金属元素含量的平均值均未超过<国家土壤环境质量标准>(GB156182-1995)二级标准限值.但研究区土壤中Hg、Cd、Cr 3种重金属元素含量的最大值均超过了国家土壤环境质量的二级标准,并分别达到了1.63、0.64、586.70 mg/kg:土壤重金属含量与土壤性质间的关系复杂:有机质含量与Hg、Cd、Cr含量呈极显著正相关,与Pb含量呈显著相关,而pH与Hg、Cr呈负相关,与Cd、Pb呈显著正相关.  相似文献   

10.
Biochemical composition of both intracellular (biomass) and extracellular soil organic matter was determined after extraction with 0.5 M K2SO4. Extractable carbon, hexoses, pentoses, total reducing sugars, ninhydrin-reactive nitrogen (NRN), proteins and DNA content were colorimetrically determined. The objective of the pilot study was to examine the information potential included in newly measured biochemical characteristics, their environmental variance and the relationships with main soil properties. Correlation analysis and PCA showed independence between biochemical parameters and physico-chemical properties of the soil. Thus, the parameters characterising biochemical composition of the soil biomass and extracellular matter seem to bring new information about the soils beyond the physico-chemical parameters. They also seem to reveal a more detailed view on microbial biomass or extracellular organic matter pool than Cbio or Cext alone, respectively. The variance, which occurred in biochemical characteristics, also displayed a high discrimination potential between the defined soil categories. Three types of indices were newly proposed: index I (“substrate quantity index”)—the biomass-specific amount of the extracellular organic compounds, index II (“immobilisation ratio”)—the portion of the organic compound immobilised in microbial biomass, and index III (“substrate quality index”)—the extracellular organic compound content related to extracellular organic carbon. The indices displayed a higher potential than both soil biotic and abiotic parameters to discriminate soil characters and soil types.  相似文献   

11.
Based on a literature review including 201 surface soils from wet, mild, mid-latitude climates and 290 soils from the Lower Saxony soil monitoring programme (Germany), we investigated the relationship between soil clay content and soil organic matter turnover. The relationship was then used to evaluate the clay modifier for microbial decomposition in the organic matter module of the soil-plant-atmosphere model DAISY. A positive relationship was found between soil clay content and soil microbial biomass (SMB) C. Furthermore, a negative relationship was found between soil clay content and metabolic quotient (qCO2) as an indicator of specific microbial activity. Both findings support the hypothesis of a clay dependent capacity of soils to protect microbial biomass. Under the differing conditions of practical agriculture and forestry, no or only very weak relationships were found between soil clay content and non-living soil organic matter C (humus C). It is concluded that the stabilising effect of clay is much stronger for SMB than for humus. This is in contrast to the DAISY clay modifier assuming the same negative relationship between soil clay content, on the one hand, and turnover of SMB and turnover of soil humus on the other. There is a positive relationship between SMB and microbial decomposition activity under steady-state conditions (microbial growth≈microbial death). The original concept of a biomass-independent simulation of organic matter turnover in the DAISY model must therefore be rejected. In addition to the original modifiers of organic matter turnover, a modifier based on the pool size of decomposing organisms is suggested. Priming effects can be simulated by applying this modifier. When using this approach, the original modifiers are related to specific microbial activity. The DAISY clay modifier is a useful approximation of the relationship between the metabolic quotient (qCO2) as an indicator of specific microbial activity and soil clay content.  相似文献   

12.
龙会英  张德  金杰 《土壤》2017,49(5):1049-1052
采用大田试验的方法,在云南省元谋县小雷宰流域内壤土、砂壤土和重壤土3种质地土壤上,以热研5号柱花草为材料,研究土壤质地对柱花草生长发育、生物量及土壤有机质、有机碳、全氮和全磷的影响。试验结果表明:3种土壤质地上种植柱花草,柱花草地上部和地下部生长量和生物量表现幼苗期增加缓慢,而分枝期后增加快的趋势。壤土耕性好,兼有砂土和重壤土的优点,有利柱花草地上部分的生长发育,柱花草地上部生长量、生物量及改善土壤肥力方面显著高于重壤土。砂壤土有利于柱花草根系向深层土壤生长,柱花草地下部生长量、生物量及根瘤显著高于种植在重壤土。在3种土壤质地种植柱花草后,土壤有机质、有机碳、全氮和全磷均有上升趋势。综合而言,通气性和保肥保水能力居中的壤土更适合柱花草的生长发育及干物质的积累。  相似文献   

