首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

2.
Production of halophytes using saline waters and soils and feeding them to livestock is one of the most sustainable methods of conservation in desert ecosystems, in addition to accomplishing food production for the people living in these areas. Therefore, to study the possibility of irrigating Kochia (Kochia scoparia L. Schrad) with minimum quantities of highly saline water for use as a fodder crop in arid environments stretching across saline waters, two experiments were carried out in the Research Farm of the Ferdowsi University of Mashhad, Iran. In the salinity experiments, two populations of Kochia, including the Sabzevar and Indian genotypes, were irrigated with ground water having electrical conductivity (EC) of 5, 15, and 20 dS m−1. In the irrigation-treatment experiments, two local populations of Kochia, including Sabzevar and Borujerd, were subjected to four irrigation regimes as follows: complete irrigation (100%), 80%, 60%, and 40% of the water requirements using a saline ground water with EC = 5 dS m−1. Because, the Indian genotype is preferred as an ornamental plant, it is not suitable for increased dry-matter production under high-salinity irrigation water compared to the local genotype (Sabzevar), which is suitable for forage. The Sabzevar genotype produced a large amount of dry matter (7530 kg ha−1), even when irrigated with 20 dS m−1 saline water. The best time for harvesting Kochia for fresh feeding is at the end of flowering (88 days after sowing or DAS), when the biomass is relatively high (6500 kg ha−1) and the leaf-to-shoot ratio, as a quality index, is approximately 50%. The highest green-area index was observed at 15 dS m−1 and decreased at high levels of salinity. Photosynthesis and transpiration rate did not decline significantly with increasing external salinity four weeks after salinization, but increased in both genotypes at 15 dS m−1, indicating that the salinity-tolerance threshold of Kochia for both photosynthesis and transpiration reduction is above this salinity level. The Indian genotype also showed a very low seed yield (210 kg ha−1) at low levels of salinity, whereas Sabzevar produced 1120 kg ha−1 seed under the same conditions. Different irrigation regimes had a significant effect on the biomass and seed production of Kochia. The highest forage yield was obtained from complete irrigation, with 11.1 Mg ha−1 dry material. Sabzevar local population represented a better performance in terms of all characteristics, except accumulation of inflorescence dry matter, and no significant effects were recorded. In conclusion, Kochia's high foliage production capacity in the presence of salinity and limited irrigation make this plant suitable for use as an alternative forage crop in harsh environmental conditions. There is a wide range of intraspecific variation in K. scoparia, but more investigation is needed to introduce it as a cash crop.  相似文献   

3.
Irrigation and fertilization management practices play important roles in crop production. In this paper, the Root Zone Water Quality Model (RZWQM) was used to evaluate the irrigation and fertilization management practices for a winter wheat–summer corn double cropping system in Beijing, China under the irrigation with treated sewage water (TSW). A carefully designed experiment was carried out at an experimental station in Beijing area from 2001 to 2003 with four irrigation treatments. The hydrologic, nitrogen and crop growth components of RZWQM were calibrated by using the dataset of one treatment. The datasets of other three treatments were used to validate the model performance. Most predicted soil water contents were within ±1 standard deviation (S.D.) of the measured data. The relative errors (RE) of grain yield predictions were within the range of −26.8% to 18.5%, whereas the REs of biomass predictions were between −38% and 14%. The grain nitrogen (N) uptake and biomass N uptake were predicted with the RE values ranging from −13.9% to 14.7%, and from −11.1% to 29.8%, respectively. These results showed that the model was able to simulate the double cropping system variables under different irrigation and fertilization conditions with reasonable accuracy. Application of RZWQM in the growing season of 2001–2002 indicated that the best irrigation management practice was no irrigation for summer corn, three 83 mm irrigations each for pre-sowing, jointing and heading stages of winter wheat, respectively. And the best nitrogen application management practice was 120 kg N ha−1 for summer corn and 110 kg N ha−1 for winter wheat, respectively, under the irrigation with TSW. We also obtained the alternative irrigation management practices for the hydrologic years of 75%, 50% and 25%, respectively, in Beijing area under the conditions of irrigation with TSW and the optimal nitrogen application.  相似文献   

