首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 309 毫秒
1.
甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立   总被引:3,自引:2,他引:1  
  相似文献   

2.
草莓轻型黄边病毒RT-LAMP检测方法的建立   总被引:5,自引:2,他引:3  
  相似文献   

3.
【目的】建立一种快速、灵敏的检测蜜蜂球囊菌(Ascosphaera apis)的环介导等温扩增(loop-mediated isothermal amplification,LAMP)方法,为监测和防治蜜蜂白垩病提供技术支撑。【方法】根据蜜蜂球囊菌特异性序列ITS区,用在线引物设计软件PrimerExplorer V4.0设计并合成4条特异性引物A.apis-F3 (5′-ACATTGCGCCCTCTGGTA-3′)、A.apis-B3 (5′-TGGTTAGACCGGACAGTCG-3′)、A.apis-FIP (5′-TAAGACGGGACGATCGCCC AACCTGTCCGAGCGTCATTG-3′)和 A.apis-BIP (5′-GAAAGGCAGTGACGGCGTCGGGCCACTAGAGCGAAAGAC-3′),进行LAMP扩增试验,分别设置Mg2+终浓度为0、2、4、6、8、10、12、14 mmol·L-1, dNPTs终浓度为0、0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mmol·L-1, 内引物FIB/BIF终浓度为0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mmol?L-1,甜菜碱终浓度分别为0、0.2、0.4、0.6、0.8、1.0、1.2 mol·L-1,反应温度为58、60、63、65℃,反应时间分别为30、40、50、60 min,并利用实时浊度仪测定浊度值和扩增产物进行琼脂糖凝胶电泳来检测LAMP反应的结果,确定优化的LAMP检测体系。以东方蜜蜂微孢子虫(Nosema ceranae)、蜜蜂微孢子虫(Nosema apis)、蜜蜂残翅病毒(Deformed wing virus,DWV)、蜜蜂囊状幼虫病毒(Sacbrood virus,SBV)、黑蜂王台病毒(Black queen cell virus,BQCV)和以色列急性麻痹病毒(Israel acute paralysis virus,IAPV)基因组为模板进行特异性验证。并用PvuⅠ酶切验证产物,最终确定LAMP反应体系的准确性;进而通过将蜜蜂球囊菌基因组DNA进行10倍梯度稀释,分别获得DNA浓度0.2231、0.2231×10-1、0.2231×10-2、0.2231×10-3、0.2231×10-4、02231×10-5、0.2231×10-6、0.2231×10-7、0.2231×10-8 μg·μL-1作为模板,比较LAMP和普通PCR检测灵敏度,并检测验证该技术在临床应用上的可行性。【结果】建立了一种特异检测蜜蜂球囊菌的方法,反应条件优化后的检测体系为4 mmol·L-1 Mg2+、1.2 mmol·L-1 dNTPs、1.6 mmol·L-1 FIP/BIP、0.4 mol·L-1甜菜碱,并在63℃反应60 min可完成检测。选用蜜蜂球囊菌、东方蜜蜂微孢子虫、蜜蜂微孢子虫、蜜蜂残翅病毒、蜜蜂囊状幼虫病毒、黑蜂王台病毒和以色列急性麻痹病毒的基因组作为LAMP反应模板进行特异性检测,结果显示仅有蜜蜂球囊菌有扩增曲线和梯状条带,建立的LAMP检测体系有很好的特异性。将蜜蜂球囊菌基因组DNA浓度0.2231、0.2231×10-1、0.2231×10-2、0.2231×10-3、0.2231×10-4、0.2231×10-5 μg·μL-1作为模板进行PCR反应后,检测结果为阳性,随DNA浓度降低,电泳检测不能观察到PCR的扩增产物。进行LAMP反应时,浊度曲线和电泳条带显示可检测DNA浓度为0.2231×10-6 μg·μL-1。LAMP每反应检出量比PCR高10倍,并且方法简单、节省时间。【结论】成功建立了准确、快速、低成本的LAMP检测蜜蜂球囊菌技术,为相关研究和应用提供了技术支持。  相似文献   

