首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
文静  郭勇  邱丽娟 《中国农业科学》2020,53(20):4127-4136
【目的】建立一种精准、高效的草甘膦抗性基因G2-EPSPSGAT的检测方法,为转基因大豆新品系ZH10-6的广泛应用提供技术支持。【方法】根据抗草甘膦大豆ZH10-6和受体中黄10的分子特征,设计大豆内源参考基因(Actin)、外源基因(G2-EPSPSGAT)以及侧翼序列(G2EPSPS-2/ZH10P2和ZH10P1/GAT-2)的特异性引物,通过PCR扩增测试引物的特异性和适用性。调整引物配比、DNA模板量、dNTP含量、退火温度和延伸温度等,筛选该多重PCR体系的最适扩增条件。将转基因大豆ZH10-6和受体中黄10的基因组DNA按质量比混合,制备成100%、50%、10%、5%、1%、0.5%、0.1%和0的DNA样品,进行灵敏度检测。运用建立的多重PCR体系检测转基因大豆ZH10-6不同地理来源的11份衍生品系,并根据鉴定结果对该体系的应用性进行评价。【结果】建立的多重PCR方法中引物GmActin11 F/R、G2-EPSPS F/R、GAT F/R、ZH10P1/GAT和G2/ZH10P2可分别扩增出转基因大豆ZH10-6大小为126、430、338、810和1 626 bp的特异性目标条带。用该方法扩增受体中黄10时,除了GmActin11 F/R可以扩增出126 bp目标条带,侧翼序列上游引物ZH10P1和下游引物ZH10P2也可以扩增出632 bp目标条带。多重PCR最适扩增体系为DNA模板量100 ng、5 U·μL-1 Ex Taq 0.2 μL、10×ExTaq Buffer 2.5 μL、2.5 mmol·L-1 dNTP 2 μL、10 μmol·L-1引物(GmActin11 F/R 0.4 μL、G2-EPSPS F/R 0.6 μL、GAT F/R 0.4 μL、ZH10P1/GAT 0.6 μL和G2/ZH10P2 0.6 μL),ddH2O补足25 μL。多重PCR扩增最适程序为95℃ 5 min;95℃ 30 s,60℃ 30 s,68℃ 1 min 20 s,35个循环;72℃ 12 min。该多重PCR体系灵敏度为0.5%,符合欧盟有关转基因产品标识的要求。该多重PCR方法特异性很强,可以成功检测受体中黄10、转基因大豆ZH10-6及ZH10-6不同地理来源的11个衍生品系。【结论】建立的转EPSPS/GAT大豆多重PCR检测体系具有高通量、特异性强、操作简便和应用广泛的优点,并且能够快速、准确地检测转基因大豆ZH10-6及其衍生品系。  相似文献   