13.
章明奎 《土壤学报》2006,43(4):584-591
用分散、筛分和悬浮相结合的物理方法,研究了砂质土壤中养分和重金属在不同粒径有机、无机颗粒中的分布。研究表明,砂质土壤中Cd、Co、Cr、Cu、Ni、Pb、Zn和Mn在颗粒状有机质(POM)有明显的富集,富集程度以Cu和Zn最为明显。粒径较小(0.05~1mm)的POM组分中重金属的平均富集高于粒径较大(〉1mm)的POM组分。POM中重金属的富集因土壤重金属污染水平和重金属类型而异,并与土壤重金属的积累呈正相关。分析数据表明,土壤POM中重金属的积累不完全是植物分解残留的结果,土壤POM对重金属有强吸持能力可能是POM中重金属富集的主要原因之一。  相似文献   

14.
Soil samples were taken at 0—10 cm and 10—20 cm depth from 7 clay‐marsh sites used as grassland close to Nordenham in the north of Lower Saxony, Germany. The sites had been contaminated by deposition of heavy metals from industrial exhausts, the level of contamination varying according to their distances from a lead factory. The soils were analyzed to assess the depth‐specific effects of NH4NO3 extractable and total amounts of Zn, Pb, and Cu on basal respiration, adenylates, ergosterol, and biomass C estimated by fumigation extraction (FE) and substrate‐induced respiration (SIR). Most of the chemical and biological properties studied decreased with depth, but depth‐specific differences in the relationships between these properties rarely occurred. The biomass C/soil organic C ratio was at a relatively high level, but most consistently reflected pollution as a decrease with increasing heavy metal load, independently of the method used for biomass C estimation. However, the SIR estimates were on average 44 % lower than those of FE, mainly due to pH effects. The metabolic quotient SIR‐qCO2 increased with increasing NH4NO3 extractable and total heavy metal contents, but also with decreasing pH, whereas the FE‐qCO2 remained unaffected by heavy metals and pH. The ATP/FE‐biomass C ratio was on average 8.2 μmol g—1 and negatively affected by soil pH, but also by total Zn, NH4NO3 extractable Zn and Cu. The ergosterol/FE‐biomass C ratio was on average 0.29 %, i.e. at a very low level, and increased with increasing heavy metal content. This indicates a change in the community structure towards fungi.  相似文献   

15.
土壤可见光-近红外反射光谱与重金属含量之间的相关性   总被引:13,自引:0,他引:13  
解宪丽  孙波  郝红涛 《土壤学报》2007,44(6):982-993
发展基于反射光谱技术的快速、简便、低成本的土壤重金属信息提取方法是区域土壤重金属污染治理所需要的。选择江西贵溪铜冶炼厂污染区,分析了9种重金属元素(Cu、Pb、Zn、Cd、Co、Ni、Fe、Mn及Cr)与土壤可见光-近红外反射光谱之间的相关性及其相关的原因。研究表明,研究区土壤中存在Cu(含量介于66.71~387 mg kg-1之间)和Cd(含量介于0.36~6.019 mg kg-1之间)的强烈富集。土壤重金属含量与反射光谱之间存在显著相关,污染元素Cu的最高相关系数为-0.87,Pb、Zn、Co、Ni、Fe的最高相关系数达到高度相关(|r|>0.80),Cr、Cd、Mn的最高相关系数达到显著相关(|r|>0.70)。微分光谱适于获取土壤中的重金属元素信息,利用组合波段能显著提高相关性。Cu与反射光谱之间的相关性主要受有机质的影响;Pb、Zn、Co、Ni主要受黏土矿物和铁锰氧化物的影响;Cr与反射光谱之间的相关性同时受有机质和黏土矿物的影响。  相似文献   

16.
N mineralization in soils under laboratory incubation conditions The potential rate of release of nitrogen by the organic matter in agriculturally used soils was determined under laboratory conditions by means of incubation. Mineralization of the more resistant soil organic matter proceeded linearly with time during an incubation period of 2–3 weeks, when field-moist and air-dried samples were used and at the beginning of the incubation experiment sufficient water was added to bring them to saturation. Mineralization was taking an exponential course in soils with additions of easily decomposable organic matter or in soils with a higher proportion of organic residues from crops. For the 14 investigated arable and grassland soils great variations in the average daily rate of mineralization were found ranging from 5–60 μg Nmin/10 g DM. The data correlated very well with the biomass (r = 0.96) and the cell-free protease activity (r = 0.98) of the soils. Different measures of soil management (preceding crops, application of sewage sludge, addition of heavy metals) had a more or less pronounced influence on the rate of mineralization. The optimum temperature was 50°C for N mineralization and 26°C for nitrification. Contrary to nitrification, the soil reaction had only little influence on mineralization and proved also independent of the Nmin content of soils. The results indicate that ammonification of organic N compounds may largely proceed via the microbial biomass.  相似文献   