4.
5.
植物青枯菌LAMP检测方法的建立   总被引:5,自引:0,他引:5  
黄雯  徐进  张昊  许景升  丁伟  冯洁 《中国农业科学》2016,49(11):2093-2102
【目的】由茄科雷尔氏菌(Ralstonia solanacearum,简称青枯菌)引起的青枯病(bacterial wilt of plants)是世界范围内危害最为严重的土传细菌病害之一,严重制约了多种经济作物的生产。建立高效、精准的早期诊断技术,是实现青枯病有效防控的基础。论文旨在建立一种能够特异检测青枯菌的环介导等温扩增方法(loop-mediated isothermal amplification, LAMP),实现青枯菌的田间快速检测。【方法】通过比对分析青枯菌的lpxC基因序列,并利用在线引物设计软件Primer Explorer Version 4.0得到4条LAMP特异性引物,F3(5′- CCTGTACGTGGTCGGCTAT-3′)、B3(5′-ACCGCAACACGGGATCA-3′)、FIP(5′-TACGCCGTTTCATCGGCCAGGTACACGGCGCACAAGT -3′)、BIP(5′-ATCGTCACGTTCGACAAGGTGGAATGCCGGCTGCAACTG-3′)。通过单因素变化试验对LAMP反应体系中的各参数进行优化,设置反应温度为60、61、62、63、64、65℃,设置镁离子浓度为2、4、6、8、10、12 mmol·L-1,设置内外引物浓度比为2﹕1、4﹕1、6﹕1、8﹕1、10﹕1、12﹕1,确定最优反应体系。以分离自不同寄主的24个青枯菌株为参试对象,5个非青枯菌株(Ralstonia mannitolilyticaRalstonia pickettiiEnterobacter sp.、Acidovorax citrulliBurkhoderia cepacia)为对照,验证LAMP检测方法的特异性。将青枯菌GMI1000菌株的基因组DNA进行10倍梯度系列稀释,以原液和101、102、103、104、105、106、107倍的稀释液为模板同步进行LAMP和普通PCR检测,比较两者的检测灵敏度。将马铃薯青枯病菌株Po41、姜青枯病菌株Z-Aq-1分别与马铃薯块茎和生姜根茎组织悬浮液混合,以LAMP检测方法对混合物进行检测,并以同样方法对表现典型萎蔫症状的人工接种番茄植株和健康植株以及田间马铃薯罹病块茎样品进行检测。反应结果直接通过观察产生的白色焦磷酸镁沉淀情况进行判定,或通过加入1 μL SYBR GreenⅠ荧光染料进行观察,阳性样品为绿色,阴性样品为橙色。【结果】建立了特异性检测青枯菌的LAMP方法,优化后确立了检测体系中FIP/BIP与F3/B3的浓度比为8﹕1(1.6﹕0.2 μmol·L-1),镁离子浓度为6 mmol·L-1,反应温度为63℃。特异性检测结果显示,仅参试青枯菌反应管中的反应液呈现绿色,表明建立的检测体系具有高度特异性。以青枯菌GMI1000菌株的DNA原液及不同梯度的稀释液为模板进行的LAMP和普通PCR检测结果显示,LAMP的检测灵敏度为1.42 pg,比普通PCR高10倍。能够快速准确地从植物组织悬浮液、罹病番茄植物组织及田间罹病样品中检测到青枯菌。【结论】建立的青枯菌LAMP检测方法,高效特异,操作简单,无需复杂仪器,肉眼可直接观察检测结果,适合基层和现场检测。  相似文献   

