首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previously published method for ochratoxin A was evaluated and proved appropriate for simultaneous determination of aflatoxins, ochratoxin A, sterigmatocystin, and zearalenone, with considerable savings in time and reagent costs. The detection limits were 2, 5, 15, and 55 micrograms/kg, respectively. The recoveries and coefficients of variation obtained with artificially contaminated samples were 91-101% and 0-16% for aflatoxin B1, 98-117% and 0-17% for sterigmatocystin, and 96-107% and 0-17% for zearalenone, respectively. The coefficients of variation for naturally contaminated samples (aflatoxins in rice and ochratoxin A in beans) ranged from 0 to 8%. The method was used to survey 296 samples that included 10 cultivars of dried beans, 8 types of corn products, 3 types of cassava flour, and both polished and parboiled rice between May 1985 and June 1986 in Campinas, Brazil. Only aflatoxin B1 (9 samples, 20-52 micrograms/kg), aflatoxin G1 (4 samples, 18-31 micrograms/kg), and ochratoxin A (5 samples, 32-160 micrograms/kg) were found. The average contamination percentage was 4.7%; beans showed the highest (6.6%) and rice showed the lowest (3.3%) incidence rates. Zearalenone and sterigmatocystin were not detected. Positive samples were confirmed by chemical derivatization, corroborated by development in 3 solvent systems.  相似文献   

2.
A high pressure liquid chromatographic (HPLC) method has been developed for determining ochratoxin A and zearalenone in cereals. The sample is extracted with phosphoric acid and chloroform. The extract is cleaned by washing on a silica gel column with cyclohexane-ethylene dichloride-ethyl ether. After eluting zearalenone with chloroform, ochratoxin A is eluted with chloroform-formic acid. Zearalenone is extracted into alkaline solution, washed with chloroform, the pH is adjusted, and the zearalenone is extracted back into chloroform. Ochratoxin A is purified by chromatography on aqueous sodium biarbonate-Celite. The mycotoxins are determined by using a liquid chromatograph with 2 columns in series packed with Spherisorb ODS 10 micrometer and 5 micrometers, respectively. Ochratoxin A is detected with a speftrophotofluorometer, coupled in series with an ultra-violet detector for estimation of zearalenone. Detection limits are 1-5 micrograms/kg for ochratoxin A and 2 micrograms/kg for zearalenone.  相似文献   

3.
A general method is described for determining 16 mycotoxins in mixed feeds and other food products used in the manufacture of these feedstuffs. The mycotoxins are extracted and cleaned up by extracting with solvents of different pH. Thin layer chromatography is used to separate the toxins; toxins are then quantitated by the limit detection method. The minimum detectable concentration of mycotoxins in various products is: aflatoxin B1 or G1, 4--5 micrograms/kg; ochratoxin A or ethyl ester A 140--145 micrograms/kg; citrinin 600--750 micrograms/kg; zearalenone, 410--500 micrograms/kg; sterigmatocystin, 140--145 micrograms/kg; diacetoxyscirpenol, 2400--2600 micrograms/kg; T-2 toxin, 800--950 micrograms/kg; patulin, 750--800 micrograms/kg; penitrem A 14,000--14,500 micrograms/kg; penicillic acid 3400--3650 micrograms/kg.  相似文献   

4.
A simple cleanup procedure based on pH adjustments was used to obtain extracts of corn foods. The method gave good recoveries of zearalenone determined by thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC). As little as 5 ng zearalenone was detected by TLC, using Fast Violet B Salt as the spray reagent; the lower limit of detection in cornflakes was about 20 microgram/kg. With HPLC on Spherisorb silica (5 micrometer) and detection by fluorescence at an excitation maximum of 310 nm as little as 5 microgram zearalenone/kg cornflakes could be determined. While the TLC method was also applicable to corn chips, cornmeal, popcorn, and frozen corn, an interference was observed in HPLC of the latter 3 products. This interference was separated from zearalenone by adding a second HPLC analytical column (Spherisorb ODS). Gas-liquid chromatography coupled with mass spectrometric single ion monitoring at high resolution, although of limited availability, was shown to be the most sensitive and selective method for determining zearalenone in corn foods. The natural occurrence of zearalenone in a sample of cornflakes (13-20 microgram/kg) was demonstrated by all 3 detection procedures.  相似文献   

