首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woodland expansion is a global phenomenon that, despite receiving substantial attention in recent years, remains poorly understood. Landscape change of this magnitude has several impacts perceived as negative on landscape processes, such as influencing fire regimes, habitat for wildlife, and hydrological processes. In southern Great Plains, Juniperus virginiana has been identified as a major contributor to woodland expansion. Adding to the perplexity of this phenomenon is its evidence on numerous landscape types on several continents, documented under varying climates. Our study aimed to quantify a direct treatment to reduce or slow down woodland expansion in an experimental rangeland in central Oklahoma, United States under three treatments: 1) herbicide, 2) fire with herbicide, and 3) control (no fire, no herbicide) within areas classified as “open grassland” in 1979. Thereafter, we identified these same areas in 2010 with remotely sensed imagery (Light Detection And Ranging) to quantify 1) total encroachment and 2) total encroachment by three size classes: a) small 1 ? 2.5 m, b) intermediate 2.5 ? 4.5 m and c) tall > 4.5 m. Overall, of the total area classified as grassland in 1979 (277.64 ha), 31% had been encroached by 2010. Encroachment was greatest in the control treatments, followed by herbicide-only treatment application and lowest in the fire and herbicide treatment with minor differences in mean plant height (4.11 m ± 0.28). Encroached areas were mostly dominated by tall individuals (45 ± 3.5%), followed by the intermediate-height class (31.53 ± 1.10%) and the least recorded in the smallest-height class (23.46 ± 2.29%), suggesting expansion occurred during the initial phases of treatment application. The costly practice of herbicide application did not provide a feasible solution to control further woodland expansion. However, when using herbicide with fire, woodland expansion was reduced, highlighting the effectiveness of early intervention by fire in reducing encroachment. This further supports landscape-scale studies highlighting the effect of fire to reduce woodland expansion.  相似文献   

2.
Successful implementation of watershed restoration projects involving control of piñon and juniper requires understanding the spatial extent and role presettlement trees (> 140 yr) play in the ecology of Intermountain West landscapes. This study evaluated the extent, abundance, and spatial pattern of presettlement western juniper (Juniperus occidentalis Hook.) in four woodlands located in southeast Oregon and southwest Idaho. The potential for modeling presence/absence of presettlement juniper using site characteristics was tested with logistic regression and the influence presettlement trees had on postsettlement woodland (trees < 140 yr) expansion was evaluated with a Welch’s t-test. Pre- and postsettlement tree densities, tree ages, site characteristics, and understory vegetation were measured along four 14–27 km transects. Presettlement juniper occurred in 16%–67% of stands in the four woodlands and accounted for 1%–10% of the population of trees > 1 m tall. Presettlement trees were generally widely scattered and more common in lower elevation stands with greater surface rock cover and higher insolate exposure. Presettlement trees sparsely occupied productive sites on deeper soils in southwest Idaho, suggesting the area had sustained a different disturbance regime than southeast Oregon. Southwest Idaho might have experienced a high frequency of lower severity fire that afforded survival to widely distributed legacy trees. This supposition is in contrast to most reports of a disturbance regime including either stand replacement or frequent fire of sufficient intensity to preclude survival of trees to maturity. Stands sustaining presettlement trees initiated woodland expansion 24 yr earlier than stands lacking presettlement trees. Presettlement trees may serve as a seed source potentially reducing the longevity of juniper control treatments. For areas with greater abundances and spatial distribution of presettlement trees such as southwest Idaho, management maintaining low intensity fire or cutting treatments at frequencies of less than 50 yr should sustain relatively open stands.  相似文献   

