首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production.  相似文献   

2.
Soil of the former lake Texcoco is alkaline saline with pH often >10 and electrolytic conductivity (EC) >70 dS m?1 with rapidly changing water contents. Little is known how fertilizing this area with urea to vegetate the soil would affect emissions of carbon dioxide (CO2) and dynamics of N. Texcoco soil with electrolytic conductivity (EC) 2.3 dS m?1 and pH 8.5 (TEXCOCO A soil), EC 2.0 dS m?1 and pH 9.0 (TEXCOCO B soil) and 200 dS m?1 and pH 11.2 (TEXCOCO C soil) was amended with or without urea and incubated at 40% of water holding capacity (WHC), 60% WHC, 80% WHC and 100% WHC, while emissions of nitrous oxide (N2O) and CO2 and dynamics of ammonium (NH4+), nitrite (NO2?) and nitrate (NO3?) were monitored for 7 days. An agricultural soil served as control (ACOLMAN soil). The emission of CO2 increased in the urea amended soil 1.5 times compared to the unamended soil, it was inhibited in TEXCOCO C soil and was >1.2 larger in soil incubated at 40%, 60% and 80% WHC compared to soil incubated at 100% WHC. The emission of N2O increased in soil added with urea compared to the unamended soil, was similar in TEXCOCO A and B soils, but was <0.2 mg N kg?1 soil day?1 in TEXCOCO C soil and generally larger in soil incubated at 60% and 80% WHC compared to soil incubated at 40% and 100% WHC. The water content of the soil had no significant effect on the mean concentration of NH4+, but addition of urea increased it in all soils. The concentration of NO2? was not affected by the water content and the addition of urea except in TEXCOCO A soil where it increased to values ranging between 20 and 40 mg N kg?1. The concentration of NO3? increased in the ACOLMAN, TEXCOCO A and TEXCOCO B soil amended with urea compared to the unamended soil, but not in the TEXCOCO C soil. It decreased with increased water content, but not in TEXCOCO C soil. It was found that the differences in soil characteristics, i.e. soil organic matter content, pH and EC between the soils had a profound effect on soil processes, but even small changes affected the dynamics of C and N in soil amended with urea.  相似文献   

3.
Nitrogen (N) from urine excreted by grazing animals can be transformed into N compounds that have detrimental effects on the environment. These include nitrate, which can cause eutrophication of waterways, and nitrous oxide, which is a greenhouse gas. Soil microbes mediate all of these N transformations, but the impact of urine on microbes and how initial soil conditions and urine chemical composition alter their responses to urine are not well understood. This study aimed to determine how soil inorganic N pools, nitrous oxide fluxes, soil microbial activity, biomass, and the community structure of bacteria containing amoA (nitrifiers), nirK, and nirS (denitrifiers) genes responded to the addition of urine over time. Bovine urine containing either a high (15.0 g K+ l?1) or low salt content (10.4 g K+ l?1) was added to soil cores at either low or high moisture content (hereafter termed dry and wet soil respectively; 35% or 70% water-filled pore space after the addition of urine). Changes in soil conditions, inorganic N pools, nitrous oxide fluxes, and the soil microbial community were then measured 1, 3, 8, 15, 29 and 44 days after urine addition. Urine addition increased soil ammonium concentrations by up to 2 mg g d.w.?1, soil pH by up to 2.7 units, and electrical conductivity (EC) by 1.0 and 1.6 dS m?1 in the low and high salt urine treatments respectively. In response, nitrate accumulation and nitrous oxide fluxes were lower in dry compared to wet urine-amended soils and slightly lower in high compared to low salt urine-amended soils. Nitrite concentrations were elevated (>3 μg g d.w.?1) for at least 15 days after urine addition in wet urine-amended soils, but were only this high in the dry urine-amended soils for 1 day after the addition of urine. Microbial biomass was reduced by up to half in the wet urine-amended soils, but was largely unaffected in the dry urine-amended soils. Urine addition affected the community structure of ammonia-oxidising and nitrite-reducing bacteria; this response was also stronger and more persistent in wet than in dry urine-amended soils. Overall, the changes in soil conditions caused by the addition of urine interacted to influence microbial responses, indicating that the effect of urine on soil microbes is likely to be context-dependent.  相似文献   