6.
8种猪呼吸道和繁殖障碍病病原体GeXP检测方法的建立   总被引:4,自引:0,他引:4  
【目的】建立了一种同时鉴别H1、H3亚型猪流感、猪繁殖与呼吸障碍综合征、猪瘟、猪日本乙型脑炎、猪圆环病毒病、猪细小病毒病和猪伪狂犬病8种病毒性呼吸道和繁殖障碍病病原体的GeXP 高通量检测方法。【方法】根据这8种病原体的基因保守序列,设计并合成了9对特异性引物, 在每对特异性引物的5′端均加上一段通用引物,形成特异性嵌合引物。运用GeXP单重PCR方法,以单一病毒cDNA/DNA为模板验证引物的可行性;建立GeXP多重PCR方法,以单一病毒cDNA/DNA模板、阳性cDNA/DNA混合模板验证GeXP多重检测体系的特异性和准确性;将含猪圆环病毒、猪细小病毒和猪伪狂犬病病毒靶基因的克隆质粒及体外转录的RNA(H1、H3亚型猪流感、猪繁殖与呼吸障碍综合征、猪瘟、猪日本乙型脑炎)分别梯度稀释为103,102,101拷贝/µL,运用GeXP多重PCR方法进行单一病原体灵敏度分析;根据单一病原体的灵敏度分析结果,优化各对特异性嵌合引物的工作浓度,将含有体外转录好的6种RNA模板和3种克隆质粒等量混合,将混合物梯度稀释为104,103,102,101拷贝/µL,运用GeXP多重PCR方法分析同时检测8种病原体的灵敏度。运用建立好的GeXP多重检测体系对23份临床样品进行检测,并与常规单重PCR进行比较,对该GeXP多重检测体系的临床应用进行评价。【结果】基于GeXP系统的单重PCR检测体系和GeXP多重PCR检测体系均能扩增出特异性片段,验证了引物的可行性、GeXP多重检测体系的特异性和准确性;GeXP多重检测体系的单一病原模板灵敏度分析结果显示,多重检测体系对单一病原体检测的下限均为101拷贝/µL;GeXP多重检测体系在8种病原体同时检测的灵敏度分析结果显示,多重检测体系可在103拷贝/µL水平可同时检测到8种病原体;比较GeXP多重PCR检测方法和常规PCR方法对临床样品的检测结果,两种检测方法的检测结果相符。【结论】成功建立了基于GeXP系统的多重PCR检测体系,可以同时检测8种猪呼吸道和繁殖障碍性疾病病原体;本研究建立的同时鉴别8种猪呼吸道和繁殖障碍性疾病病原体的GeXP检测方法具有高通量、特异性强和灵敏度高的特点,为猪病毒性呼吸道和繁殖障碍性疾病的分子诊断提供了新型的检测方法。  相似文献   

7.
【目的】建立鸭源新城疫病毒逆转录环介导等温核酸扩增(RT-LAMP)快速检测方法,为鸭源新城疫病毒的快速诊断提供支持。【方法】选取鸭源新城疫病毒NP基因的相对保守区序列,利用Primer Explorer V4在线软件设计了3对RT-LAMP引物,以鸭源新城疫病毒SDFCH株RNA为模板进行RT-LAMP反应,通过对反应温度、时间及反应体系各组分浓度的筛选,优化反应体系和反应条件,然后对该方法的灵敏性和特异性进行检测(以RT-PCR方法为对照),并将其应用于临床病料检测。【结果】优化的RT-LAMP反应体系能够在63℃下1h内实现目标核酸区段的大量扩增,反应结果可直接用肉眼判断;建立的鸭源新城疫病毒RT-LAMP检测方法特异性较强,灵敏度较高,与其他病毒,如H9N2亚型禽流感病毒(AIV)、鸭呼肠孤病毒(DRV)、禽偏肺病毒(aMPV)、传染性支气管炎病毒(IBV)等的核酸无交叉反应,可检测到1×10-3稀释度的目标RNA(0.1pg/μL),较普通RT-PCR的灵敏性高10倍;利用建立的鸭源新城疫病毒RT-LAMP检测方法对24份疑似鸭源新城疫样品的阳性检出率为41.7%。【结论】建立的鸭源新城疫病毒的RT-LAMP检测方法,具有快速、准确、特异性强、灵敏度高的特点。  相似文献   

8.
为建立一种利用逆转录环介导等温核酸扩增(RT-LAMP)快速检测A型塞内卡病毒(SVA)的方法,从SVA细胞培养液中提取总RNA,根据SVA VP1基因序列,设计一套对应目的片段6个区域的4条特异性引物进行核酸扩增,建立RT-LAMP检测方法。利用建立的RT-LAMP检测方法对口蹄疫病毒、猪繁殖与呼吸综合征病毒、猪瘟病毒、猪伪狂犬病病毒与塞内卡病毒进行特异性试验。将SVA VP1质粒10倍梯度稀释液作为模板(1×10~0~1×10~7拷贝)进行RT-LAMP和RT-PCR反应,测试RT-LAMP检测方法的灵敏性。采集疑似发病猪的鼻腔拭子和水疱液共126份样品,应用RT-LAMP和RT-PCR检测,加入SYBR GreenⅠ进行可视化鉴定。结果表明,与传统RT-PCR相比,RT-LAMP检测方法灵敏度高1 000倍,且与其他病毒无交叉反应,具有高度敏感性和特异性。临床样品检测结果显示,鼻腔拭子样本SVA阳性率为29.6%,水疱液样本SVA阳性率为100.0%,2种方法检测结果一致,符合率为100%。综上所述,本研究建立的RT-LAMP检测方法准确、简便、经济有效,尤其适用于现场和基层实验室对SVA的快速诊断。  相似文献   