5.
The liquid chromatographic (LC) method described, suitable for use with both blood plasma and urine, is applicable for determination of zearalenone and alpha-zearalenol at levels as low as 0.5 ng/mL plasma and 5 ng/mL urine. The sample is incubated overnight with beta-glucuronidase to analyze for both conjugated and unconjugated forms of zearalenone. The next day, the sample is acidified with H3PO4, extracted with chloroform, and evaporated to dryness. The residue is dissolved in toluene and loaded onto a silica gel cartridge which is washed with toluene and eluted with toluene-acetone (88 + 12). The eluate is evaporated, and the residue is dissolved in chloroform, extracted with 0.18M NaOH, neutralized with H3PO4, and re-extracted with chloroform. The chloroform extract is evaporated, dissolved in mobile phase for LC, and injected onto a normal phase column under the following chromatographic conditions: mobile phase of water-saturated dichloromethane containing 2% 1-propanol, and fluorescence detector, excitation wave-length 236 nm, and 418 nm cut-off emission filter. Recoveries of zearalenone and its metabolites from blood plasma and urine are 80-89% in the range 2.0-10 ng standard/mL plasma, and 81-90% in the range 10-30 ng standard/mL urine. This method was used to analyze blood and urine samples from a pig fed zearalenone-contaminated feed (5 mg/kg), corresponding to 80 micrograms/kg body weight. Zearalenone was rapidly metabolized to alpha-zearalenol, which appeared in the blood only 30 min after feeding. Almost all zearalenone and alpha-zearalenol was found conjugated with glucuronic acid in both blood plasma and urine.  相似文献   

6.
An improved visible spectrophotometric method has been developed for cyclopiazonic acid in poultry feed and corn. The method is based on the reaction of cyclopiazonic acid with Ehrlich reagent and detection at 580 nm. Reaction conditions were optimized with respect to reaction and measurement times and acid and Ehrlich reagent concentrations. Calibration curves were linear from 1 to 20 micrograms cyclopiazonic acid in 3 mL Ehrlich reagent, with a lower detection limit of 0.08 mg/kg for 50 g samples of poultry feed and corn. Recoveries from 50 g samples of poultry feed spiked with cyclopiazonic ranging from 0.16 to 1.20 mg/kg averaged 93.8%. Moldy corn and poultry feed samples analyzed by this method contained between 1 and 4 mg/kg cyclopiazonic acid.  相似文献   

7.
A liquid chromatographic method for the determination of ochratoxin A in coffee beans (green and roast), instant coffee, and coffee drink is described. The sample is subjected to extraction with methanol-1% aqueous sodium bicarbonate (1 + 1) and C18 cartridge cleanup. The extract is chromatographed on a Nucleosil 5C18 column with a mobile solvent of acetonitrile-water-0.2M phosphate buffer pH 7.5 (50 + 47 + 3) containing 3 mM cetyltrimethylammonium bromide as an ion-pair reagent. Ochratoxin A is detected with a fluorometer (excitation 365 nm, emission 450 nm). The sensitivity was increased 20-fold by using ion-pair resolution. The detection limits corresponded to 2 micrograms/kg for coffee beans, 5 micrograms/kg for instant coffee, and 0.2 microgram/kg for coffee drink. The recoveries from coffee products were generally better than 80.7% and the relative standard deviations were 3.43-5.93%. The peak coinciding with ochratoxin A can be confirmed by treatment using alcohol (methanol, ethanol, or n-propanol) and H2SO4.  相似文献   

