首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation was designed to determine the effectsof water hardness and heavy metals concentrations on a freshwaterTubifex tubifex. Very few data concerning the effect of water hardness on the acute toxicity of heavy metals are available on T. tubifex, which has been proposed as a testorganism for ecotoxicological studies. The effect of water hardness on the toxicity of heavy metals is discussed. The acutetoxicity of selected heavy metals to a freshwater T. tubifex Muller was determined in very soft, soft, hard and veryhard (12, 45, 170 and 300 mg CaCO3 L-1 total hardness,respectively) water. Percentage mortality of T. tubifex as influenced by heavy metals was studied in water of variable hardness. Water hardness had a significant effect on heavy metalstoxicity. The concentrations of metals necessary to immobilize 50% of the test animals at 24, 48, 72, 96 hr were significantlydifferent in soft and hard water. The 96 hr EC50 valuesfor T. tubifex were higher in hard and very hard watercompared with soft and very soft water. Median effectiveconcentrations (EC50) and their 95% confidence limits weredetermined for cadmium, cobalt, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc during exposure for 24, 48,72 and 96 hr in four different water hardness. Hardness has a muchsmaller effect upon the acute toxicity of mercury than the otherheavy metals tested. The results indicate that Cu, Cd, Hg and Zninduced autotomy of the caudal region and mucus production. It isconcluded that water hardness parameters should be considered inestablishing appropriate water quality criteria and standards forthe protection of aquatic fauna and flora, and ultimately human health.  相似文献   

2.
In order to estimate acute-to-chronic toxicity ratios (ACRs) relevant to a coldwater stream community, we exposed rainbow trout (Oncorhynchus mykiss) to cadmium (Cd), lead (Pb), and zinc (Zn) in 96-h acute and 60+ day early-life stage (ELS) exposures. We also tested the acute and sublethal responses of a mayfly (Baetis tricaudatus) and a midge (Chironomus dilutus, formerly C. tentans) with Pb. We examine the statistical interpretation of test endpoints and the acute-to-chronic ratio concept. Increasing the number of control replicates by 2 to 3× decreased the minimum detectable differences by almost half. Pb ACR estimates mostly increased with increasing acute resistance of the organisms (rainbow trout ACRs <≈ mayfly < Chironomus). The choice of test endpoint and statistical analysis influenced ACR estimates by up to a factor of four. When calculated using the geometric means of the no- and lowest-observed effect concentrations, ACRs with rainbow trout and Cd were 0.6 and 0.95; Zn about 1.0; and for Pb 3.3 and 11. The comparable Pb ACRs for the mayfly and Chironomus were 5.2 and 51 respectively. Our rainbow trout ACRs with Pb were about 5–20× lower than earlier reports with salmonids. We suggest discounting previous ACR results that used larger and older fish in their acute tests.  相似文献   

3.
This study was conducted to determine acid, Al, Cd, Cu, Fe, Mn, and Zn loads originating from coal mines in the Buckhannon River watershed in central West Virginia, U.S.A, and to predict the impacts of those loads should they enter the river as unneutralized acid mine drainage. Net alkaline loads at the river mouth would decrease from 3341 to 1014 and 7488 to 1463 kg day?1 CaCO3 during the summer and spring sampling periods, respectively, causing pH decrease below the level required for surviveal of warm water fish species in the affected study area and for a viable trout fishery in a 12 km segment of the river. Aluminum could have major impacts through much of the study area. Zinc could impact the existing cold water fishery and may cause deleterious effects to the warm water fishery. It was not possible to draw accurate conclusions about impacts of Fe because of the uncertainties of toxicity data and rates of oxidation. It appears that Cd and Cu would probably not impact the river. Manganese may cause a water treatment problem for the city of Buckhannon.  相似文献   