9.
葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用   总被引:2,自引:0,他引:2  
【目的】葡萄霜霉病是葡萄生产上重要的单年流行病害,研究旨在构建葡萄霜霉病菌(Plasmopara viticola)的实时荧光定量PCR(real-time PCR)检测体系,为葡萄霜霉病的早期诊断和预测预报提供依据。【方法】依据GenBank中葡萄霜霉病菌cox2基因序列设计1对特异性引物(F-cox-Pv/R-Pv),建立并优化常规PCR和real-time PCR反应体系,利用葡萄霜霉病菌、葡萄炭疽病菌(Colletotrichum gloeosporioides)、葡萄白粉病菌(Uncinula necator)、葡萄灰霉病菌(Botrytis cinerea)、葡萄白腐病菌(Coniella diplodiella)、葡萄溃疡病菌(Botryosphaeria dothidea)、白菜黑斑病菌(Alternaria brassicae)、辣椒炭疽病菌(C. capsica)、甘草根腐病菌(Fusarium solani)、西葫芦白粉病菌(Sphaerotheca fuliginea)、番茄菌核病菌(Sclerotinia sclerotiorum)、马铃薯干腐病菌(F. equiseti)、西瓜枯萎病菌(F. oxysporum)、哈茨木霉(Trichoderma harzianum)等14种葡萄及其他作物病原菌和拮抗菌的菌丝DNA进行常规PCR和real-time PCR特异性检测,并对灵敏度和可重复性进行评价。运用已构建的real-time PCR体系对人工接种葡萄霜霉病菌的潜育期叶片内病原菌DNA进行定量检测,利用SPSS 19.0软件分析接种时间与叶片内葡萄霜霉病菌潜伏侵染量的关系。【结果】研究设计的引物特异性高,常规PCR仅对葡萄霜霉病菌DNA有扩增条带,为139 bp;real-time PCR检测结果表明该对引物对葡萄霜霉病菌有唯一的产物吸收峰,对其他供试菌株均未检测到产物吸收峰。常规PCR检测的灵敏度为10 pg·μL -1,real-time PCR的灵敏度可达到0.1 pg·μL -1,是常规PCR检测灵敏度的100倍。以携带目的基因片段的重组质粒为标准品,构建real-time PCR循环阈值(Ct)与模板浓度的线性关系,标准曲线y=42.27-3.36x,相关系数R 2=0.997,扩增效率为98.50%,线性范围达7个数量级,在2.4×10 3—2.4×10 9 copies/μL呈现良好的线性关系。对人工接种葡萄霜霉病菌的潜育期叶片内病原菌DNA进行real-time PCR检测,结果表明叶片内病原菌潜伏侵染量随接种时间的变化呈指数关系增长,y=6.34×10 4·e 0.084 x,相关系数R 2=0.936。该real-time PCR检测体系在接种6 h后就可以检测到葡萄霜霉病菌DNA,检测量为5.68×10 4 copies/μL病原菌DNA。 【结论】构建的葡萄霜霉病菌real-time PCR检测体系的灵敏度远高于常规PCR,且特异性强、重复性好,其Ct值与模板浓度呈较好的线性关系,扩增效率高,可用于定量检测葡萄霜霉病菌的潜伏侵染量。  相似文献   