17.
This work has evaluated the effects of thermally dried (TDS) or composted (CDS) dewatered sewage sludge on β-glucosidase activity, total (TCH) and extractable (ECH) carbohydrate content, microbial biomass carbon and basal respiration of soils from limestone quarries under laboratory conditions. Two doses (low and high) of the dewatered sludge (DS) or of the respective TDS or CDS were applied to a clayey and a sandy soil, both coming from working quarries. The soil mixtures and the controls (soils with no added sludge) were incubated for 9 months at 25°C and 30% of field capacity. The addition of sludge increased all the studied soil parameters, and the increase depended on the amount of sludge. Except in the case of TCH and ECH, the enhancing effect decreased with time, but at the end of incubation, parameters of the treated soils were higher than those of the control. The rank order of the initial stimulating effect was soil–TDS ≥ soil–DS ≥ soil–CDS, and probably, this order depended on the proportion of stable organic matter, which was the lowest in the TDS. Values of metabolic quotient (qCO2) were higher at the lower dose, and they did not change during incubation in the CDS-treated soils. Both TCH and ECH were the parameters with the greatest significant sludge and dose effects. Basal respiration, microbial biomass carbon and β-glucosidase activity were the best measured parameters in distinguishing the long-term effects of the three sludge types over the soils.  相似文献   

18.
Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.  相似文献   

19.
The relationships between the concentrations of zinc (Zn), lead (Pb), copper (Cu), nickel (Ni) and chromium (Cr) as measured by X-ray fluorescence analysis (XRF), aqua regia, and HNO3 pressure digestion were studied in soil samples covering a wide range of heavy metal concentrations. The soils were contaminated by sewage sludge, exhaust depositions, river sediments of mining residues, and dump material. The question was addressed whether the source of heavy metals or other soil properties affect the relationship between these three methods. The aqua regia-digestible fraction of the five heavy metals reached on average 64% of the XRF-detectable content. The pressure accelerated HNO3-digestible fraction of the five heavy metals was on average 71% of the XRF-detectable content; the respective phosphorus (P) fraction reached a median of 75%. This suggests that HNO3 pressure digestion can also be used for characterizing the total P content of soils. Aqua regia extraction and HNO3 pressure digestion gave similar values for Zn, Pb, and Cu, which dominate the heavy metal load of most contamination sources. Significantly higher Cr values were obtained by HNO3 pressure digestion than by aqua regia extraction. Additionally, the Cr contents were affected by the source, e.g. sewage sludge had relatively high contents of aqua regia and HNO3 pressure extractable contents in comparison to the XRF values. The element-specific relationships between the three methods were all highly significant. However, the respective multiple linear regression models were in most cases affected by soil organic carbon (C), in some cases by clay or soil pH.  相似文献   

20.
Background values for heavy metals are necessary for the assessment of metal pollution of soils and plants. Samples of cultivated and uncultivated soils, oat grain, and seed heads of orchard grass (Dáctylis glomeráta) were collected from central, southeastern, and southwestern Norway. Total and easily extractable concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were determined in soil samples and total concentrations in plant samples. Element distributions have been correlated with petrology of soil parent material, type of mineral deposit, soil depth, geographic area, and land use. Concentrations of heavy metals are generally within the lower part of the normal global range. The petrology of the soil parent material has the greatest influence on aqua regia extracted metal concentrations among the factors studied. DTPA extracted metals show less dependence on rock types. Presence of alum shale results in particularly high values for Cd in both soil extracts and in oat grain. Soil cultivation seems to influence the relative concentration of metals in the topsoil. The ratios of easily extractable to total concentrations of metals are primarily related to the organic matter content. Metal concentrations in oat grain can best be predicted by concentrations in DTPA extracts and soil pH among the factors studied. Seed heads of orchard grass are less affected by concentrations in the soil and appear therefore to be a poor indicator of heavy metals in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号