4.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

5.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

6.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

7.
In this paper, we discuss the effect of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. A field experiment was conducted at the Dingxi Agricultural Experiment Station during 2000–2002. According to the experimental design, the CO2 concentration increased to 14.5, 40 and 54.5 μmol mol−1, respectively, by NH4HCO3 (involving CO2) application, direct application of CO2 gas and combination of fertilizer NH4HCO3 plus CO2 application, which are equal to CO2 concentration of the Earth's atmosphere in the next 5, 15 and 20 years. The fertilizer application was divided into three levels: application of NH3NO3 (250 kg h m−2), NH4HCO3 (500 kg h m−2) and no fertilizer. Irrigation was divided into two levels: with 90 mm irrigation in the growth period and without irrigation. They can be combined as eight treatments. Each treatment was replicated three times. The results showed that elevated CO2 concentration owing to CO2 application leads to remarkable increase in leaf area index (LAI) and shoot biomass, and also generates the higher value of leaf area duration (LAD) that can benefit the photosynthesis in the growth stage and yield increase in crop compared than the no CO2 application treatment. When CO2 concentration elevated by 14.5, 40 and 54.5 μmol mol−1 with irrigation and fertilization, correspondingly, the grain yield increased by 6.3, 13.1 and 19.8%, respectively, whereas without irrigation and fertilization, the grain yield increased by only 4.2% when CO2 concentration increased to 40 μmol mol−1. Meanwhile, irrigation and fertilization can result in larger and deeper root system and have significantly positive influences on higher value of root/shoot (R/S) and water use efficiency. The grain yields in irrigation, irrigation plus NH3NO3 application and irrigation plus application of NH4HCO3 treatments are 73.4, 148.0 and 163.6% higher than that of no-irrigated and no-fertilized treatment, suggesting that both irrigation and fertilizer application contribute to remarkable increase of crop yield. In all treatments, the highest water use efficiency (WUE, 7.24 kg h m−2 mm−1) and grain yield (3286 kg h m−2) consistently occurred in the treatment with 90 mm irrigation plus fertilizer NH4HCO3 and elevated CO2 concentration (54.5 μmol mol−1), suggesting that this combination has an integrated beneficial effect on improving WUE and grain yield of spring wheat. These results may offer help to maintain and increase the crop yields in semi-arid areas.  相似文献   

8.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

9.
Crop simulation models can provide an alternative, less time-consuming and inexpensive means of determining the optimum crop N and irrigation requirements under varied soil and climatic conditions. In this context, two dynamic mechanistic models (CERES (Crop Environment REsource Synthesis)-Wheat and CropSyst (Cropping Systems Simulation Model)) were validated for predicting growth and yield of wheat (Triticum aestivum L) under different nitrogen and water management conditions. Their potential as N and water management tool was evaluated for New Delhi representing semi-arid irrigated ecosystems in the Indo-Gangetic Plains. The field experiment was carried out on a silty clay loam soil at the Research Farm of the Indian Agricultural Research Institute, New Delhi, India during 2000–2001 to collect the input data for the calibration and validation of both the models on wheat crop (variety HD 2687). The models were evaluated for three water regimes [I4 (4 irrigations within the growing season), I3 (3 irrigations within the growing season) and I2 (2 irrigations within the growing season)] and five N treatments (N0, N60, N90, N120 and N150). Both the models were calibrated using data obtained from the treatments receiving maximum nitrogen and irrigations, i.e., N150 and I4 treatments. The models were then validated against other water and nitrogen treatments. For performance evaluation, in addition to coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Wilmot's index of agreement (IoA) were estimated. Both CERES-Wheat and CropSyst provided very satisfactory estimates for the emergence, flowering and physiological maturity dates. For CERES-Wheat overall prediction (pooled result of the three water regimes) of grain yield was satisfactory with significant R2 values (0.88). The model, however, under estimated the biomass under all water regimes and N levels except for N0 level, under which biomass was overpredicted. CropSyst predicted yield and biomass of wheat more closely than CERES-Wheat. The combined RMSE for the three water regimes between predicted and observed grain yield was 0.36 Mg ha−1 for CropSyst as compared to 0.63 Mg ha−1 for CERES-Wheat. Similarly, RMSE between observed and predicted biomass by CropSyst was 1.27 Mg ha−1 as compared to 1.94 Mg ha−1 between observed and predicted biomass by CERES-Wheat. Wilmot's index of agreement (IoA) also indicated that CropSyst model is more appropriate than CERES-Wheat in predicting growth and yield of wheat under different N and irrigation application situations in this study.  相似文献   