3.
草莓轻型黄边病毒RT-LAMP检测方法的建立   总被引:5,自引:2,他引:3  
  相似文献   

4.
【目的】建立一种快速、灵敏的检测蜜蜂球囊菌(Ascosphaera apis)的环介导等温扩增(loop-mediated isothermal amplification,LAMP)方法,为监测和防治蜜蜂白垩病提供技术支撑。【方法】根据蜜蜂球囊菌特异性序列ITS区,用在线引物设计软件PrimerExplorer V4.0设计并合成4条特异性引物A.apis-F3 (5′-ACATTGCGCCCTCTGGTA-3′)、A.apis-B3 (5′-TGGTTAGACCGGACAGTCG-3′)、A.apis-FIP (5′-TAAGACGGGACGATCGCCC AACCTGTCCGAGCGTCATTG-3′)和 A.apis-BIP (5′-GAAAGGCAGTGACGGCGTCGGGCCACTAGAGCGAAAGAC-3′),进行LAMP扩增试验,分别设置Mg2+终浓度为0、2、4、6、8、10、12、14 mmol·L-1, dNPTs终浓度为0、0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mmol·L-1, 内引物FIB/BIF终浓度为0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mmol?L-1,甜菜碱终浓度分别为0、0.2、0.4、0.6、0.8、1.0、1.2 mol·L-1,反应温度为58、60、63、65℃,反应时间分别为30、40、50、60 min,并利用实时浊度仪测定浊度值和扩增产物进行琼脂糖凝胶电泳来检测LAMP反应的结果,确定优化的LAMP检测体系。以东方蜜蜂微孢子虫(Nosema ceranae)、蜜蜂微孢子虫(Nosema apis)、蜜蜂残翅病毒(Deformed wing virus,DWV)、蜜蜂囊状幼虫病毒(Sacbrood virus,SBV)、黑蜂王台病毒(Black queen cell virus,BQCV)和以色列急性麻痹病毒(Israel acute paralysis virus,IAPV)基因组为模板进行特异性验证。并用PvuⅠ酶切验证产物,最终确定LAMP反应体系的准确性;进而通过将蜜蜂球囊菌基因组DNA进行10倍梯度稀释,分别获得DNA浓度0.2231、0.2231×10-1、0.2231×10-2、0.2231×10-3、0.2231×10-4、02231×10-5、0.2231×10-6、0.2231×10-7、0.2231×10-8 μg·μL-1作为模板,比较LAMP和普通PCR检测灵敏度,并检测验证该技术在临床应用上的可行性。【结果】建立了一种特异检测蜜蜂球囊菌的方法,反应条件优化后的检测体系为4 mmol·L-1 Mg2+、1.2 mmol·L-1 dNTPs、1.6 mmol·L-1 FIP/BIP、0.4 mol·L-1甜菜碱,并在63℃反应60 min可完成检测。选用蜜蜂球囊菌、东方蜜蜂微孢子虫、蜜蜂微孢子虫、蜜蜂残翅病毒、蜜蜂囊状幼虫病毒、黑蜂王台病毒和以色列急性麻痹病毒的基因组作为LAMP反应模板进行特异性检测,结果显示仅有蜜蜂球囊菌有扩增曲线和梯状条带,建立的LAMP检测体系有很好的特异性。将蜜蜂球囊菌基因组DNA浓度0.2231、0.2231×10-1、0.2231×10-2、0.2231×10-3、0.2231×10-4、0.2231×10-5 μg·μL-1作为模板进行PCR反应后,检测结果为阳性,随DNA浓度降低,电泳检测不能观察到PCR的扩增产物。进行LAMP反应时,浊度曲线和电泳条带显示可检测DNA浓度为0.2231×10-6 μg·μL-1。LAMP每反应检出量比PCR高10倍,并且方法简单、节省时间。【结论】成功建立了准确、快速、低成本的LAMP检测蜜蜂球囊菌技术,为相关研究和应用提供了技术支持。  相似文献   

5.
8种猪呼吸道和繁殖障碍病病原体GeXP检测方法的建立   总被引:4,自引:0,他引:4  
【目的】建立了一种同时鉴别H1、H3亚型猪流感、猪繁殖与呼吸障碍综合征、猪瘟、猪日本乙型脑炎、猪圆环病毒病、猪细小病毒病和猪伪狂犬病8种病毒性呼吸道和繁殖障碍病病原体的GeXP 高通量检测方法。【方法】根据这8种病原体的基因保守序列,设计并合成了9对特异性引物, 在每对特异性引物的5′端均加上一段通用引物,形成特异性嵌合引物。运用GeXP单重PCR方法,以单一病毒cDNA/DNA为模板验证引物的可行性;建立GeXP多重PCR方法,以单一病毒cDNA/DNA模板、阳性cDNA/DNA混合模板验证GeXP多重检测体系的特异性和准确性;将含猪圆环病毒、猪细小病毒和猪伪狂犬病病毒靶基因的克隆质粒及体外转录的RNA(H1、H3亚型猪流感、猪繁殖与呼吸障碍综合征、猪瘟、猪日本乙型脑炎)分别梯度稀释为103,102,101拷贝/µL,运用GeXP多重PCR方法进行单一病原体灵敏度分析;根据单一病原体的灵敏度分析结果,优化各对特异性嵌合引物的工作浓度,将含有体外转录好的6种RNA模板和3种克隆质粒等量混合,将混合物梯度稀释为104,103,102,101拷贝/µL,运用GeXP多重PCR方法分析同时检测8种病原体的灵敏度。运用建立好的GeXP多重检测体系对23份临床样品进行检测,并与常规单重PCR进行比较,对该GeXP多重检测体系的临床应用进行评价。【结果】基于GeXP系统的单重PCR检测体系和GeXP多重PCR检测体系均能扩增出特异性片段,验证了引物的可行性、GeXP多重检测体系的特异性和准确性;GeXP多重检测体系的单一病原模板灵敏度分析结果显示,多重检测体系对单一病原体检测的下限均为101拷贝/µL;GeXP多重检测体系在8种病原体同时检测的灵敏度分析结果显示,多重检测体系可在103拷贝/µL水平可同时检测到8种病原体;比较GeXP多重PCR检测方法和常规PCR方法对临床样品的检测结果,两种检测方法的检测结果相符。【结论】成功建立了基于GeXP系统的多重PCR检测体系,可以同时检测8种猪呼吸道和繁殖障碍性疾病病原体;本研究建立的同时鉴别8种猪呼吸道和繁殖障碍性疾病病原体的GeXP检测方法具有高通量、特异性强和灵敏度高的特点,为猪病毒性呼吸道和繁殖障碍性疾病的分子诊断提供了新型的检测方法。  相似文献   