3.
Beef cattle production from rangelands in the Southern Great Plains has decreased in concert with herbaceous forage production declines in response to woody plant encroachment by honey mesquite (Prosopis glandulosa Torr.) over the past 120 yr. Combinations of livestock overstocking and fire suppression are considered to be primary drivers of these changes. This experiment evaluated cow–calf production responses over a 7-yr (1995–2001) period to ranch-scale (1 294–2 130 ha) integrated restoration strategies involving prescribed fire and grazing management. Restoration strategies tested in this year-round grazing ecosystem were 4-pasture, 1-herd rotation with fire (25% of pasture acreage burned each year; 4:1F); an 8-pasture, 1-herd rotation, with fire (8:1F); and a 4-pasture, 1-herd, with fire and aerial application of 0.28 kg · ha?1 clopyralid + 0.28 kg · ha?1 triclopyr herbicide (4:1F / H). Restoration strategies were compared to a continuous grazing strategy with no mesquite treatment. All cattle stocking rates were moderate (7.5–15 ha · animal unit?1 · year?1) and all fires were applied during late winter. Beef cattle (cow–calf) production variables measured included conception rate, weaned calf percentage, weaning weight, weight of calf per exposed cow, weight of calf per hectare, and supplement fed per cow. We observed significant differences in beef production among strategies primarily during the first 2 yr where the continuous grazing strategy exhibited better overall livestock production than the integrated restoration strategies. Differences in livestock production among strategies were minimal over the last 5 yr of the study. These livestock production results suggest livestock and management adapted to restoration strategies after the first 2 yr. Results point to the need to cautiously transition into integrated grazing and fire restoration strategies when cattle and management are changed and intensified from prior historical protocols.  相似文献   

4.
Western juniper (Juniperus occidentalis Hook. var. occidentalis) has been expanding into sagebrush (ArtemisiaL. spp.) steppe over the past 130 yr in Idaho, Oregon, and California. Fuel characteristics and expected fire behavior and effects change as sagebrush steppe transitions into juniper woodlands. Little is currently known about how wildfire influences burn severity and ecosystem response in steppe altered by woodland conversion. In 2007, the Tongue-Crutcher Wildland Fire burned 18890 ha along a successional gradient ranging from sagebrush steppe to mature juniper woodlands, providing a unique opportunity to evaluate the effects of prefire vegetation on burn severity and ecosystem response across spatial scales. Plot-scale burn severity was evaluated with the composite burn index (CBI) in locations where prefire vegetation data were available, and landscape-scale burn severity was estimated via remotely sensed indices (differenced normalized burn ratio [dNBR] and relative differenced normalized burn ratio [RdNBR]). Strong positive relationships exist between CBI and remotely sensed burn severity indices in woodlands, whereas the relationships are weaker in steppe vegetation. Woodlands in late structural development phases, and sagebrush patches near developed woodlands, incurred higher burn severity than steppe and young woodlands. The results support the idea that a threshold exists for when juniper-encroached sagebrush steppe becomes difficult to restore. Implications for fire management in sagebrush/juniper ecosystems are discussed.  相似文献   

5.
Postfire succession in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) ecosystems results in a gradual shift from herbaceous dominance to dominance by shrubs. Determining the quality, quantity, and distribution of carbon (C) in rangelands at all stages of succession provides critical baseline data for improving predictions about how C cycling will change at all stages of succession under altered climate conditions. This study quantified the mass and distribution of above- and belowground (to 1.8-m depth) biomass at four successional stages (2, 6, 20, and 39 yr since fire) in Wyoming to estimate rates of C pool accumulation and to quantify changes in ecosystem carbon to nitrogen (C∶N) ratios of the pools during recovery after fire. We hypothesized that biomass C pools would increase over time after fire and that C∶N ratios would vary more between pools than during succession. Aboveground and live coarse roots (CR) biomass increased to 310 and 17 g C · m?2, but live fine roots (FR) mass was static at about 225 g C · m?2. Fine litter (≤ 1-cm diameter) accounted for about 70% of ecosystem C accumulation rate, suggesting that sagebrush leaves decompose slowly and contribute to a substantial soil organic carbon (SOC) pool that did not change during the 40 yr studied. Total ecosystem C (not including SOC) increased 16 g · m?2 · yr?1 over 39 yr to a maximum of 1 100 g · m?2; the fastest accumulation occurred during the first 20 yr. C∶N ratios ranged from 11 for forb leaves to 110 for large sagebrush wood and from 85 for live CR to 12 for bulk soil and were constant across growth stages. These systems may be resilient to grazing after fire because of vigorous regrowth of persistent bunchgrasses and stable pools of live FR and SOC.  相似文献   