8.
A sensitive gas chromatographic method for the quantitative analysis of zearalenone in blood serum is described. Zearalenone is eluted from blood serum by column chromatography followed by base-acid extraction with dichloromethane as the organic phase. After epicoprostanol (internal standard) is added, the sample is evaporated to dryness, derivatized, and injected onto the gas chromatographic column. A number of silylating agents and reaction conditions were investigated. Derivatizing zearalenone with N-methyl-N-trimethylsilyltrifluoroacetamide in the presence of acetone at room temperature for at least 2 hr gave best results. Sensitivity limit is < 0.5 ng injected, equivalent to 100 ng zearalenone/mL blood serum. A linear standard curve is observed when 0.5-30 ng zearalenone derivative is injected onto the Perkin-Elmer gas chromatograph. For quantitation, a standard curve is prepared by plotting amounts of zearalenone (ng) injected vs. ratios for peak areas of zearalenone and epicoprostanol derivatives. The internal standard procedure improves the precision by minimizing variations in sample injections and detector response. Percent recovery from blood serum is 68-75 in the range of 1.6-8.0 micrograms zearalenone/mL blood.  相似文献   

9.
A method is described for determining ethyl carbamate at low microgram/kg levels in several types of alcoholic beverages by capillary column gas chromatography with Hall electrolytic conductivity detection and confirmation by mass spectrometry. Samples are diluted to obtain a uniform concentration of ethanol (ca 10%) then saturated with NaCl and extracted with methylene chloride. Extracts are evaporated to a small volume and injected in ethyl acetate solution for chromatographic analysis. The method was evaluated by 5 laboratories, 4 employing the Hall detector and one using mass spectrometric detection. Overall between-laboratory mean percent recoveries were: wine, 85.3 +/- 21.0% coefficient of variation (CV) (spiking level 20-45 micrograms/kg); sherry, 83.8 +/- 16.1% CV (spiking level, 81-142 micrograms/kg); whiskey, 79.5 +/- 13.9% CV (spiking level 127-190 micrograms/kg); and brandy, 85.0 +/- 12.5% CV (spiking level 297-446 micrograms/kg). Mass spectrometric results agreed well with the Hall results for all commodities. Detection limits were about 5 micrograms/kg for the Hall detector and about 0.5 microgram/kg for mass spectrometric detection.  相似文献   

10.
A spectrophotometric assay for hydralazine hydrochloride based on the interaction of the drug with 9-chloroacridine has been developed. The interaction shows an absorption maximum at 460 nm and is affected by temperature, heating time, and quantity of acridine reagent used. Color development is maximum when the drug is heated in the presence of a 30-fold molar excess of the acridine in a 50 +/- 1 degree C water bath for 1 hr. The method detects hydralazine hydrochloride in the 10(-5)--10(-6)M range with sensitivity to 0.2 micrograms/mL and 3--4% accuracy. Typical calibration data obtained from linear regression analysis of absorbance at various drug concentrations show r = 0.9997 (n = 6). Hydralazine can be determined in dosage forms that also contain varying quantities of reserpine and hydrochlorothiazide. The 9-chloroacridine method is as sensitive as other spectrophotometric procedures for hydralazine but also more accurate and precise, and involves fewer manipulative steps.  相似文献   

11.
The ion trap detector (ITD), in combination with a capillary gas chromatograph and under chemical ionization conditions, offers sufficient sensitivity to determine carbadox-related residues as the methyl ester derivative of quinoxaline-2-carboxylic acid at 3 micrograms/kg or higher in porcine liver. A tetradeuterated internal standard of QME effectively compensates for losses incurred during sample preparation. The method produced mean levels of 3.3 (+/- 0.5), 5.5 (+/- 0.8), and 10.1 (+/- 0.9) micrograms/kg for liver fortified at 3, 5, and 10 micrograms/kg. When applied to analysis of samples containing incurred residues of 14C-carbadox at the low microgram/kg level, results were comparable to those obtained by reverse isotope dilution analysis.  相似文献   

12.
A collaborative study of a method for the determination of copper, iron, and nickel in edible oils and fats by direct graphite furnace atomic absorption spectrometry was recently conducted by the International Union of Pure and Applied Chemistry. The quantitation limits of the method are 5 micrograms/kg for copper and 10 micrograms/kg for iron and nickel. The method has been adopted official first action as an IUPAC-AOAC method.  相似文献   