6.
7.
【目的】建立一种精准、高效的草甘膦抗性基因G2-EPSPS和GAT的检测方法,为转基因大豆新品系ZH10-6的广泛应用提供技术支持。【方法】根据抗草甘膦大豆ZH10-6和受体中黄10的分子特征,设计大豆内源参考基因(Actin)、外源基因(G2-EPSPS和GAT)以及侧翼序列(G2EPSPS-2/ZH10P2和ZH10P1/GAT-2)的特异性引物,通过PCR扩增测试引物的特异性和适用性。调整引物配比、DNA模板量、dNTP含量、退火温度和延伸温度等,筛选该多重PCR体系的最适扩增条件。将转基因大豆ZH10-6和受体中黄10的基因组DNA按质量比混合,制备成100%、50%、10%、5%、1%、0.5%、0.1%和0的DNA样品,进行灵敏度检测。运用建立的多重PCR体系检测转基因大豆ZH10-6不同地理来源的11份衍生品系,并根据鉴定结果对该体系的应用性进行评价。【结果】建立的多重PCR方法中引物GmActin11 F/R、G2-EPSPS F/R、GAT F/R、ZH10P1/GAT和G2/ZH10P2可分别扩增出转基因大豆ZH10-6大小为126、430、338、810和1 626 bp的特异性目标条带。用该方法扩增受体中黄10时,除了GmActin11 F/R可以扩增出126 bp目标条带,侧翼序列上游引物ZH10P1和下游引物ZH10P2也可以扩增出632 bp目标条带。多重PCR最适扩增体系为DNA模板量100 ng、5 U·μL-1 Ex Taq 0.2μL、10×ExTaq Buffer 2.5μL、2.5 mmol·L-1 dNTP 2μL、10μmol·L-1引物(GmActin11 F/R 0.4μL、G2-EPSPS F/R 0.6μL、GAT F/R 0.4μL、ZH10P1/GAT 0.6μL和G2/ZH10P20.6μL),ddH2O补足25μL。多重PCR扩增最适程序为95℃5 min;95℃30 s,60℃30 s,68℃1 min 20 s,35个循环;72℃12 min。该多重PCR体系灵敏度为0.5%,符合欧盟有关转基因产品标识的要求。该多重PCR方法特异性很强,可以成功检测受体中黄10、转基因大豆ZH10-6及ZH10-6不同地理来源的11个衍生品系。【结论】建立的转EPSPS/GAT大豆多重PCR检测体系具有高通量、特异性强、操作简便和应用广泛的优点,并且能够快速、准确地检测转基因大豆ZH10-6及其衍生品系。  相似文献   

8.
为建立快速并能同时检测无乳链球菌、金黄色葡萄球菌、绿脓杆菌3种奶牛隐性乳房炎致病菌的方法,根据无乳链球菌16S rRNA基因、金黄色葡萄球菌NUC耐热基因、绿脓杆菌ETA基因序列并参考文献各合成一对特异性引物,通过对PCR反应各项参数的调整优化,建立多重PCR检测体系,并同时进行灵敏性试验和特异性试验。结果显示:该检测方法可以同时扩增出无乳链球菌270 bp、金黄色葡萄球菌153 bp和绿脓杆菌375 bp的特异性片段以及细菌16S rRNA 1 500 bp的通用片段,而对于其他的6种病原菌只能扩增出1 500 bp的通用片段,具有较强的特异性。三种特异性引物扩增条带与GenBank上的细菌基因序列同源性为99%。增菌培养24 h,该体系对无乳链球菌、金黄色葡萄球菌、绿脓杆菌的最低灵敏度分别为8×104、4×104、1.5×105 CFU·mL-1。本研究建立的检测方法能够完成无乳链球菌、金黄色葡萄球菌、绿脓杆菌的快速检测,对于生产上奶牛隐性乳房炎的鉴别诊断和快速检测具有重大意义。  相似文献   