10.
The cost and scarcity of water is placing increasing pressure on Australian dairy farmers to utilise water for forage production as efficiently as possible. This study aimed to identify perennial forage species with greater water-use efficiency (WUE) than the current dominant species, perennial ryegrass (Lolium perenne L.). Fifteen perennial forage species were investigated under optimum irrigation and two deficit irrigation treatments, over three years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Under optimal irrigation, there was a nearly twofold difference in mean WUEt (total yield/evapotranspiration) between forages, with kikuyu (Pennisetum clandestinum Hochst. ex. chiov.) having the highest (27.3 kg ha−1 mm−1) and birdsfoot trefoil (Lotus corniculatus L.) the lowest (14.8 kg ha−1 mm−1). Kikuyu was also the most water use efficient forage under the extreme deficit irrigation treatment, although its mean WUEt declined by 15% to 23.2 kg ha−1 mm−1, while white clover (Trifolium repens L.) in the same treatment had the largest decline of 44% and the lowest WUEt of only 8.8 kg ha−1 mm−1. In order to maximise WUE for any forage, it is necessary to maximise yield, as there is a strong positive relationship between yield and WUEt.  相似文献   

11.
The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.  相似文献   

12.
The effect of watering up to approximately 100% of volumetric available soil water on total biomass, nitrogen (N) balance, and market yield of broccoli crops (Brassica oleracea L. convar. botrytis var. italica Plenck, cv. Emperor) was studied. The experiment was carried out in a microplot field installation on two soil types (alluvial loam and loessal loam) under spring and autumn cultivation and consisted of three soil water regimes: plants received 21 mm of water by irrigation until the soil moisture reached 75% of the available soil water (ASW), treatment 1; 42 mm after the soil moisture reached 55% ASW, treatment 2; and 63 mm after the soil moisture reached 35% ASW, treatment 3. The ASW of the three treatments was measured at a depth of 0.15 m. The total plant mass was significantly affected by the irrigation strategy on the loessal loam in spring and on the alluvial loam in autumn. The total mass and head mass were lowest when water was applied at 75% ASW in spring and autumn. Calculations of N-balances showed that N losses were large, i.e. more than 70 kg·ha–1 in spring and 130 kg·ha–1 in autumn on the alluvial loam in treatment 1, and were only slightly affected by the irrigation strategy on the loessal loam.Communicated by R. Evans  相似文献   