4.
The near infrared reflectance spectroscopy (NIRS) method was used in the present study to compare earthworm-made soil aggregates to aggregates found in the surrounding bulk soil. After initially assessing the daily cast production of Metaphire posthuma, boxes with soil incubated with M. posthuma and control soils were subjected to wetting in order to reorganize the soil structure. After two months of incubation, soil aggregates produced by earthworms (casts and burrows), soil aggregates that were appeared to be unaffected by earthworms (bulk soil without visible trace of earthworm bioturbation from the earthworm treatment) and soil aggregates that were entirely unaffected by earthworms (control – no earthworm – treatment) were sampled and their chemical signatures analyzed by NIRS. The production of below-ground and surface casts reached 14.9 g soil g worm?1 d?1 and 1.4 g soil g worm?1 d?1, respectively. Soil aggregates from the control soils had a significantly different NIRS signature from those sampled from boxes with earthworms. However, within the earthworm incubation boxes the NIRS signature was similar between cast and burrow aggregates and soil aggregates from the surrounding bulk soil. We conclude that the high cast production by M. posthuma and the regular reorganization of the soil structure by water flow in and through the soil lead to a relatively homogenous soil structure. Given these results, we question the relevance of considering the bulk soil that has no visible activity of earthworm activity as a control to determine the effect of earthworms on soil functioning.  相似文献   

5.
Studies were conducted to evaluate the survival and persistence of Sinorhizobium meliloti 104A14 and two acid phosphatase-negative mutants in Kirkland (fine, mixed, thermic Udertic Paleustolls) silt loam soils with various fertility levels, and to assess the impact of inoculation on nodule occupancy and soil microbial community structure in the inoculated alfalfa (Medicago sativa L.) rhizosphere. Recovery of the inoculated strains was 100% (in the order of 108 cells g−1 soil) immediately following inoculation to soils, but decreased from 108 cells g−1 soil to undetectable levels in a nutrient-poor soil within 32 days. In a nutrient-rich soil, approximately 2–3% (4.7–7.43×106 cells g−1 soil) of the mutants and 23% (5.84×107 cells g−1 soil) of the wild-type inocula persisted for more than 64 days. Survivability and persistence of the wild-type S. meliloti were significantly greater than that of the genetically modified acid phosphatase negative mutants in all the soils tested. The persistence and nodule occupancy of the introduced S. meliloti in sterile and non-sterile soils were also tested for two repeated alfalfa growth periods in the same plant growth units, with a 1 month interval in between and no additional inoculation for the second period. Nodule occupancy of the introduced S. meliloti in non-sterile soils ranged from 30 to 60% for the first period and 85 to 100% for the second period. Our results suggest that survival and persistence of S. meliloti was enhanced by alfalfa cultivation and increased soil fertility, but impaired by mutation of acid phosphatase genes regardless of phosphorus nutritional levels. Moreover, inoculation with genetically modified S. meliloti strain 104A14 promoted indigenous bacterial growth in soil (increased bacterial population from 1.4×106 to 4.3×106 cells g−1 soil), but not the growth of fungi and yeast. However, inoculation of the wild-type S. meliloti or genetically modified mutants did not result in significant changes in microbial community structure as indicated by EP indices and ratios of r/K strategists.  相似文献   