9.
根据水仙黄条病毒、水仙退化病毒和水仙花叶病毒外壳蛋白(CP)基因的保守区序列设计3对特异性引物,通过优化包括Mg2+浓度、c DNA浓度、Taq DNA聚合酶浓度等在内的反应条件,建立了能同时检测这3种病毒的多重RT-PCR检测体系,并与单一RT-PCR做了比较.应用该体系能成功对3种病毒混合侵染的水仙样品进行多重RT-PCR扩增,获得751、623和483 bp 3条与预期大小相符的特异性条带,且RNA稀释至10-4倍时仍能被检测到.建立的多重RT-PCR检测体系具有良好的特异性和较高的灵敏度,比单一RT-PCR扩增更加方便、快速.  相似文献   

10.
甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立   总被引:3,自引:2,他引:1  
  相似文献   

11.
【目的】大豆花叶病毒(soybean mosaic virus,SMV)病是中国大豆产区最主要的病害之一,严重影响大豆产量和籽粒品质。核糖核酸酶PAC1能够识别和降解植物RNA病毒或类病毒复制过程中产生的dsRNAs,从而有效抑制病毒在寄主中的复制与积累。PAC1的这一特点为广谱抗RNA病毒及类病毒转基因作物的创制和培育提供了有效的靶标基因。本研究利用转基因技术,将来源于粟酒裂殖酵母菌(Schizosaccharomyces pombe)的PAC1导入栽培大豆,研究过表达PAC1对大豆SMV抗性的影响,为抗SMV转基因大豆新品种选育提供依据。【方法】采用酶切连接技术,将PAC1连接到双元表达载体pCAMBIA3300中,构建植物表达载体pCAMBIA3300-PAC1。目的基因启动子为组成型强启动子CaMV 35S,终止子为NOS,筛选标记为草铵膦抗性基因BAR。采用农杆菌介导转化法,将PAC1导入栽培大豆品种Williams82。在利用PAT/BAR试纸、PCR及除草剂(500 mg·L-1 Basta)喷施检测基础上,通过Southern杂交技术进一步分析外源基因在转基因大豆中的整合情况和拷贝数。采用人工摩擦接种法,对T2和T3代转基因大豆株系进行田间抗SMV鉴定农艺性状调查,分析转基因大豆对SMV抗性及遗传稳定性。并利用qRT-PCR技术分析接种SMV 28 d后转基因大豆中SMV积累水平。【结果】共转化2 600多个外植体,获得耐草铵膦(5 mg·L-1)大豆再生植株76株。PCR检测结果表明,其中65株能够扩增出目的条带,大豆遗传转化效率为2.48%。对T1-T3代转基因大豆株系喷施除草剂表明,在500 mg·L-1 Basta处理7 d后,转基因植株表型没有明显变化,而对照(非转基因大豆)植株叶片则黄化枯死。Southern杂交结果表明,外源基因以低拷贝的方式(1-2个)整合至大豆基因组中。摩擦接种SMV SC-3鉴定表明,在接种35 d后,对照出现严重花叶、皱缩等典型SMV发病症状,而转基因大豆仅部分叶片表现出轻微的花叶症状,其病情指数降低至11.11-22.22,较对照(病情指数36.81-46.24)显著降低,且SMV抗性在转基因大豆不同代际间能够稳定遗传。qRT-PCR分析表明,在接种SMV SC-3株系28 d后,转基因大豆中SMV CP表达水平较对照极显著下降。农艺性状调查表明,在未接种SMV条件下,转基因大豆在叶形、花色、种皮色、种脐色、株高、节数、结荚高度、生育期及百粒重等方面与对照没有显著差异。【结论】PAC1过表达显著抑制了SMV的积累及症状发展,增强了转基因大豆对SMV的抗性水平。  相似文献   