13.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

14.
This study was aimed to investigate dual effects of irrigation regimes and N fertilizer rates on some agronomic traits (with emphasis on yield qualitative and quantitative characteristics) and finding optimized irrigation level and N application rate for two canola (Brassic napus L.) cultivars. For this purpose, two variety of canola (Zarfam and Modena), four irrigation regimes including 30%, 45%, 60% and 75% (I1-I4) of maximum allowable depletion (MAD) of available soil water (ASW) and four nitrogen rates (viz. 0, 90, 180 and 270 kg N ha−1 (N1-N4) were involved in Karaj, Iran for two successive years (2007-2008). Our results revealed special fertilizer threshold for each irrigation regime in respect to seed yield. Response rate to fertilizers was ceased in lower fertilizer rates by prolonging irrigation. The response rate showed a decrease of 15.4%, 17.2% and 30.7% in I2, I3 and I4 in comparison with I1, but I2 response to fertilizer ceased in higher N rate as Ncritical (189.8 kg N ha−1). This implies that I2 improved response of canola cultivars to N fertilizer, which was accompanied by its higher WUE. Also, all estimated Ncriticals for all irrigation levels were higher than the current recommendation of 130 kg N ha−1. This show the capability of increasing canola cultivars yield in study region by reasonable increasing of fertilizer rate (decreasing gap between recommended N rate and estimated values) in advisable irrigation regime (I2). Cultivars tended to respond similarly to irrigation and nitrogen for seed yield in both years, but Zarfam was more efficient than Modena in respect to response to diverse treatments.  相似文献   

15.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

16.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

17.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

18.
This study was conducted in order to determine the effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency (IWUE) and net return. The experiments were carried out in the conditions of Eskisehir in Central Anatolian part of Turkey, between 2003 and 2005, with cv. Dual Large F1 tomatoes (Lycopercion esculentum L). The maximum yield of 121.1 t ha−1 was obtained from the treatment in which both the lateral and row spacing were 1 m, and irrigated with water amount based on the percentage of canopy cover. The seasonal irrigation water amount of the treatment was 551 mm. Tomatoes yield of 109.9 t ha−1 was obtained under conditions of 491 mm seasonal irrigation water applied for the 2-m lateral spacing in which two plant rows (twin rows) were planted 0.35 m on either side of the lateral with a row spacing of 0.70 m across the drip lateral and 1.30 m in the interrow between each set of twin rows. Although water saving of 60 mm and investments economy of 40% were provided from the twin-row design, the yearly return of the design including one lateral for each row was US$ 1590 ha−1 higher than that the return of the twin-row design. The method of determination of irrigation water amount based on the percentage of canopy cover appeared to be the most reasonable and effective one in terms of the yield and IWUE. On the other hand, the maximum irrigation water use efficiency (22.3 kg m3) was obtained from 2-m lateral spacing and the percentage of canopy cover for calculation of the amount of irrigation water applied. Thus, canopy cover may be used successfully at any lateral design conditions.  相似文献   

19.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

20.
Knowledge of crop production in suboptimal environmental conditions not only helps to sustain crop production but also aids in the design of low-input systems. The objective of this study was to evaluate the effects of water stress imposed at low-sensitive growth stages (vegetative, reproductive, and both vegetative and reproductive) and level of nitrogen (N) supply (100 and 200 kg ha−1) on the physiological and agronomic characteristics of two hybrids of maize (Zea mays L.). A two-site field experiment was carried out using a randomized complete block design with three replications and a split-factorial arrangement. A water deficit (WD) was induced by withholding irrigation at different stages of crop development. The results showed that proline content increased and the relative water content, leaf greenness, 100-kernel weight and grain yield decreased under conditions of WD. The highest IWUE was obtained when maize endured WD at vegetative stage at two sites. The limited irrigation imposed on maize during reproductive stage resulted in more yield reduction than that during vegetative stage, compared with fully irrigated treatment. The 100-kernel weight was the most sensitive yield component to determine the yield variation in maize plant when the WD treatments were imposed in low-sensitive growth stages. The results of the statistical regression analysis showed liner relationships between RGR during a period bracketing the V8 or R3 stages and 100-kernel weight in all the WD treatments. The increase of N supply improved yield and IWUE when maize plant endured once irrigation shortage at vegetative stage. But, the performance of high N fertilizer reduced and eliminated when water deficit imposed once at reproductive stage and twice at vegetative and reproductive stages, respectively. Furthermore, the response of T.C647 hybrid to increase of N supply was stronger than S.C647 hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号