10.
【目的】针对进境大豆种子上症状相似的菜豆荚斑驳病毒(Bean pod mottle virus,BPMV)和大豆花叶病毒(Soybean mosaic virus,SMV),建立同时快速检测2种病毒的多重RT-PCR技术。【方法】根据GenBank公布的BPMV、SMV外壳蛋白基因序列,设计2对特异性引物,以复合感染BPMV、SMV的大豆种子为材料,提取dsRNA作为模板进行多重RT-PCR的引物浓度、退火温度和循环数的优化。利用优化建立的多重RT-PCR方法分别对健康大豆种子、BPMV、SMV及2种病毒复合感染的大豆种子进行检测,测定该方法的特异性。利用健康大豆种子提取的dsRNA,将从复合侵染BPMV、SMV大豆种子中提取的dsRNA按10倍梯度稀释,依次稀释为原液的10-1、10-2、10-3、10-4、10-5和10-6倍作为模板,分别进行多重RT-PCR和单一RT-PCR扩增,测定灵敏度。多重RT-PCR扩增产物回收纯化后,连接于pMD18-T载体,进行克隆测序和序列比对,进一步验证该方法的可靠性。应用建立的多重RT-PCR方法对来自于美国、阿根廷、中国和巴西的疑似带病大豆种子进行检测,同时以单一RT-PCR检测进行验证。以BPMV、SMV抗体等体积混合液包被PCR管后再加入样品提取液或直接以样品提取液包被PCR管,将免疫捕获、试管捕捉和多重RT-PCR相结合,建立同时检测BPMV、SMV的多重一步IC-RT-PCR、多重一步TC-RT-PCR方法。【结果】多重RT-PCR的优化结果显示,最佳引物浓度为BPMV 0.4μmol·L-1、SMV 0.4 μmol·L-1,最佳退火温度为52℃,最佳循环数为35。特异性测定结果表明,多重RT-PCR能够从复合感染BPMV、SMV的大豆种子上同时扩增到大小约542、221 bp特异性目的条带,从单一感染BPMV的大豆种子上扩增到大小约542 bp特异性目的条带,从单一感染SMV的大豆种子上扩增到大小约221 bp特异性目的条带,而从健康大豆种子材料上未扩增出任何特异性条带。灵敏度测定结果表明,当dsRNA原液稀释至10-3倍时,无论是多重RT-PCR,还是单一RT-PCR均未扩增出特异性目的条带,多重RT-PCR与单一RT-PCR的灵敏度相当,为10-2倍dsRNA原液。多重RT-PCR扩增产物克隆测序和序列比对结果显示,BPMV、SMV所测的序列全长分别为542和221 bp,与预期大小完全相符,且与已报道的各病毒基因序列高度同源,证实了多重RT-PCR结果的可靠性。应用建立的多重RT-PCR方法分别对来自于4个国家的大豆种子样品进行检测,结果从3份美国大豆种子样品检出BPMV,1份美国大豆种子检出SMV,1份阿根廷大豆种子检出SMV,2份中国大豆种子检出SMV,该结果与单一RT-PCR验证结果一致,阳性符合率达100% 。建立的多重一步IC-RT-PCR、多重一步TC-RT-PCR方法能够从复合感染BPMV、SMV的大豆种子中成功扩增出2条特异性目的条带,而从健康大豆种子中未扩增出特异性目的条带。【结论】建立的多重RT-PCR检测方法为进境大豆种子上BPMV、SMV的快速检测提供了参考。  相似文献   

11.
【目的】建立一种适用于H5亚型禽流感病毒(AIV)的逆转录环介导等温扩增(RT-LAMP)可视化快速检测技术,为控制疫情扩散、减少经济损失争取了时间。【方法】根据GenBank中H5亚型AIV血凝素(HA)基因序列,设计一套针对HA基因6个区域的4条特异性引物,在反应之前向反应液中加入荧光试剂(Calcein/MnCl2混合液),然后对反应条件和体系进行优化。【结果】优化的RT-LAMP技术操作简便迅速,常规水浴锅中50 min可完成,能特异性地检测出H5亚型AIV,但对其他HA亚型AIV、禽呼吸道病原体无交叉扩增反应,灵敏度是常规RT-PCR的10倍;反应结束后无需打开反应管盖,即可根据反应液的颜色变化对结果进行判定。【结论】建立的H5亚型AIV RT-LAMP可视化检测技术具有简便、快速、特异等特点,可在设备有限的基层兽医站及养殖场对H5亚型AIV进行快速初步诊断。  相似文献   