12.
【目的】蓝莓休克病毒(Blueberry shock virus,BlShV)是蓝莓上主要病毒之一,侵染蓝莓后能够对其产量造成严重影响。研究旨在建立用于BlShV快速检测的IC-RT-nested PCR技术,为该病毒的检测鉴定提供可靠的技术手段。【方法】根据GenBank已报道的BlShV基因序列,设计一对外侧引物(BlShV-F/BlShV-R)和一对内侧引物(BlShV-1/BlShV-2),以感染BlShV的蓝莓病叶为材料,利用免疫IC-RT-PCR(免疫捕获RT-PCR)和nested PCR(巢式PCR)建立BlShV的IC-RT-nested PCR检测技术;分别以BlShV、蓝莓焦枯病毒(Blueberry scorch virus,BlScV)、蓝莓带化病毒(Blueberry shoestring virus,BSSV)、蓝莓叶斑驳病毒(Blueberry leaf mottle virus,BLMoV)、烟草环斑病毒(Tobacco ringspot virus,TRSV)、番茄环斑病毒(Tomato ringspot virus,ToRSV)和健康蓝莓叶片为对象,测定该检测技术的特异性;将BlShV第1轮、第2轮PCR产物分别回收纯化后连接到pMD18-T载体,连接产物转化大肠杆菌DH5α后筛选阳性克隆,进行测序和序列比对验证该检测技术的准确性;将感染BlShV的蓝莓病叶提取液用健康蓝莓叶片提取液进行10倍梯度稀释,测定该检测技术的灵敏度,并与DAS-ELISA方法相比较;利用建立的IC-RT-nested PCR对收集的中国福建、吉林、辽宁地区蓝莓叶片样品(53份)和进境美国蓝莓叶片(15份)进行实际检测,并对上述样品采用普通RT-PCR方法进行验证。【结果】建立的IC-RT-nested PCR方法成功从感染BlShV病叶提取液第1轮PCR扩增出约746 bp大小的目的片段,第2轮PCR扩增出约486 bp大小的目的片段,未从健康蓝莓叶片提取液和空白对照扩增出目的片段;特异性测定结果表明,IC-RT-nested PCR具有良好的特异性,仅从感染BlShV蓝莓病叶提取液第1轮、第2轮PCR分别扩增到目的片段,而从BlScV、BSSV、BLMoV、TRSV、ToRSV和健康蓝莓叶片提取液第1轮、第2轮均未扩增到相应的目的片段;序列分析结果显示,感染BlShV蓝莓病叶提取液第1轮、第2轮PCR产物的序列同预期大小完全一致,分别为746、486 bp,将获得的两轮PCR产物序列与GenBank数据库中的BlShV基因序列进行比对,结果显示第1轮、第2轮PCR产物的序列与已报道的BlShV核苷酸序列一致性均达99%,证实两轮PCR产物均为BlShV特异性产物,进一步验证了扩增结果的准确性;灵敏度测定结果表明,IC-RT-nested PCR的第1轮PCR能够检测到稀释102倍的BlShV病叶提取液,灵敏度与DAS-ELISA相当,经过第2轮PCR,灵敏度提高100倍,能够检测到稀释104倍的BlShV病叶提取液;蓝莓样品IC-RT-nested PCR测定结果显示,2份来自于美国的蓝莓叶片样品扩增出大小约486 bp的目的片段,BlShV检出率为13.3%,而中国福建、吉林、辽宁地区蓝莓叶片样品上均未扩增出相应的目的片段,未检测到BlShV,该检测结果与普通RT-PCR验证结果完全相符,表明建立的IC-RT-nested PCR能够用于蓝莓样品的实际检测。【结论】建立的IC-RT-nested PCR具有快速、特异、准确和灵敏的优点,适合于田间和进出境口岸蓝莓样品上BlShV的检测鉴定。  相似文献   

13.
【目的】病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术已在植物基因功能研究领域得到广泛应用。建立以TRV为载体介导的大豆基因瞬时沉默体系,为将烟草脆裂病毒(Tobacco rattle virus,TRV)介导的基因沉默技术在大豆与大豆花叶病毒(Soybean mosaic virus,SMV)互作体系中对大豆基因功能进行研究提供基础。【方法】从大豆品种冀豆7号(J7)叶片中特异性扩增八氢番茄红素脱氢酶基因(GmPDS)的部分片段,并将该基因片段插入质粒pTRV﹕RNA2中;向J7的第一位真叶注射携带有TRV或TRV﹕GmPDS的农杆菌,注射后对上部未接种病毒的叶片进行表型观察,并通过半定量RT-PCR检测GmPDS的表达量。为探讨接种TRV是否影响大豆对SMV的抗性表现,在大豆第一片真叶上预接种TRV病毒后10 d,再分别接种SMV株系N3和SC-8,以单独接种N3或SC-8作为对照。待接种SMV后第5天观察未接种的上位叶表型并检测SMV的外壳蛋白基因CP。【结果】大豆叶片注射携带有TRV﹕GmPDS的农杆菌后25 d,上部未接种病毒的叶片出现了白化现象,通过半定量RT-PCR分析,发生白化的植株中GmPDS的表达量明显降低。在此基础上,向大豆叶片预注射携带有TRV的农杆菌后再接种SMV,SMV株系N3和SC-8与J7分别组成不亲和与亲和组合。 发现J7第一片真叶上预接种TRV后再接种SMV株系N3,与单独接种N3对上位叶的影响在表型上表现一致,对未接种的上位叶片进行病毒外壳蛋白基因CP检测,发现J7单独接种N3以及预接种TRV后再接种N3的上位叶片上均未能检测到CP表达。而J7单独接种SMV株系SC-8,以及预接种TRV后再接种SC-8均在上位叶上能够检测到CP。说明在J7上预接种TRV不影响J7对SMV的抗性。在感病品种南农1138-2上也获得了相似结果。【结论】建立了以TRV为载体介导的大豆基因瞬时沉默体系,并证明在大豆上先接种TRV不改变大豆对SMV的抗性表现。  相似文献   