6.
Aristida purpurea (purple threeawn) is a competitive native perennial grass with monoculturistic tendencies and poor palatability. We examined effects of fire, defoliation, and interspecific/intraspecific planting for 1) threeawn responses in the presence of threeawn, Bouteloua gracilis, or Pascopyrum smithii, and 2) B. gracilis and P. smithii response with threeawn. Biomass, aboveground production, tillers, and axillary buds were analyzed following two fire and four clipping treatments applied to three species–pair combinations in a completely randomized factorial design with nine replications. Fire killed 36% of threeawn. Fire reduced surviving threeawn biomass 61% and reduced production 27%. Threeawn production was greatest when neither plant was clipped and least when competing species were moderately clipped, or when both plants were severely clipped. Tiller counts of burned threeawn were similar among clipping treatments, and less than non-clipped or moderately clipped plants not burned. Fire decreased threeawn axillary buds on average by 25%. Moderately clipped plants had greater production than those from other clipping treatments across species. Average threeawn percentage of pot biomass was greater with B. gracilis (46 ± 3% SE) than P. smithii (38 ± 3% SE). Fire reduced threeawn from 60 ± 3% to 23 ± 3% of pot biomass, indicating good potential for rapid reductions in threeawn dominance and restoration of plant diversity with fire.  相似文献   

7.
Mature chaparral vegetation in the San Gabriel Mountains, California, resulting from long fire-return intervals (50–70 yr), has resulted in reduced visibility and availability and quality of forage, all of which are important attributes of mountain sheep (Ovis canadensis) habitat. Concomitantly, vegetation changes have decreased availability and quality of forage. We developed a resource-selection model to determine the effect of fire history on habitat use by mountain sheep, examined the hypotheses that habitat selection was associated with fire occurrence, and determined whether fire occurrence influenced the amount of potential habitat available to mountain sheep. The best model indicated that mountain sheep selected vegetation that had burned within 15 yr and avoided areas that had not burned within that time frame. We then used our model to quantify potential changes in mountain sheep habitat that have occurred over time based on fire conditions. We identified 390 km2 of mountain sheep habitat that existed in 2002 (when only 63 mountain sheep were tallied), 486 km2 in 1980 (when the mountain sheep population was at its highest), and 422 km2 in 2004 (just after a series of large wildfires). We also estimated that 615 km2 of suitable habitat would be available in a hypothetical situation in which the entire study area burned. Our results suggest that restoration of mountain sheep to their historical distribution in chaparral ecosystems will depend upon more frequent fires in areas formerly occupied by those specialized herbivores.  相似文献   

8.
Restoring arid regions degraded by invasive annual grasses to native perennial grasses is a critical conservation goal. Targeting site availability, species availability, and species performance is a key strategy for reducing invasive annual grass cover while simultaneously increasing the abundance of seeded native perennial grasses. However, the potential for establishing successful seedings is still highly variable in rangeland ecosystems, likely because of variable year-to-year weather. In this study, we evaluated the independent and combined inputs of tilling, burning, applying imazapic herbicide, and varying seeding rates on existing species and seeded native perennial grass performance from 2008 to 2012 in a southwestern Idaho rangeland ecosystem. We found that combining tilling, fire, and herbicides produced the lowest annual grass cover. The combination of fire and herbicides yielded the highest seeded species density in the hydrologic year (HY) (October ? September) 2010, especially at higher than minimum recommended seeding rates. Although the independent and combined effects of fire and herbicides directly affected the growth of resident species, they failed to affect seeded species cover except in HY 2010, when weather was favorable for seedling growth. Specifically, low winter temperature variability (few freeze-thaw cycles) followed by high growing season precipitation in HY 2010 yielded 14 × more seeded perennial grasses than any other seeding year, even though total annual precipitation amounts did not greatly vary between 2009 and 2012. Collectively, these findings suggest that tilling, applying prescribed fire, and herbicides before seeding at least 5 × the minimum recommended seeding rate should directly reduce resident annual grass abundance and likely yield high densities of seeded species in annual grass ? dominated ecosystems, but only during years of stable winter conditions followed by wet springs.  相似文献   