12.
番茄褪绿病毒实时荧光定量PCR检测技术的建立   总被引:1,自引:1,他引:0  
  相似文献   

13.
【目的】甜瓜细菌性叶斑病是危害甜瓜的重要种传细菌病害,是由丁香假单胞杆菌流泪病致病变种甜瓜菌株(Pseudomonas syringae pv.lachrymans)引起的。论文旨在建立高效、快捷、操作简单的检测技术以防止此病原菌传播。【方法】以Gen Bank公布的甜瓜细菌性叶斑病菌的甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)基因序列为靶标,设计甜瓜细菌性叶斑病菌特异性锁式探针,建立锁式探针与斑点杂交技术结合的检测体系。以保存的目的菌株为材料,提取DNA作为模板进行锁式探针连接反应、酶切反应和扩增反应,并将锁式探针连接反应、酶切反应和扩增反应的反应温度和反应时间分别进行优化。利用优化的锁式探针连接反应、酶切反应和扩增反应分别对健康的甜瓜种子、带有甜瓜细菌性叶斑病的甜瓜种子、无菌水及25株其他参试菌株进行检测,测定该体系的特异性。将甜瓜细菌性叶斑病菌的DNA按10倍梯度稀释,依次稀释为1 ng·μL~(-1)、100 pg·μL~(-1)、10 pg·μL~(-1)、1 pg·μL~(-1)、100 fg·μL~(-1)、10 fg·μL~(-1)和1 fg·μL~(-1)作为模板,利用优化的锁式探针连接反应、酶切反应和扩增反应,测定灵敏度。将探针与斑点杂交技术结合建立高通量检测体系,将上述反应过程中的扩增产物固定于尼龙膜上,将锁式探针上Zipcode序列的反向互补序列合成c Zipcode(检测探针),检测探针(c Zipcode)用地高辛标记后与产物进行杂交。锁式探针结合斑点杂交技术分别进行特异性检测和灵敏度测定。探针与斑点杂交技术结合建立的高通量检测体系进行人工模拟种子带菌检测,进一步验证该体系的可靠性。利用建立的高通量检测方法对205份市售疑似带病的甜瓜种子进行检测。【结果】锁式探针特异性测定结果表明,26株甜瓜细菌性叶斑病菌均能得到一条105 bp的特异性条带,而剩余25株参试菌株及无菌水均无扩增产物产生。灵敏度测定结果表明,当目的菌株的浓度稀释为1 pg·μL~(-1)时均能检测到一条105 bp的特异性条带,所以探针的检测灵敏度为1 pg·μL~(-1)。探针与斑点杂交技术结合建立的检测甜瓜细菌性叶斑病菌高通量体系能将甜瓜细菌性叶斑病与所有的参试菌种区分开,26株甜瓜细菌性叶斑病菌杂交后出现了显色反应,而25株参试菌株及无菌水均没有发生显色。锁式探针结合斑点杂交的灵敏度检测同样达到1 pg·μL~(-1)。将锁式探针结合斑点杂交进行人工模拟种子带菌检测,能将1粒带菌种子从1 000粒健康的种子检测出来,模拟种子带菌检测率都能达到0.1%(1/1 000)。从205份市售甜瓜种子中成功检测到7份市售种子带菌。将带菌种子分别加入一定量的无菌水浸泡4 h,提取悬液DNA,将悬液DNA进行PCR扩增后测序,NCBI比对后确定为甜瓜细菌性叶斑病菌。【结论】基于锁式探针结合斑点杂交技术的检测体系能够快速、准确地识别甜瓜细菌性叶斑病。  相似文献   