6.
The substrate availability for microbial biomass (MB) in soil is crucial for microbial biomass activity. Due to the fast microbial decomposition and the permanent production of easily available substrates in the rooted top soil mainly by plants during photosynthesis, easily available substrates make a very important contribution to many soil processes including soil organic matter turnover, microbial growth and maintenance, aggregate stabilization, CO2 efflux, etc. Naturally occurring concentrations of easily available substances are low, ranging from 0.1 μM in soils free of roots and plant residues to 80 mM in root cells. We investigated the effect of adding 14C-labelled glucose at concentrations spanning the 6 orders of magnitude naturally occurring concentrations on glucose uptake and mineralization by microbial biomass. A positive correlation between the amount of added glucose and its portion mineralized to CO2 was observed: After 22 days, from 26% to 44% of the added 0.0009 to 257 μg glucose C g?1 soil was mineralized. The dependence of glucose mineralization on its amount can be described with two functions. Up to 2.6 μg glucose C g?1 soil (corresponds to 0.78% of initial microbial biomass C), glucose mineralization increased with the slope of 1.8% more mineralized glucose C per 1 μg C added, accompanied by an increasing incorporation of glucose C into MB. An increased spatial contact between micro-organisms and glucose molecules with increasing concentration may be responsible for this fast increase in mineralization rates (at glucose additions <2.6 μg C g?1). At glucose additions higher than 2.6 μg C g?1 soil, however, the increase of the glucose mineralization per 1 μg added glucose was much smaller as at additions below 2.6 μg C g?1 soil and was accompanied by decreasing portions of glucose 14C incorporated into microbial biomass. This supports the hypothesis of decreasing efficiency of glucose utilization by MB in response to increased substrate availability in the range 2.6–257 μg C g?1 (=0.78–78% of microbial biomass C). At low glucose amounts, it was mainly stored in a chloroform-labile microbial pool, but not readily mineralized to CO2. The addition of 257 μg glucose C g?1 soil (0.78 μg C glucose μg?1 C micro-organisms) caused a lag phase in mineralization of 19 h, indicating that glucose mineralization was not limited by the substrate availability but by the amount of MB which is typical for 2nd order kinetics.  相似文献   

7.
A real-time PCR assay was developed to quantify in soil the fungus Hirsutella minnesotensis, an important parasite of secondary-stage juvenile (J2) of the soybean cyst nematode. A primer pair 5′-GGGAGGCCCGGTGGA-3′ and 5′-TGATCCGAGGTCAACTTCTGAA-3′ and a TaqMan probe 5′-CGTCCGCCGTAAAACGCCCAAC-3′ were designed based on the sequence of the ITS region of the rRNA gene. The primers were highly species-specific. The PCR reaction system was very sensitive and able to detect as few as 4 conidia g?1 soil. Regression analysis showed similar slopes and efficiency on DNA from pure culture (y = ?3.587x + 41.017, R2 = 0.9971, E = 0.9055) and from Log conidia g?1 soil (y = ?3.855x + 37.669, R2 = 0.9139, E = 0.8172), indicating that the real-time PCR protocol can reliably quantify H. minnesotensis in the soil. The real-time PCR assay was applied to 20 soil samples from soybean fields, and compared with a parasitism assay. The real-time PCR assay detected H. minnesotensis in six of the soils, whereas the parasitism assay detected H. minnesotensis in the same six soils and three additional soils. The real-time PCR assay was weakly correlated (R2 = 0.49) with the percentage of parasitized J2 in the six soils, indicating that different types of soil may interfere the efficiency of the real-time PCR assay, possibly due to the effect of soil types on efficacy of DNA extraction. The parasitism assay appeared to be more sensitive than real-time PCR in detecting presence of H. minnesotensis, but real-time PCR was much faster and less costly and provided a direct assessment of fungal biomass. Using the two assays in combination can obtain more complete information about the fungus in soil than either assay alone. Hirsutella parasitism was widespread and detected in 13 of the 20 field soils, indicating that these fungi may contribute to suppressiveness of soybean cyst nematode in nature and likely have high biological control potential for the nematode.  相似文献   