9.
Saw palmetto (Serenoa repens [Bartr.] Small) is a shrubby palm common in southeastern US pine flatwoods ecosystems. Demand recently has increased for fruits for the herbal remedies market. Because only wild saw palmettos are harvested, management strategies are needed to promote flowering and fruiting. This study investigated effects of time since growing season (April–July) fires on flowering and fruiting of saw palmetto ramets ≥ 54 cm in height, in 18 pine flatwoods or dry prairie sites (six sites in three locations, burned in 1996, 1995, 1994, 1993, 1992, or before 1991) in central and southwest Florida from 1996 to 1999. We used repeated measures, linear mixed models to test for time since fire effects on proportion of ramets flowering, proportion of ramets fruiting, and fruit yield. Ranges of means among sites over all years of the study for proportion of ramets flowering, proportion of ramets fruiting, and fruit yield were 0 to 0.78, 0 to 0.72, and 0 kg · ha?1 to 2 869 kg · ha?1, respectively. Time since fire strongly influenced flowering; highest probability of flowering occurred 1 yr after burning, followed by an abrupt decrease 2 yr after burning, then a gradual increase from 3 to 5 yr after fires (polynomial regression, P < 0.0001 for fixed effects). Probability of fruiting increased with increasing time since fire (quadratic regression, P < 0.001 for fixed effects), but fruit yields showed no pattern in response to time since fire (P=0.916). The decrease in influence of fire from flowering through fruit maturity presumably was caused by mortality from factors such as caterpillar predation and fungal infection. To promote increased flowering and fruit yields, we recommend that growing season burns be conducted approximately every 5 yr. We suggest, however, that management strategy be modified as necessary to maintain ecosystem diversity and function.  相似文献   

10.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

11.
Changing climate and fuel accumulation are increasing wildfire risks across the western United States. This has led to calls for fire management reform, including the systematic use of prescribed fire. Although use of prescribed fire by private landowners in the southern Great Plains has increased during the past 30 yr, studies have determined that liability concerns are a major reason why many landowners do not use or promote the use of prescribed fire. Generally, perceptions of prescribed fire ? related liability are based on concerns over legal repercussions for escaped fire. This paper reviews the history and current legal liability standards used in the United States for prescribed fire, it examines how perceived and acceptable risk decisions about engagement in prescribed burning and other activities differ, and it presents unanticipated outcomes in two cases of prescribed fire insurance aimed at promoting the use of prescribed fire. We demonstrate that the empirical risk of liability from escaped fires is minimal (< 1%) and that other underlying factors may be leading to landowners’ exaggerated concerns of risk of liability when applying prescribed fire. We conclude that providing liability insurance may not be the most effective approach for increasing the use of prescribed fire by private landowners. Clearly differentiating the risks of applying prescribed fire from those of catastrophic wildfire damages, changing state statutes to reduce legal liability for escaped fire, and expanding landowner membership in prescribed burn associations may be more effective alternatives for attaining this goal. Fear of liability is a major deterrent to the use of prescribed fire; however, an evaluation of the risks from escaped fire does not support perceptions that using prescribed fire as a land management tool is risky. Prescribed burning associations and agencies that support land management improvement have an important role to play in spreading this message.  相似文献   

12.
Despite the importance of vegetative reproduction in annual tiller replacement, little is known about the patterns and timing of tiller recruitment from the bud bank, especially regarding fire return intervals and seasons of fire. We examined aboveground plant density, temporal patterns of tiller production, and belowground bud bank dynamics for Bouteloua gracilis (Willd ex. Kunth) Lag. ex Griffiths), Pascopyrum smithii (Rydb.) A. Löve, and Hesperostipa comata (Trin. & Rupr.) Barkworth following summer, fall, and spring prescribed fires at 2-yr, 3-yr, and 6-yr fire return intervals, and their interactions. Fire treatments were initiated in 2006, and buds were assessed July 2011 through July 2013. Density and number of reproductive B. gracilis tillers increased in 2013 following drought during 2012, unlike H. comata, which decreased reproductive tiller production. Irrespective of fire treatments, B. gracilis produced the most buds (8 ? 10 buds ? tiller? 1) and H. comata produced the least (2 ? 3 buds ? tiller? 1), with P. smithii producing an intermediate amount (6 ? 8 buds ? tiller? 1). Immediate B. gracilis and P. smithii bud mortality did not occur for all season and fire return interval treatments. However, H. comata bud mortality increased immediately following summer and fall prescribed fires. Three-yr fire return intervals increased active buds throughout the 2013 winter and growing season for B. gracilis and P. smithii relative to control plots and 2- and 6-yr fire return intervals. Fire stimulated bud activity of B. gracilis and P. smithii relative to nonburned plots. The aboveground and belowground response of H. comata indicated meristem limitations following fire treatments, illustrating greater vulnerability to fire for that species than B. gracilis and P. smithii.  相似文献   