13.
A method is reported for the extraction and analysis of zearalenone in chicken fat, heart muscle, and kidney tissue by using high pressure liquid chromatography (HPLC). Zearalenone is extracted with acetonitrile, cleaned up with hexane, and extracted further with ethyl acetate. Zearalenone is determined by HPLC using a reverse phase radial compression separation system, an ultraviolet absorbance detector, and a mobile phase of acetonitrile-water (60 + 40) (v/v). Recoveries of zearalenone added at levels from 50 to 200 ng/g are in the range 82.6-95.1%.  相似文献   

14.
A rapid, sensitive liquid chromatographic (LC) method is described for quantitative determination of zearalenone and alpha- and beta-zearalenol in wheat. The procedure incorporates an internal standard, zearalenone oxime, to facilitate quantitation and automated analysis. A sample, buffered with pH 7.8 phosphate, is extracted with water-ethanol-chloroform (2 + 50 + 75) and cleaned up. The final residue is dissolved in LC mobile phase and injected onto a reverse phase RP-18 column under the following conditions: water-methanol-acetonitrile (5 + 3 + 2) mobile phase; fluorescence (excitation wavelength 236 nm, 418 nm cut-off emission filter) and UV (254 nm, range 0.0025 AU) detectors. The limit of detectability (twice background) is 0.5 ng for zearalenone and alpha-zearalenol standards on the fluorescence detector and 4 ng for beta-zearalenol on the UV detector, which is equivalent to 20 micrograms zearalenone and 20 micrograms alpha-zearalenol/kg, and 160 micrograms beta-zearalenol/kg feed. Standard curves are linear over the range 0-35 ng zearalenone and alpha-zearalenol on the fluorescence detector and 0-50 ng beta-zearalenol on the UV detector. Recoveries of all compounds are 87.5-101% in the range 0.1-3.0 mg/kg (ppm).  相似文献   

15.
Monensin is an effective anticoccidial agent widely used in the poultry industry. Because of concerns over its toxicity, a sensitive, reliable, fast, and simple method for residue detection in poultry tissues is desirable from both a diagnostic and a regulatory view. Many methods of detection are excluded due to this ionophore's complex chemical and biological nature. A common method used for its detection is thin-layer chromatography/bioautography (TLC/B), although this is usually only semiquantitative. A new TLC/B method for monensin detection in poultry tissues was developed and is reported here. Recovery from cardiac muscle, skeletal muscle, and liver and kidney tissues is in the range of 93-97%. A detection limit of 250 micrograms/kg with 99% reliability was achieved with this method. Lower limits (to 10 micrograms/kg) were detectable, but with lower reliability (60%). Quantitative analysis is not possible on samples from fatty tissue.  相似文献   

16.
Analysis of acrylamide,a carcinogen formed in heated foodstuffs   总被引:55,自引:0,他引:55  
Reaction products (adducts) of acrylamide with N termini of hemoglobin (Hb) are regularly observed in persons without known exposure. The average Hb adduct level measured in Swedish adults is preliminarily estimated to correspond to a daily intake approaching 100 microg of acrylamide. Because this uptake rate could be associated with a considerable cancer risk, it was considered important to identify its origin. It was hypothesized that acrylamide was formed at elevated temperatures in cooking, which was indicated in earlier studies of rats fed fried animal feed. This paper reports the analysis of acrylamide formed during heating of different human foodstuffs. Acrylamide levels in foodstuffs were analyzed by an improved gas chromatographic-mass spectrometric (GC-MS) method after bromination of acrylamide and by a new method for measurement of the underivatized acrylamide by liquid chromatography-mass spectrometry (LC-MS), using the MS/MS mode. For both methods the reproducibility, given as coefficient of variation, was approximately 5%, and the recovery close to 100%. For the GC-MS method the achieved detection level of acrylamide was 5 microg/kg and for the LC-MS/MS method, 10 microg/kg. The analytic values obtained with the LC-MS/MS method were 0.99 (0.95-1.04; 95% confidence interval) of the GC-MS values. The LC-MS/MS method is simpler and preferable for most routine analyses. Taken together, the various analytic data should be considered as proof of the identity of acrylamide. Studies with laboratory-heated foods revealed a temperature dependence of acrylamide formation. Moderate levels of acrylamide (5-50 microg/kg) were measured in heated protein-rich foods and higher contents (150-4000 microg/kg) in carbohydrate-rich foods, such as potato, beetroot, and also certain heated commercial potato products and crispbread. Acrylamide could not be detected in unheated control or boiled foods (<5 microg/kg). Consumption habits indicate that the acrylamide levels in the studied heated foods could lead to a daily intake of a few tens of micrograms.  相似文献   