8.
Contradictory effects of simultaneous available organic C and N sources on nitrous oxide (N2O), carbon dioxide (CO2) and nitric oxide (NO) fluxes are reported in the literature. In order to clarify this controversy, laboratory experiments were conduced on two different soils, a semiarid arable soil from Spain (soil I, pH=7.5, 0.8%C) and a grassland soil from Scotland (soil II, pH=5.5, 4.1%C). Soils were incubated at two different moisture contents, at a water filled pore space (WFPS) of 90% and 40%. Ammonium sulphate, added at rates equivalent to 200 and 50 kg N ha?1, stimulated N2O and NO emissions in both soils. Under wet conditions (90% WFPS), at high and low rates of N additions, cumulative N2O emissions increased by 250.7 and 8.1 ng N2O–N g?1 in comparison to the control, respectively, in soil I and by 472.2 and 2.1 ng N2O–N g?1, respectively, in soil II. NO emissions only significantly increased in soil I at the high N application rate with and without glucose addition and at both 40% and 90% WFPS. In both soils additions of glucose together with the high N application rate (200 kg N ha?1) reduced cumulative N2O and NO emissions by 94% and 55% in soil I, and by 46% and 66% in soil II, respectively. These differences can be explained by differences in soil properties, including pH, soil mineral N and total and dissolved organic carbon content. It is speculated that nitrifier denitrification was the main source of NO and N2O in the C-poor Spanish soil, and coupled nitrification–denitrification in the C-rich Scottish soil.  相似文献   

9.
We tested the relevance of the microplate fluorimetric (F) assay for five enzymes in contrasting land uses, including woodland, grassland, cultivated and contaminated lands, as compared to the standard spectrophotometric (P) method. Enzymatic activity measured by the P method ranged from 0 to 56.04 nmol-pNP g?1 min?1 (median = 4) while the F method revealed lower values ranging from 0 to 6.22 nmol-MUB g?1 dry soil min?1 (median = 1). The values obtained by the P method were around 8 times higher than those revealed by the F method. However, the F method revealed significant differences in enzyme activity in orchard parcels (land use with low variations in soil properties). We concluded that the F method improves the effectiveness and the efficiency of measuring universal soil quality indicators using enzymes.  相似文献   

10.
The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant–microbe interactions with their best known function as signals in the nitrogen fixing legume–rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log Koc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log Koc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 μg g?1) was biodegraded without a detectable lag phase with concentrations reduced to 0.13±0.01 μg g?1 at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of ~24 h with concentrations reduced to 4.5±1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4×106 MPN g?1 (naringenin) and 7.9×105 MPN g?1 (formononetin) catabolic microbes. Formononetin concentration had no significant (p>0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p=0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere.  相似文献   

11.
Soils in Mexico are often contaminated with hydrocarbons and addition of waste water sludge and earthworms accelerates their removal. However, little is known how contamination and subsequent bioremediation affects emissions of N2O and CO2. A laboratory study was done to investigate the effect of waste water sludge and the earthworm Eisenia fetida on emission of N2O and CO2 in a sandy loam soil contaminated with the polycyclic aromatic hydrocarbons (PAHs): phenanthrene, anthracene and benzo(a)pyrene. Emissions of N2O and CO2, and concentrations of inorganic N (ammonium (NH4+), nitrite (NO2?) nitrate (NO3?)) were monitored after 0, 5, 24, 72 and 168 h. Adding E. fetida to the PAHs contaminated soil increased CO2 production rate significantly 2.0 times independent of the addition of sludge. The N2O emission rate from unamended soil expressed on a daily base was 5 μg N kg?1 d?1 for the first 2 h and increased to a maximum of 325 μg N kg?1 d?1 after 48 h and then decreased to 10 μg N kg?1 d?1 after 168 h. Addition of PAHs, E. fetida or PAHs + E. fetida had no significant effect on the N2O emission rate. Adding sludge to the soil sharply increased the N2O emission rate to >400 μg N kg?1 d?1 for the entire incubation with a maximum of 1134 μg N kg?1 d?1 after 48 h. Addition of E. fetida, PAHs or PAHs + E. fetida to the sludge-amended soil reduced the N2O emission rate significantly compared to soil amended with sludge after 24 h. It was found that contaminating soil with PAHs and adding earthworms had no effect on emissions of N2O. Emission of N2O, however, increased in sludge-amended soil, but addition of earthworms to this soil and contamination reduced it.  相似文献   