14.
番茄褪绿病毒实时荧光定量PCR检测技术的建立   总被引:1,自引:1,他引:0  
  相似文献   

15.
【目的】鉴定福建果园西番莲上的夜来香花叶病毒(Telosma mosaic virus,Te MV),并建立用于该病毒特异性检测的分子快速检测方法,为该病毒的防治提供参考依据。【方法】采用血清学检测、电镜观察、通用简并引物RT-PCR、特异性引物RT-PCR对福建西番莲样品进行病毒检测,并对阳性样品的PCR产物进行克隆、测序;根据已报道的夜来香花叶病毒基因序列和本研究的序列测定结果,设计一对用于扩增Te MV外壳蛋白(coat protein,CP)基因全长的特异性引物,通过反应条件优化,建立该病毒的特异性RT-PCR检测方法;序列测定结果利用BLAST程序和DNAMAN软件进行比对,同时对获得的CP基因序列采用Mr Bayes软件的贝叶斯法(Bayesian inference,BI)构建系统发育树并进行系统发育分析。【结果】血清学检测发现,一株表现有花叶、皱缩症状的西番莲样品与马铃薯Y病毒属(Potyvirus)通用抗体反应呈阳性;电镜观察结果表明,该株疑似带毒样品中含有大小约750 nm×12 nm的弯曲线状病毒粒子;Potyvirus通用简并引物RT-PCR从该样品中扩增到一条与预期大小相符的目的片段,克隆、测序获得长度为680 bp的序列,该序列与已报道的Te MV核苷酸序列一致性最高(98.2%)。特异性引物扩增获得的CP基因序列全长为816 bp(命名为BXGFJ-13分离物),与已报道的Te MV核苷酸序列、氨基酸序列一致性分别为86.2%—98.4%和88.2%—97.8%。系统发育分析结果表明,13个Te MV分离物共形成3个类群,相同地区或寄主来源的分离物优先相聚成簇,表现出很强的地理和寄主特异性。本研究获得的BXGFJ-13分离物与中国广西分离物(KJ789129)先以较高的后验概率聚为一个分支,再与泰国2个分离物(AM409188、AM409187)聚为第2类群(Group II),表明其在系统发育关系上与中国广西分离物的亲缘关系最近。利用特异性引物Te MV-CPf/Te MV-CPr建立的RT-PCR方法,具有良好的特异性,仅能从感染Te MV的西番莲样品上扩增出目的片段,而从黄瓜花叶病毒(Cucumber mosaic virus,CMV)、甜菜花叶病毒(Beet mosaic virus,Bt MV)、大豆花叶病毒(Soybean mosaic virus,SMV)、虎眼万年青花叶病毒(Ornithogalum mosaic virus,Or MV)、洋葱黄矮病毒(Onion yellow dwarf virus,OYDV)、东亚西番莲病毒(East Asian Passiflora virus,EAPV)等其他病毒样品及阴性对照上均未扩增出目的片段。灵敏度测定结果显示,该方法能从稀释102倍的RNA上扩增出目的片段。【结论】根据国际病毒分类委员会(ICTV)关于Potyvirus病毒不同成员的分类标准,同时结合血清学检测、电镜观察结果,证实福建果园表现花叶、皱缩症状的西番莲上携带有Te MV;建立的特异性RT-PCR方法能够用于Te MV的快速检测。  相似文献   