17.
Moniliformin is a mycotoxin produced by Fusarium subglutinans and other Fusarium species. A rapid, liquid chromatographic method for its determination in corn and wheat is described. Samples are extracted in acetonitrile-water (95 + 5); following defatting with n-hexane, an aliquot of the extract is evaporated and cleaned up on small C18 and neutral alumina columns successively. Reverse-phase liquid chromatography (LC) is conducted on a C18 column with 10 or 15% methanol or acetonitrile in aqueous ion-pair reagent as mobile phase, with detection by ultraviolet absorption at 229 and 254 nm. Average recoveries of moniliformin (potassium salt) added to ground corn and wheat at levels of 0.05-1.0 micrograms/g were 80% (n = 20) and 85% (n = 12), respectively, and the limit of detection was ca 0.01-0.18 micrograms/g, depending on LC conditions. Analysis of 24 samples of wheat, 4 samples of rye, and 12 samples of corn showed moniliformin in only 2 corn samples (0.06 and 0.2 micrograms/g). Moniliformin was also detected in a sample of artificially damaged (slashed) corn (0.2 micrograms/g) and selected kernels of corn that were field-inoculated with F. subglutinans and F. moniliforme (50 micrograms/g and 0.5 micrograms/g, respectively). In stability studies, moniliformin (potassium salt, 1 microgram/g) in ground corn and ground wheat heated at 50, 100, and 150 degrees C for 0.5-2 h decomposed moderately, e.g., 55% remained in corn after 0.5 h at 100 degrees C.  相似文献   

18.
A highly specific and sensitive diazotized sulfanilamide reagent is synthesized for determination of tea catechins. The reagent is employed both as spray reagent for selective visualization of tea catechins on two-dimensional paper chromatograms (sensitivity <1 microg of d-(+)-catechin) and for their spectrophotometric quantification in the crude extracts of tea polyphenols isolated from fresh or dried tea shoots. The formation of yellow color (lambda(max) = 425 nm) between catechins and diazotized sulfanilamide was investigated and made the basis of a simple and sensitive spectrophotometric method for estimation of the total and individual catechins in different tea cultivars. At 425 nm, the absorbance was linear (r = 0.999) over the (0.4-8.0 microg/mL) concentration range of d-(+)-catechin.  相似文献   

19.
A high pressure liquid chromatographic (HPLC) method is described to determine zearalenone in animal feeds at levels as low as 0.01 ppm. Samples are extracted with chloroform-ethanol and initially purified using a SEP-PAK silica cartridge, followed by column chromatography using Sephadex LH-20. Separation by normal phase HPLC is followed by fluorescence detection. Recoveries at levels of 1.0-0.01 ppm averaged greater than 90%. Confirmation included HPLC analysis of the sample and a zearalenone standard, using 3 different excitation wavelengths, and comparison of fluorescence responses obtained. The method was successfully applied to the analysis of 1 corn and 3 cornmeal samples. Zearalenone was detected in all 4 samples at levels of 0.379-19.2 ppm.  相似文献   

20.
A one-dimensional thin layer chromatographic method has been developed for determining sterigmatocystin in cheese. Cheese is extracted with acetonitrile-4% KCl (85 + 15). A simplified liquid-liquid partition cleanup is used, and the sample extract is passed through a cupric carbonate column for final purification. Sterigmatocystin is visualized by spraying the plate with aluminum chloride. The fluorescence of the spot is enhanced 10-fold by additional plate spraying with a silicone-ether mixture, enabling sterigmatocystin detection and quantitation at 2 and 5 micrograms/kg, respectively. Average recoveries were 88.3 and 86.4% at the 10 and 25 micrograms/kg levels, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号