12.
The incorporation of organic amendments from pruning waste into soil may help to mitigate soil degradation and to improve soil fertility in semiarid ecosystems. However, the effects of pruning wastes on the biomass, structure and activity of the soil microbial community are not fully known. In this study, we evaluate the response of the microbial community of a semiarid soil to fresh and composted vegetal wastes that were added as organic amendments at different doses (150 and 300 t ha−1) five years ago. The effects on the soil microbial community were evaluated through a suite of different chemical, microbiological and biochemical indicators, including enzyme activities, community-level physiological profiles (CLPPs) and phospholipid fatty acid analysis (PLFA). Our results evidenced a long-term legacy of the added materials in terms of soil microbial biomass and enzyme activity. For instance, cellulase activity reached 633 μg and 283 μg glucose g−1 h−1 in the soils amended with fresh and composted waste, respectively. Similarly, bacterial biomass reached 116 nmol g−1 in the soil treated with a high dose of fresh waste, while it reached just 66 nmol g−1 in the soil amended with a high dose of composted waste. Organic amendments produced a long-term increase in microbiological activity and a change in the structure of the microbial community, which was largely dependent on the stabilization level of the pruning waste but not on the applied dose. Ultimately, the addition of fresh pruning waste was more effective than the application of composted waste for improving the microbiological soil quality in semiarid soils.  相似文献   

13.
Organic amendments not only promote soil quality and plant performance directly but also facilitate the establishment of introduced microbial agents. A field experiment with a fully factorial design was conducted using three levels of vermicompost (without vermicompost, low dose of 15 Mg ha−1 and high dose of 30 Mg ha−1), with and without plant growth-promoting rhizobacteria (PGPR) to investigate their effects in a tomato – by spinach rotation system. Our results demonstrated that applying PGPR alone had no effect on soil properties and crop performance. Vermicompost enhanced the beneficial effects of PGPR on both soil and crop, with the extent of promotion depending on the dose of vermicompost and crop types. In the presence of vermicompost, PGPR significantly (P < 0.05) reduced soil carbon and nitrogen but increased soil microbial biomass carbon and nitrogen. PGPR also significantly increased the yield of tomato and spinach under the low dose of vermicompost, but only significantly increased tomato yield under the high dose of vermicompost. There were strongly synergistic effects between vermicompost and PGPR on crop quality, with crop nitrate concentration being significantly decreased, while the vitamin C in tomato and soluble protein in spinach was significantly increased. Our results revealed the high potential of integrating vermicompost and microbial agents to substitute for regular chemical fertilization practices.  相似文献   

14.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

15.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

16.
This study aimed at assessing the potential of near-infrared reflectance spectroscopy (NIRS) for determining the distribution of soil organic matter (SOM) in particle size fractions, which has rarely been attempted. This was done on sandy soils from Burkina Faso (three sites) and Congo-Brazzaville (one site). Over the total sample set, NIRS accurately predicted carbon (C) and nitrogen (N) concentrations (g kg?1 fraction) in the fraction <20 μm. When considering Burkina Faso only, predictions were improved in general; those of C and N amounts (g kg?1 soil) became accurate for the fraction <20 μm but not for the coarser fractions, probably due to heterogeneous SOM repartition. However, most SOM being <20 μm in general, NIRS could be considered promising for determining SOM size distribution.  相似文献   

17.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

18.
Changes in soil microbial biomass, enzyme activities, microbial community structure and nitrogen (N) dynamics resulting from organic matter amendments were determined in soils with different management histories to gain better understanding of the effects of long- and short-term management practices on soil microbial properties and key soil processes. Two soils that had been under either long-term organic or conventional management and that varied in microbial biomass and enzyme activity levels but had similar fertility levels were amended with organic material (dried lupin residue, Lupinus angustifolius L.) at amounts equivalent to 0, 4 and 8 t dry matter lupin ha?1. Microbial biomass C and N, arginine deaminase activity, fluorescein diacetate hydrolysis, dehydrogenase enzyme activity and gross N mineralisation were measured in intervals over an 81-day period. The community structure of eubacteria and actinomycetes was examined using PCR–DGGE of 16S rDNA fragments. Results suggested that no direct relationships existed between microbial community structure, enzyme activities and N mineralisation. Microbial biomass and activity changed as a result of lupin amendment whereas the microbial community structure was more strongly influenced by farm management history. The addition of 4 t ha?1 of lupin was sufficient to stimulate the microbial community in both soils, resulting in microbial biomass growth and increased enzyme activities and N mineralisation regardless of past management. Amendment with 8 t lupin ha?1 did not result in an increase proportional to the extra amount added; levels of soil microbial properties were only 1.1–1.7 times higher than in the 4 t ha?1 treatment. Microbial community structure differed significantly between the two soils, while no changes were detected in response to lupin amendment at either level during the short-term incubation. Correlation analyses for each treatment separately, however, revealed differences that were inconsistent with results obtained for soil biological properties suggesting that differences might exist in the structure or physiological properties of a microbial component that was not assessed in this study.  相似文献   