16.
【目的】在中国大豆品种上建立以苹果潜隐球形病毒(apple latent spherical virus,ALSV)为载体的基因沉默体系,为中国大豆品种的基因功能和遗传育种提供一种简便、省时、易操作的技术体系。【方法】构建以农杆菌介导接种的ALSV病毒侵染性克隆载体。从大豆品种威廉姆斯82(Williams 82)中特异扩增327 bp的八氢番茄红素脱氢酶(GmPDS)基因cDNA片段,插入病毒载体pALSV2。通过农杆菌浸润法将病毒载体导入模式植物本氏烟(Nicotiana benthamiana),17 d后富集病毒粒子,摩擦接种大豆第一轮真叶,以接种病毒空载作为对照组,持续观察测试大豆植株系统叶表型,并结合逆转录-聚合酶链式反应(RT-PCR)或荧光定量PCR(qRT-PCR)检测ALSV衣壳蛋白基因(CP)和GmPDS的表达水平。【结果】ALSV﹕GmPDS接种大豆品种威廉姆斯82和南农1138-2,20 d后,前者系统叶未见白化表型,而后者系统叶出现明显的白化表型;qRT-PCR检测结果表明,发生白化的南农1138-2植株中GmPDS的表达水平显著降低,未出现白化表型的威廉姆斯82中GmPDS的表达水平没有出现显著变化。在此基础上,采用相同的方法,测试了ALSV在其他9种大豆品种中诱导GmPDS的沉默效率,发现在南农47、安豆203、祥斗4号、中黄13、山宁29、齐黄34等大豆品种上接种ALSV﹕GmPDS后植株系统叶均产生白化表型,而菏豆12、中黄311和山宁16等3个品种的GmPDS均不能诱导有效沉默。【结论】构建了农杆菌介导的ALSV病毒载体,利用本氏烟扩繁富集ALSV病毒,将提纯的病毒粒体摩擦接种大豆真叶,在多个中国大豆品种上成功建立了基因沉默体系。  相似文献   

17.
18.
大麦黄条点花叶病毒的分布及其分离物的遗传多样性   总被引:2,自引:0,他引:2  
【目的】明确大麦黄条点花叶病毒(Barley yellow striate mosaic virus,BYSMV)在中国北方小麦主产区的分布及其种群遗传多样性,为病害流行预警和防控提供理论依据。【方法】2008-2016年,在河北、山东、江苏、安徽、河南、陕西和山西等7个省66个县/市/区田间,采集了864份疑似病毒病症状的植物样品。提取样品总RNA,利用一步法三重RT-PCR技术检测样品中的BYSMV、水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)和北方禾谷花叶病毒(Northern cereal mosaic virus,NCMV)。利用RT-PCR扩增获得BYSMV的L和N基因片段,克隆并测定核苷酸序列,应用MEGA、DnaSP和PAML等软件分析BYSMV分离物的系统进化和遗传多样性特征。【结果】从48个县/市/区采集的336份样品中检测到BYSMV,检出率为38.89%,该病毒主要分布于陕西、河北、山西和山东,另外,河南及安徽北部亦有分布,江苏徐州和邳州仅局部发生。基于BYSMV的L、N基因序列构建的系统发育树均可将分离物划分为2个亚组,亚组I中的分离物其来源涉及全部7个省份,而亚组II中的分离物仅来自陕西和山西2个省,基于L基因序列系统发育分析表明亚组II分离物与伊朗的分离物亲缘关系较近,BYSMV的遗传分化与分离物的地理来源相关,而与寄主植物、发生时间无明显相关性。运用RDP程序包的7个软件进行基因重组分析显示没有支持重组的证据。选择压力分析显示,亚组内和亚组间的ω(dN/dS)值(0.02-0.19)远小于1,表明群体正承受净化选择。L和N基因的单倍型多样性(Hd)值(0.90909和0.99524)均大于0.5、核苷酸多样性(π)值(0.01324和0.01224)均高于0.005,表明中国BYSMV群体遗传多样性丰富。基于L和N基因片段的遗传分化研究显示,东部和西部群体的遗传分化系数(FST)值(0.32201和0.37326)均大于0.25,且统计检验差异显著,表明东部和西部的BYSMV群体严重分化;基因流(Nm)值(0.53和0.42)均小于1,说明有限的基因流是促使群体发生遗传分化的主要原因。【结论】BYSMV在中国北方小麦主产区分布广泛,河北、山东、江苏、安徽、河南、陕西和山西等地均有不同程度的发生。BYSMV群体具有丰富的遗传多样性,且东部和西部群体之间存在严重的遗传分化。  相似文献   