4.
Nickel (Ni) is an ubiquitous, naturally occurring metalthat is associated with metal mining and other industrialactivities. Despite elevated Ni concentrations reportedfor many industrial receiving waters, Ni receives littleresearch attention addressing factors influencing itstoxicity to freshwater fish. This study examined theinfluence of water hardness, pH, and total suspended solids(TSS) in soft, reconstituted water on Ni toxicity to larvalfathead minnows (Pimephales promelas). Increasingwater hardness from 20 to 140 mg L-1 (as CaCO3) reduced acute Ni toxicity by 5-fold (96-h LC50s 0.45 and 2.27 mg Ni L-1, respectively). Low pH had a slight protective effect against Ni toxicity relative to neutral pH conditions. At pH 5.5, the 96-h LC50 was 0.69 mg Ni L-1, compared to 0.54 mg Ni L-1 at pH 7.0. However,Ni toxicity was significantly reduced at pH 8.5 where the 96-h LC50 was 2.21 mg Ni L-1. These results were explainedon the basis of Ni speciation. Total suspended solids also reduced Ni toxicity (expressed as 96-h LC50s) from 0.35 to 1.12 mg Ni L-1 over a TSS range of 10 to 100 mg L-1.This reduction of toxicity due to TSS is significant becausemine effluents often have a combination of elevated TSS andmetals. The ameliorative effect of TSS was not as significantas high hardness or pH probably because there is a TSS threshold, after which physical irritation to fish gills counteracts any protective effect conferred by TSS. This finding is relevant to choices made in design of mine effluenttreatment systems; i.e., there may be an optimum range ofTSS concentrations that protect aquatic biota againsteffects of metals that remain after treatment.  相似文献   

5.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

6.
Adult white suckers were collected from four lakes in Maine that ranged in pH from 7.0 to 5.4. The gastrointestinal tract and remainder of the carcass of fishes of similar age and size from each lake, and gills from additional fishes of similar size, were analyzed for Al, Cd, Pb, and Zn. Carcasses were also analyzed for Hg. Concentrations of Al, Cd, and Pb were highest in the gastrointestinal tract and lowest in the carcass; Zn concentration was highest in the gill. For carcass, all metals except Al differed significantly among lakes, for gill tissue Cd and Pb differed, and for gastrointestinal tract, only Cd differed among lakes. Where differences were significant, patterns among lakes were similar in each tissue analyzed. Concentrations of Cd, Hg, and Pb were negatively correlated with lake water pH, acid neutralizing capacity (ANC), Ca, and lake:watershed area, and positively correlated with lake water SO4, indicating that concentrations were higher in fish from more acidic lakes. Zinc concentrations in gills were unrelated to lake acidity, and carcass concentrations were higher in the less acidic lakes, which is the opposite of the pattern for the other metals studied. Zinc in gastrointestinal tract did not differ among lakes. Although the lakes we studied were located in undisturbed watersheds and did not receive any point source discharges, fish metal concentrations were comparable to or higher than those reported from waters receiving industrial discharges.  相似文献   

7.
Heavy metals in running water are analysed within the Swedish Surface Water Monitoring Programme at about 80 stations. Data for selected rivers and brooks has been used to assess the effect of soil acidification on the concentrations of metals in waters. In southern Sweden, acidification shows a significant effect on Zn and Cd. In the upper parts of the drainage areas, there is an marked increased leakage of these metals from soils to waters indicated by elevated concentrations of Zn and Cd in brooks and also by high maxima during periods of low pH values. The increased leaching from forest soils also influences the concentrations in rivers in southern Sweden. During periods of high water flow, the pH values of the rivers decreases and the concentrations of Zn and Cd increases. At pH levels of 6.2–6.5 the concentrations of these metals are mostly 2–5 times higher as compared to pH levels of about 7.0. Since high concentrations of Zn and Cd coincides with high water flow, the transport of these metals has most certainly increased several times compared to the pre-industrial period. Hence, the by far most important human impact on the loading of Zn and Cd on the marine areas, surrounding southern Sweden is the increased leakage of these metals due to acidification. In northern Sweden the effects of acidification on Zn and Cd are less evident. In general, the concentrations of these metals are lower and the connection between pH and these metals are much less significant in the rivers. The links between acidification and the concentrations of Pb and Cu in the watercourses are comparatively much weaker. These two metals are more related to the content of organic matter in the waters and a possible effect of acidification is overshadowed by natural transport processes in soils and waters.  相似文献   

8.
Ethylendiamintetraacetic acid (EDTA) is persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd and Ni were added to Vertisol and Alluvial soil at rates of 50, 2 and 5 mg kg-1, respectively. Both natural and metal amended soils were treated with Na2EDTA at rates of 0; 0.2 and 0.5 mg kg-1. After five months of incubation soil samples were extracted with 0.1 N HCl, 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA (0.005 M Diethylenetriaminepentaacetic acid + 0.01 M Calcium cloride + 0.1 M Triethanolamine) and 1 M Mg(NO3)2, the latter of which extracts the exchangeable from of metald (Zn, Cd and Ni).