19.
Fertilization generates nutrient patches that may impact soil microbial activity. In this study, nitrogen patches were generated by adding ammonium sulfate or urea to soil columns (length 25 cm; internal diameter 7.2 cm). Changes in nitrogen transformation, soil microbial biomass, and microbial functional diversity with the nitrogen gradients were investigated to evaluate the response of microbial activity to chemical fertilizer nutrient patches. After applying of ammonium sulfate or urea, the added nitrogen migrated about 7 cm. Microbial biomass carbon (MBC) was lower in fertilized soil than in the control (CK) treatment at the same soil layers. MBC increased with soil depth while microbial biomass nitrogen (MBN) decreased. BIOLOG analysis indicated that the average well color development (AWCD) and functional diversity indices of the microbial communities were lower in the 1 cm and 2 cm soil layers after application of ammonium sulfate; the highest values were in the 3 cm soil layer. AWCD and Shannon indices from the 1 to 5 cm soil layers were higher than those from other soil layers under urea application. Both principal component analysis and carbon substrate utilization analysis showed significant separation of soil microbial communities among different soil layers under application of ammonium sulfate or urea. Microbial activity was substantially decreased when NH4+-N concentration was higher than 528.5 mg kg−1 (1–3 cm soil layer under ammonium sulfate application) or 536.8 mg kg−1 (1 cm soil layer under urea application). These findings indicated that changes in soil microbial biomass and microbial functional diversity can occur with a nitrogen gradient. The extent of changes depends on the nitrogen concentration and the form of inorganic fertilizer.  相似文献   

20.
Spatial and temporal patterns of soil respiration rates and controlling factors were investigated in three wet arctic tundra systems. In situ summer season carbon dioxide fluxes were measured across a range of micro-topographic positions in tussock tundra, wet sedge tundra, and low-centre polygonal tundra, at two different latitudes on the Taimyr Peninsular, central Siberia. Measurements were carried out by means of a multi-channel gas exchange system operating in continuous-flow mode.Measured soil respiration rates ranged from 0.1 g CO2-C m?2 d?1 to 3.9 g CO2-C m?2 d?1 and rate differences between neighbouring sites in the micro-topography (microsites) were larger than those observed between different tundra systems. Statistical analysis identified position of the water table and soil temperature at shallow depths to be common controls of soil respiration rates across all microsites, with each of these two factors explaining high proportions of the observed variations.Modelling of the response of soil respiration to soil temperature and water table for individual microsites revealed systematic differences in the response to the controlling factors between wet and drier microsites. Wet microsites – with a water table position close to the soil surface during most of the summer – showed large soil respiration rate changes with fluctuations of the water table compared to drier microsites. Wet microsites also showed consistently higher temperature sensitivity and a steeper increase of temperature sensitivity with decreasing temperatures than drier sites. Overall, Q10 values ranged from 1.2 to 3.4. The concept of substrate availability for determining temperature sensitivity is applied to reconcile these systematic differences. The results highlight that soil respiration rates in wet tundra are foremost controlled by water table and only secondarily by soil temperature. Wet sites have a larger potential for changes in soil respiration rates under changing environmental conditions, compared to drier sites.It is concluded that understanding and forecasting gaseous carbon losses from arctic tundra soils and its implication for ecosystem-scale CO2 fluxes and soil organic matter dynamics require good knowledge about temporal and spatial patterns of soil water conditions. The water status of tundra soils can serve as a control on the temperature sensitivity of soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号