13.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

14.
Purple threeawn (Aristida purpurea Nutt. varieties) is a native grass capable of increasing on rangelands, forming near monocultures, and creating a stable state. Productive rangelands throughout the Great Plains and Intermountain West have experienced increases in purple threeawn abundance, reducing overall forage quality. Our objectives were to 1) reveal the effects of prescribed fire and nitrogen amendments on purple threeawn abundance and 2) assess nontarget plant response posttreatment. Season of fire (no fire, summer fire, fall fire) and nitrogen addition (0 kg N · ha?1, 46 kg N · ha?1, and 80 kg N · ha?1) were factorially arranged in a completely randomized design and applied to two similar sites in southeastern Montana. We evaluated fire and nitrogen effects on purple threeawn basal cover, relative composition, and current-year biomass one growing season postfire at two sites treated during different years. Spring weather following fire treatments was very different between years and subsequently impacted community response. Initial purple threeawn biomass at both sites was 1 214 ± 46 kg · ha?1 SEc. When postfire growing conditions were wet, current-year biomass of purple threeawn was reduced 90% and 73% with summer and fall fire, respectively. Under dry postfire growing conditions, purple threeawn current-year biomass was reduced 73% and 58% with summer and fall fire, respectively. Nitrogen additions had no effect on purple threeawn current-year biomass at either site. Current-year biomass of C3 perennial grass doubled with nitrogen additions and was not impacted by fire during a wet spring. Nitrogen additions and fire had no effect on C3 perennial grass current-year biomass following a dry spring. Prescribed fire appears to be a highly effective tool for reducing purple threeawn abundance on semiarid rangelands, with limited detrimental impacts to nontarget species.  相似文献   

15.
The role of fire in restoration of sagebrush plant communities remains controversial mainly because of paucity of information from long-term studies. Here, we examine 15-year post-fire responses of big sagebrush (Artemisia tridentata ssp wyomingensis) and broom snakeweed (Gutierrezia sarothrae), the two most abundant native shrubs at the John Day Fossil Beds National Monument, a protected area in north-central Oregon, USA. Fire effects were studied along gradients of topography and community type through time post-burn. Community types were distinguished as brush, plots dominated by big sagebrush and woodland, plots with a significant presence of Western juniper (Juniperus occidentalis) trees. Fire reduced big sagebrush cover in brush plots up to 100% and in woodland plots up to 86%. Broom snakeweed cover declined by 92% and 73% in brush plots and woodland plots, respectively. Big sagebrush did not show signs of recovery 15 years after burning regardless of topography and community type while broom snakeweed populations were clearly rebounding and prospering beyond pre-burn levels. Our results showed that an area initially dominated by big sagebrush (cover of big sagebrush 10-20%, cover of broom snakeweed 2-4%) dramatically shifted to an area dominated by broom snakeweed (cover of big sagebrush < 1%, cover of broom snakeweed 5%) in brush-dominated plots. Our results indicated that brush-dominated plots at lower elevation and southern exposures are the least post-fire resilient. We also observed a declining population of big sagebrush on unburned areas, suggesting the lack of post-fire recovery on burned areas was perhaps a result of low seeding potential by extant populations. Although more years of observation are required, these data indicate that recovery time, the encroachment of opportunistic competing shrubs, and the initial condition of vegetation are essential considerations by land managers when prescribing fire in big sagebrush communities.  相似文献   

16.
Prescribed burning of aboveground biomass in tallgrass prairie is common and may influence dynamics and magnitudes of carbon (C) movement between the surface and atmosphere. Carbon dioxide (CO2) fluxes were measured for 2 yr using conditional sampling systems on two adjacent watersheds in an ungrazed tallgrass prairie near Manhattan, Kansas. One watershed was burned annually (BA) and the other biennially (BB). Leaf and soil CO2 fluxes were measured in the source area. Net ecosystem exchange (NEE) of CO2 reached a maximum daily gain of 26.4 g CO2·m?2·d?1 (flux toward surface is positive) in July 1998 (year when both sites were burned and precipitation was above normal); gains were similar between sites in 1998. The maximum daily NEE loss of CO2 was ?21.8 g CO2·m?2·d?1 from BA in September 1997 (year when only BA was burned and precipitation was below normal). When data were integrated over the two years, both sites were net sources of atmospheric CO2; NEE was ?389 g C·m?2·2 yr?1 on BA and ?195 g C·m?2·2 yr?1 on BB. Burning increased canopy size and photosynthesis, but the greater photosynthesis was offset by corresponding increases in respiration (from canopy and soil). Carbon losses from fire represented 6–10% of annual CO2 emissions (bulk came from soil and canopy respiration). Data suggest that annual burning promotes C loss compared to less-frequently burned tallgrass prairie where prairie is not grazed by ungulates. Greater precipitation in 1998 caused large increases in biomass and a more positive growing season NEE, indicating that C sequestration appears more likely when precipitation is high. Because C inputs (photosynthesis) and losses (canopy and soil respiration) were large, small measurement or modeling errors could confound attempts to determine if the ecosystems are long-term CO2 sources or sinks.  相似文献   