According to experiment results, Zn, Cd and Ni in all extraction increased with increasing rates of EDTA in the natural and metal amended soils.  相似文献   

9.
The ecological dose (ED50) of Cd on alkaline and acid phosphatase activity and the ATP content of three contrasting forest soils was measured with or without Cu and Zn to assess the additive toxic effects of these two metals. Soils polluted with Cu and/or Zn were treated with increasing Cd concentrations to give the following metal combinations: Cd, Cd+Cu, Cd+Zn and Cd+Cu+Zn. Alkaline and acid phosphatase activities and ATP content of the three soils were analysed 4 h, 7 and 28 days after the metal additions. The ED50 values were obtained by interpolating the enzyme activities or ATP data with a kinetic model and the goodness of fit was satisfactory.Generally, the ED50 values of both acid and alkaline phosphatase activities for Cd were lower (higher toxicity) with than without Cu and Zn and the effect of Cu and Zn was particularly adverse when these two metals were both added to soils. The alkaline phosphatase was more sensitive in the acid and neutral soil whereas the acid phosphatase was more sensitive in the alkaline soil. Both phosphatase activities and the ATP content were more sensitive in the sandy than in the finer textured soils. The ATP content was less sensitive to the additive effects. Increasing toxicity was observed during the incubation.Analysis of 1 M NH4NO3-extractable Cd, Cu and Zn revealed that Cd competed with Zn for the adsorption sites but not with Cu. However, the lower ED50 values for Cd of the two phosphatase activities and of the ATP content in the presence of heavy metal combinations could be not explained by the heavy metal solubility data. It is concluded that the ED50 may be a sensitive tool for assessing additve toxic effects to soil biochemical parameters.  相似文献   

10.
The roles of verapamil (VRP), a calcium channel blocker, on cadmium-induced physiological stress in freshwater teleost Oncorhynchus mykiss were investigated in this study. Forty-eight juvenile rainbow trout were divided randomly into four groups, i.e., control group, VRP group (100 μg/L VRP), Cd group (50 μg/L Cd2+), and VRP?+?Cd group (100 μg/L VRP?+?50 μg/L Cd2+). After 1-week exposure, oxidative stress indices (lipid peroxidation and carbonyl protein) and antioxidant parameters (superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione) were measured in gill and liver of all tested fish. Additionally, the behavioral changes were recorded during the experimental period. Compared with the control, cadmium-induced stress was apparent as reflected by a serious oxidative stress in gill and liver tissues, inhibited branchial antioxidant parameters, and induced hepatic antioxidant responses, as well as abnormal behaviors observed. In the VRP?+?Cd group, the antioxidant defense system of fish returned to the control level, and the fish behavioral abnormalism markedly decreased. The present results suggested that VRP could reduce the cadmium-induced physiological stress in rainbow trout and provided further evidence that Cd2+ uptake through Ca2+ transport pathways in freshwater teleost.  相似文献   

11.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

12.
smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical Soil contamination by metals from anthropogenic activities (e.g., mining and smelting) is a major concern for the environment and human health. Environmental availability of cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), and indium (In) in 27 urban soils located around two former Pb and Zn smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical procedure. Metal partitioning was conducted using a four-step sequential extraction procedure. The results showed that Cd and Zn were mainly in the acid-extractable and reducible forms in the urban soils studied. In contrast, Pb and In were largely in the reducible fraction. However, in some samples, the amount of In extracted in the residual or exchangeable fraction was higher than that in the reducible fraction. Copper was mainly found in the reducible and residual fractions. A pot experiment was conducted in a glasshouse with seven soils (six contaminated and one uncontaminated) and two plant species, ryegrass and lettuce. The results showed transfer of metals from the contaminated soils to the shoots of ryegrass and the edible part of lettuce. The metal bioconcentration factor was in the order of Cd Cu > In > Zn Pb for lettuce leaves, whereas for ryegrass shoots, three orders were found, Cd > Zn > Cu In > Pb, Cd ≥ In > Zn > Cu Pb, and Zn > Cd > Cu > In > Pb, depending on the physico-chemical properties of the soils, such as pH, cation exchange capacity, carbonates, and organic matter. It was established that the metal toxicity was related to the contamination levels and the physico-chemical properties, including pH, organic matter, and in a lesser extent, Ca, Mg, and phosphorus contents, of the soils. However, it was shown that lettuce could grow on soils having high Cd and CaCO3 contents. Cadmium was one of the most available metals while Pb was always the least available in the soils studied.  相似文献   