14.
【目的】牛支原体(Mycoplasma bovis)是导致牛多种疾病综合征的病原体之一,在世界范围广泛流行。为了有效监测此病在中国的流行情况,迫切需要敏感、便捷的诊断试剂产品。【方法】通过构建含有牛支原体uvrC基因片段的重组质粒并转化TOP10感受态细胞,获得重组大肠杆菌rP-uvrC。重组大肠杆菌大量表达并提取重组质粒后,获得质粒浓度为10~4拷贝/μL的溶液,作为质控用阳性对照品。根据文献报道的浓度配制甜菜碱溶液和显色液(主成份为SYBR Green I和HNB),分别作为冻干品溶解用溶液和等温扩增产物显色溶液。在已建立的牛支原体环介导等温扩增(loop-mediated isothermal amplification,LAMP)检测技术的基础上配制等温扩增试剂,并通过考察等温扩增反应情况在常用的8种冻干疫苗耐热保护剂中选择对等温扩增反应没有影响的3种冻干保护剂,每种保护剂分别选用3种不同的浓度,共设计27种保护剂组方,通过观察冻干品物理性状选择最佳的一组保护剂配制冻干用等温扩增试剂,放到冻干机中测定共晶点,并优化一次干燥升温时间、干燥时间和二次干燥时间。通过对冻干制品物理性状的检验、真空度的检测以及残余水分含量的测定,筛选出一条适合等温扩增试剂的冻干曲线,并以此制备等温扩增试剂冻干品。取一定量等温扩增试剂冻干品、甜菜碱溶液、阳性对照品溶液和显色液,组装成试剂盒。利用6个浓度梯度(10~0-10~5个拷贝)重组质粒溶液检测试剂盒的敏感性,利用浓度为10~4 CCU·mL~(-1)的PG-45株、HB-1株、SD-2株牛支原体菌液、10~8CCU·mL~(-1)的牛鼻支原体和无乳支原体菌液、10~8CFU·mL~(-1)的多杀性巴氏杆菌和结核分枝杆菌,检测试剂盒的特异性。另外,将等温扩增冻干试剂盒分别置于不同温度下保存,检测其稳定性。【结果】8种冻干保护剂中只有海藻糖、甘露醇和牛血清白蛋白不影响等温扩增反应,在此基础上优选的冻干保护剂配方为5%海藻糖+1.25%甘露醇+1.25%牛血清白蛋白,等温扩增试剂共晶点为-16℃,一次干燥的升温时间3h,一次干燥时间6h,二次干燥时间4 h。组装后的试剂盒最低可检测到10个拷贝数的重组质粒,检验PG45株、HB-1株以及SD-2株牛支原体均为阳性,检验牛鼻支原体、无乳支原体、多杀性巴氏杆菌和结核分枝杆菌均为阴性。试剂盒在20℃保存6个月、37℃保存10 d后,敏感性仍为10个拷贝数,与第0天相同,推测4℃保存有效期为24个月左右。【结论】笔者研制的等温扩增冻干试剂盒敏感性高、特异性好、稳定性好、操作便捷,适合基层兽医现场检测使用。  相似文献   

15.
【目的】利用SYBR GreenⅠ荧光定量技术建立一种相对定量检测坦布苏病毒的方法。【方法】针对坦布苏病毒NS5、E基因分别设计了1对特异性引物,同时设计1对扩增内参基因β-actin引物,将PCR扩增的片段分别连接到pMD18-T载体上构建重组质粒,经筛选、鉴定纯化后,倍比稀释作为质控样品,用于实时荧光定量PCR中NS5、E基因及内参基因β-actin标准曲线的构建,并进行反应的灵敏性、特异性和重复性试验。【结果】结果显示标准曲线线性关系R2值均在0.99 以上, 检测极限约为1.0E+01拷贝数质粒DNA;特异性结果表明只能检测到坦布苏病毒的扩增曲线;批内和批间重复性试验的变异系数均小于0.5%;用已建立的方法对临床样品进行3次重复检测,病毒RNA的检出率为100%。【结论】本研究初步建立了基于坦布苏病毒NS5、E基因的SYBR GreenⅠ荧光定量RT-PCR的方法,为养鸭场诊断和监测坦布苏病毒提供了一种新的特异、灵敏的检测方法。  相似文献   

16.
水稻黑条矮缩病毒RT-LAMP快速检测方法的建立   总被引:4,自引:3,他引:1  
【目的】建立一种快速、灵敏的逆转录环介导等温扩增方法(RT-LAMP)检测寄主植物和传毒介体体内的水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)。【方法】合成4条针对RBSDV S10核苷酸序列6个位点的特异性引物。分别对引物浓度、MgSO4浓度、反应温度和时间进行优化。将感病水稻总RNA梯度稀释后进行灵敏性检验并与RT-PCR比较分析。选择RBSDV和南方水稻黑条矮缩病毒(SRBSDV)验证该方法的特异性。用本RT-LAMP方法检测田间病株。【结果】RT-LAMP检测方法可排除SRBSDV的干扰而特异地检测植物和飞虱体内的RBSDV,与RT-PCR灵敏性基本一致。检测结果易于判定。【结论】RT-LAMP检测方法适合寄主植物和介体体内RBSDV的快速检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号