17.
运用状态与过渡模式讨论锡林河流域典型草原的灌丛化   总被引:4,自引:0,他引:4  
运用状态与过渡模式的观点,从植被组成的变化探讨锡林河流域灌丛化草原形成的阈值;从土壤斑块性尺度增强进一步说明草原灌丛化的阈值一旦跨越,这种转变将是难以逆转的,最终会形成以小叶锦鸡儿灌丛斑块占优势的灌丛化草原。草原灌丛化作为草原放牧演替动态的一个重要阶段,它是退化生态系统的自我重建过程,锡林河流域典型草原放牧演替模式是草原灌丛化研究的基本框架。  相似文献   

18.
Empirical data generated from fire scars are a foundation for understanding fire regimes, designing land-management objectives, and addressing long-term land-use and climate-change effects. We derived precise dates of historic fires from fire-scar injuries occurring on trees growing in a relict post oak woodland in northeastern Texas. The fire-event chronology shows the last three centuries were marked with human influence, with an overall trend of decreasing fire occurrence through time. Thirty different fire events occurred between 1690 and 2007, of which 26 occurred prior to 1856. All fires occurred while trees were dormant. From 1690 to 1820, the mean fire interval was 6.7 yr. A 50-yr period without fire occurred in the latter 19th century (1855–1905) and coincided with the establishment of an oak cohort. A second extended period (80 yr) without fire characterized most of the 20th century. We hypothesize that the absence of fire during much of the last century has resulted in increased tree density and canopy closure, the establishment of fire-intolerant vines, shrubs, and trees, and likely the decline of fire-dependent plant species. Information describing long-term changes of fire regimes in oak woodlands in this region could aid in determining fire-management objectives with respect to prescribed fire implementation and community restoration.  相似文献   

19.
Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (α=75 mmol · mol?1), photosynthetic capacity (Amax=3.4 mg CO2 · m?2 · s?1), gross photosynthesis (Pg,max=116 g CO2 · m?2 · d?1), and ecological light-use efficiency (εecol=59 mmol · mol?1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 · m?2 · yr?1), total ecosystem respiration (7 900 g CO2 · m?2 · yr?1), and net CO2 exchange (2 400 g CO2 · m?2 · yr?1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2 · m?2 · yr?1 for intensive grasslands and 933 g CO2 · m?2 · d?1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.  相似文献   

20.
Despite the increasing use of fire in managing oak woodlands, little information exists on quantitative changes to stand structure from prescribed burning. Fire damage and recovery in a mixed deciduous oak woodland were recorded after a prescribed fire on the northern Diablo Range, Santa Clara County, California. Blue oak (Quercus douglasii Hook. & Arn.), valley oak (Q. lobata Nee), and black oak (Q. kelloggii Newb.) trees were monitored for 4 yr to determine the effects of a late spring burn on stand structural characteristics. Fire-caused mortality was low; 4 yr after the low intensity ground fire only four oaks died (1.9%). There were significant differences in mean percent tree crown scorch and mean trunk char height between plots that burned under different fire intensities, but not between tree size classes. Although overall tree damage was low, crown resprouts developed on 80% of the trees and were found as shortly as 2 wk after the fire. Recovery was vigorous; both valley oaks and blue oaks produced crown resprouts on trees with 100% crown scorch. Classification tree analysis identified aspect (mostly southern exposures) and tree size related to the presence of crown resprouting. Crown damage was also an important factor; trees with greater than 40% of their crown scorched resprouted. Fire-induced trunk scars occurred on a small number of trees (9.1%) but was disproportionately higher for black oak compared to blue and valley oak. Stand structural characteristics (species composition, tree density, basal area, and crown closure) were not substantially altered by the event but rather maintained. Prescribed fire might be a viable tool in reducing fuels and maintaining oak woodlands; however, further investigations that include relationships of regeneration with repeated fire are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号