13.
Controlled-release N fertilizers can affect the availability of heavy metals in the contaminated paddy soil.A soil incubation experiment was conducted to investigate the effects of prilled urea(PU),S-coated urea(SCU),and polymer-coated urea(PCU)on the solubility and availability of heavy metals Cd,Pb,Cu,and Zn in a multimetal-contaminated soil.The results showed that the application of different coated urea significantly affected the solubility and availability of heavy metals.At 5 d of incubation,the application of PU,SCU,and PCU had significantly decreased the concentrations of water-soluble and available Cd,Pb,Cu,and Zn,when compared with the control.At 60 d of incubation,the depletory effects of PU on water-soluble and available heavy metals had reduced,and the initial decrease in the concentrations of water-soluble Cd,Pb,Cu,and Zn caused by SCU had changed to an increase.The concentrations of water-soluble Pb,Cu,and Zn in the SCU-treated soil were higher than those in the control.Application with PCU led to a higher water-soluble Cu than that in the control,while the available Cd,Pb,and Zn were lower than those in the control.The effect of different coated urea was much stronger on the water solubility of the heavy metals than on their availability.The effects of controlled-release urea on the transformation of heavy metals resulted in changes in the concentrations of NH4^+,water-soluble SO4^2-,and soil p H.The results further suggested that PCU could be used in dry farming operations in multimetal-contaminated acid soils.  相似文献   

14.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

15.
Cu、Zn、Pb、Cd对鲫鱼(Carassius auratus)组织DNA毒性的研究   总被引:4,自引:0,他引:4  
用非程序DNA的合成作为毒性评价指标研究了混合重金属对鲫鱼 (carassiusauratus)组织DNA的毒性作用 ,结果表明 ,混合重金属的毒性作用靶标器官是鱼脑和鱼的肝脏 ;混合重金属中的主要毒性成分是Zn、Pb和Cd离子 ,混合重金属对鱼脑组织的毒性大小顺序是Pb>Cd >Zn ,对肝脏DNA的毒性顺序为Pb >Zn >Cd;Cu离子能够降低其它 3种离子的毒性作用 ,降低的机制在于竞争作用 ,导致了其它离子的吸收降低  相似文献   

16.
Background   Aims, and Scope. Reducing heavy metal solubility and bioavailability in contaminated area without removing them from the soil is one of the common practices in decreasing the negative impacts on the environment and improving the soil quality. Therefore, our aim was to study the effect of clay minerals: Na-bentonite, Ca-bentonite, and zeolite applied to a contaminated soil on immobilization of heavy metals, as well as on some soil parameters related with microbial activity. Methods   A soil derived from sewage sludge was incubated with clay minerals of either Na-bentonite, Ca-bentonite, or zeolite for 111 days (d). During the incubation experiment, concentrations of water soluble Zn, Cd, Cu, and Ni were measured after extraction of 2 g air-dry soil with 50 ml of H2O for 2 h. After the water extraction, the soil sediment was extracted with 50 ml of 1 M NH4NO3 for 2 h to estimate the exchangeable amounts of heavy metals. Furthermore, soil microbial respiration, microbial biomass C, Corg mineralization, metabolic quotient (qCO2), and inorganic N were also investigated. Results and Discussion   Water extractable and exchangeable forms of heavy metals were changed by incubation and addition of clay minerals. Incubation of soil without addition of clay minerals (control) increased water extractable Cu by 12, 24 and 3.8% of initial content after 21, 62, and 111 d of incubation, respectively. The water extractable Zn decreased by 9% during 62 d of incubation and it tended to increase by 14% at the end of the incubation, as compared with the initial soil. Water extractable Cd decreased by 71, 66 and 33% of initial content, and Ni decreased by 54, 70, and 58%, after 21, 62, and 111 d of incubation, respectively. During the incubation experiment, the exchangeable form of all tested metals was decreased by incubation. The addition of clay minerals led to a significant decrease in water soluble and exchangeable forms of heavy metals during the incubation experiment, resulting in low metal extractability. The reduction in metal extractability was greater due to the addition of Na-bentonite or Ca-bentonite than that due to the addition of zeolite. During the first 3 weeks after addition of clay minerals, the studied biological parameters were not affected. However, as incubation progressed, the addition of Na- or Ca- bentonite led to a significant increase in soil respiration, microbial biomass C, Corg mineralization, and inorganic N; and a significant decrease in qCO2. This result is explained by sorption of heavy metals on Na-bentonite and Ca-bentonite and strong reduction of their toxicity. Conclusions   Our results clearly show that the addition of clay minerals, especially of Na-bentonite and Ca-bentonite, decreased the extractability of four metals during incubation. The decreased metal extractability was accompanied by an increase of soil respiration, Corg mineralization, microbial biomass C, and inorganic N and a decrease of metabolic quotient (qCO2), showing positive effect of clay mineral addition on soil biological parameters. Recommendations and Outlook   The use of Na-bentonite and Ca-bentonite is promising tool for reduction the extractability and possible toxicity of heavy metals in sewage sludge-contaminated soil. Therefore, the soils polluted with heavy metals may be ameliorated by addition of clay minerals, especially Na-bentonite and Ca-bentonite.  相似文献   