19.
大豆两个MYB 转录因子基因的克隆及表达分析   总被引:2,自引:0,他引:2  
 【目的】克隆新的植物MYB转录因子基因,进行序列分析,并对其功能进行初步鉴定。【方法】RT-PCR法结合RACE-PCR法分离克隆MYB基因cDNA全长序列;酵母系统检测其转录激活活性;半定量RT-PCR检测目的基因在植物体中的表达情况,及对类黄酮代谢途径中生物合成酶的影响。【结果】根据植物中MYB基因DNA结合域保守区设计简并引物,以大豆品种中豆27的叶片为材料,RT-PCR扩增出两个MYB基因同源片段;据此设计基因特异引物,通过RACE-PCR分离克隆出两个新的MYB基因GmMYBZ1、GmMYBZ2。酵母系统检测表明,GmMYBZ2具有转录激活功能,β-半乳糖苷酶活性为10.35 U;半定量RT-PCR在中豆27的茎和叶中检测到GmMYBZ1的表达,而GmMYBZ2在植物的根、茎、叶及未成熟种子中均有表达;对转基因烟草的RT-PCR检测结果显示,GmMYBZ2的表达可抑制类黄酮代谢途径中PAL、C4H、4CL、CHS、CHI、F4H及FLS等生物合成酶基因的表达。【结论】从大豆栽培品种中豆27中克隆出了两个新的MYB基因GmMYBZ1、GmMYBZ2;功能研究表明,GmMYBZ2可能参与植物类黄酮合成调控。  相似文献   

20.
【目的】建立可同时检测李属坏死环斑病毒(Prunus necrotic ringspot virus,PNRSV)、李矮缩病毒(Prune dwarf virus,PDV)、樱桃小果病毒2(Little cherry virus-2,LChV-2)的多重RT-PCR检测方法。【方法】以复合感染3种病毒的甜樱桃病株叶片为材料,采用CTAB法提取样本总RNA,选用随机六聚体引物对植物样本总RNA进行反转录,所得cDNA作为多重RT-PCR的扩增模板。根据GenBank中PNRSV、PDV、LChV-2基因组序列共设计6对特异引物,分别通过单一RT-PCR和多重RT-PCR筛选出可用于同时检测3种甜樱桃病毒的引物组合。对多重RT-PCR的退火温度及循环数进行优化,以筛选出各引物组合的最适扩增条件。分别以单一感染PNRSV、PDV、LChV-2、复合感染3种病毒、单一感染樱桃病毒A(Cherry virus A,CVA)及甜樱桃无毒苗为样本,对多重RT-PCR引物的特异性进行分析。选取复合感染3种病毒的甜樱桃总RNA的反转录产物为初始模板,按照梯度稀释法依次将模板稀释为2、22、23、24、25倍,在相同PCR反应体系及反应条件下分别对各引物组合的灵敏度进行分析。多重RT-PCR的扩增条带经凝胶回收试剂盒回收纯化后连接至pMD18-T vector,克隆测序,以验证多重RT-PCR检测的准确性。并应用该方法对山东泰安地区甜樱桃生产园中间隔栽培的中国樱桃进行检测。【结果】筛选到2个可以应用的引物组合,组合1“PNRSV-S1/A1、PDV-S2/A2、LChV2-S1/A1”可分别特异性地扩增733、467、337 bp的片段。组合2“PNRSV-S1/A1、PDV-S3/A3、LChV2-S1/A1”可分别扩增得到733、265、337 bp的片段。扩增产物大小与预期相符。多重RT-PCR反应条件优化结果显示,在退火温度52℃、35个循环条件下,2个引物组合的检测效果均较为理想。特异性分析结果显示,2个引物组合均能特异性检测其各自的靶病毒。灵敏度分析结果显示,2个引物组合在cDNA的23×稀释液中仍能特异性扩增,但扩增条带的强度稍有差异,其对植物总RNA的反转录产物的最低检测浓度为107.9 ng•μL-1。克隆测序及序列分析表明,2个引物组合对各自靶病毒的检测结果可靠。应用该方法对9个中国樱桃样本进行检测,结果显示,测试样品均至少感染了2种病毒,其中5个样品复合感染了3种病毒,2个样品同时感染PDV和LChV-2,2个样品同时感染PNRSV和LChV-2。【结论】应用建立的多重RT-PCR检测方法可稳定、准确、灵敏的同时检测单一或复合侵染的3种甜樱桃病毒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号