17.
A sequential extraction procedure was used to fractionate Cu, Cd, Pb and Zn in 4 soil profiles into the designated forms of water soluble + exchangeable, organically bound, carbonate and Mn oxides bound. Soil profiles were obtained from the Rural Development District 063, State of Hidalgo, which have been irrigated with wastewater coming out of the basin of Mexico. The total heavy metal contents range as follows: Cu, 8.9 to 86.5 mg kg-1 Cd, 0.86 to 5.07 mg kg-1 Pb, 18.1 to 131.7 mg kg-1 and Zn, 101 to 235.5 mg kg-1. The highest concentrations of total heavy metals were found in the surface layers at all soil profiles. Sequential chemical fractionation indicated that the four metals were predominantly associated with the organic fraction at most soil samples. The contents in all fractions of the four metals showed a decrease with depth which has been explained by the variations in the organic matter and CaCO3 contents in the different layers of soils. These soil properties were also the most important variables in the biological availability of the metals in these soils.  相似文献   

18.
添加物对土壤提取液中铜、镉生物毒性的影响   总被引:14,自引:1,他引:14  
本文着重讨论添加物紫云英、CaCO3、膨润土对土壤提取液中Cu、Cd的降毒效应及其金属形态的影响.测试结果表明,添加CaCO3对降低红壤水溶态Cu、Cd和0.1mol/LHCl可提取态Cu、Cd含量及其毒性具有非凡的功能,并能使红壤中可溶态、交换态Cu、Cd明显向有机态、铁锰氧化物包被态和硫化物Cu、Cd转化.换言之,CaCO3能使红壤中有效态金属向迟效态和无效态金属转化,致使其水、酸浸提液中Cu、Cd毒性被消除.  相似文献   

19.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

20.
The present study is an attempt to assess the heavy metal contamination in the marine environment of the Arabian Gulf of Saudi Arabia. The concentrations of heavy metals in water and the soft tissues of the bivalve species Meretrix meretrix Linnaeus, 1758, from different stations along the Arabian Gulf coastline, were determined during the summer season of 2008. Bioaccumulation of some heavy metals (Cd, Pb, Cu, and Zn) in fresh parts of the clam (M. meretrix) was measured by an atomic absorption spectrophotometer. The average concentrations of heavy metals in the clam tissues were 0.224?C0.908, 0.294?C2.496, 3.528?C8.196, and 12.864?C24.56 mg/kg wet weight for Cd, Pb, Cu, and Zn, respectively. In water, the mean concentration values of these metals were arranged in the following descending order: Pb > Cu > Zn > Cd. The heavy metal concentrations in tissues of M. meretrix were within the acceptable standards set by the US Environmental Protection Agency, the Commission Européenne, and the Food and Drug Administration of the USA. From the human public health point of view, these results seem to show no possibility of acute toxicities of Cd, Cu, Pb, and Zn if the edible clam is consumed. It is recommended that relevant authorities should carry out a continual assessment on the levels of these pollutants in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号