首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
噁草酮在液相中的光化学降解研究   总被引:3,自引:1,他引:3  
以高压汞灯为光源 ,研究了草酮在环己烷、甲醇、乙腈、丙酮及水溶液中的光化学降解。结果表明 :在环己烷、甲醇、乙腈、水中 ,草酮光降解效应显著 ,其半衰期分别为 4 .4 5、15 .34、5 7.5 8、5 4.6 9min;草酮在丙酮溶剂中降解缓慢 ,半衰期为 2 93.83min;丙酮对草酮在水中的光解有显著的光敏作用 ,光敏效应与丙酮的量显著相关 ,光敏效率最高达 95 .84 %。  相似文献   

2.
恶草酮在液相中的光化学降解研究   总被引:7,自引:1,他引:7  
以高压汞灯为光源,研究了恶草酮在环己烷,甲醇,乙腈,丙酮及水溶液中的光化学降解,结果表明,在环己烷,甲醇,乙腈,水中,恶草酮光隆解效应显,其半衰期分别为4.45,15.34,57.58,54.69min;恶草酮在丙酮溶剂中降解缓慢,半衰期为293.83min,丙酮对恶草酮在水中的光解有显的光敏作用,光敏效应与丙酮的量显相关,光敏效率最高达95.84%。  相似文献   

3.
丙炔氟草胺的水解及光解特性研究   总被引:1,自引:1,他引:0  
为深入了解丙炔氟草胺的环境化学行为,通过室内模拟试验研究了其在不同条件下的水解和光解特性。结果表明:15℃下,初始质量浓度为2 mg/L的丙炔氟草胺在pH值为5、7和9的缓冲溶液中的水解半衰期分别为63.00、33.00和28.50 h,即其在碱性条件下水解最快;中性(pH 7)条件下,丙炔氟草胺在15、25和35℃下的水解半衰期分别为33.00、23.10和8.88 h,表明其水解受温度影响,温度越高,水解速率越快;丙炔氟草胺在河水中的水解速率高于在自来水和蒸馏水中的水解速率,3种条件下的半衰期分别为2.70、6.03和19.80 h。300 W汞灯照射下,丙炔氟草胺在碱性条件下的光解速率大于在酸性和中性条件下,半衰期分别为0.03、0.45和0.44 h;此外,丙炔氟草胺在不同有机溶剂中的光解速率顺序依次为甲醇 > 乙酸乙酯 > 正己烷 > 乙腈 > 丙酮;其在不同光源下的光解速率依次为500 W汞灯 > 300 W汞灯 > 氙灯。研究结果可为丙炔氟草胺的环境风险评价提供参考。  相似文献   

4.
己唑醇的光化学降解   总被引:4,自引:1,他引:4  
以低压汞灯为光源研究了己唑醇在溶液中的光化学降解。结果表明,在365 nm紫外光照射下,己唑醇在正己烷中很稳定,说明己唑醇在自然光下难以降解;在254 nm光照下己唑醇在丙酮、水、甲醇、乙酸乙酯、正己烷中发生光解,不同溶剂中的光解速率为:甲醇>正己烷>乙酸乙酯>水>丙酮。FeCl3、H2O2、FeCl3-H2O2、β-环糊精等光催化剂能加快己唑醇在紫外光下的降解,在本研究条件下,其催化能力为FeCl3-H2O2>β-环糊精>H2O2>FeCl3。对降解机理进行分析,认为己唑醇在溶液中是通过产生羟基自由基(HO·)而发生光解的。  相似文献   

5.
嘧菌酯在水和有机溶剂中的光化学降解   总被引:1,自引:0,他引:1  
以500 W氙灯为光源,研究了嘧菌酯在水和有机溶剂中的光化学降解动态及其影响因素。结果表明:当质量浓度为5 mg/L时,嘧菌酯在纯水中光解的半衰期为5.8 h,在2~20 mg/L范围内,其光解速率随初始质量浓度的增大而降低;嘧菌酯在不同介质中的光解速率从大到小依次为乙腈水甲醇正己烷丙酮,其半衰期分别为4.8、5.8、11.5、12.1和23.5 h;硝酸盐对嘧菌酯在水中的光解具有光敏化作用,当NO-3质量浓度为1、2、10和20 mg/L时,其半衰期分别为5.5、5.1、4.5和3.9 h;在1~2 mg/L质量浓度下,NO-2对嘧菌酯在水中的光解具有光敏化作用,而在10~20 mg/L时则表现为光淬灭作用;Fe3+及表面活性剂十二烷基硫酸钠(SDS)对嘧菌酯在水中的光解具有光敏化作用,而腐殖酸和Fe2+则对其表现为光淬灭作用。研究结果可为嘧菌酯的科学合理使用及其环境风险评估提供参考。  相似文献   

6.
为明确2,4-滴异辛酯的环境行为规律,采用室内模拟试验方法,研究了2,4-滴异辛酯在不同温度、pH值、水体及初始浓度下的水解特性及其在不同pH值、水体、光源和初始浓度下的光解特性。结果表明:中性 (pH = 7) 条件下,初始质量浓度为5 mg/L的2,4-滴异辛酯在15、25 和35 ℃ 下的水解半衰期分别为346.6、231.0和173.3 h;25 ℃下,5 mg/L的2,4-滴异辛酯在pH值分别为4、7 和9 的缓冲溶液中的水解半衰期分别为77.0、231.0 和138.6 h;2,4-滴异辛酯在稻田水、自来水和河水中的水解速率高于其在蒸馏水中的水解速率,4 种条件下的半衰期分别为23.1、25.7、40.8 和63.0 h;初始质量浓度分别为1、3和5 mg/L的2,4-滴异辛酯在pH值为7的缓冲溶液中的水解半衰期分别为231.0、173.3和138.6 h。300 W汞灯照射下,2,4-滴异辛酯在酸性条件下的光解速率大于其在中性和碱性条件下,半衰期分别为49.5、77.0 和138.6 h;2,4-滴异辛酯在河水和稻田水中的光解速率高于其在自来水和蒸馏水中的光解速率,4 种条件下的半衰期分别为6.7、7.6、43.3 和46.2 h;2,4-滴异辛酯在不同光源下的光解速率依次为500 W汞灯 > 300 W汞灯 > 500 W氙灯;初始质量浓度分别为1、3和5 mg/L的2,4-滴异辛酯在pH值为7的缓冲溶液中的光解半衰期分别为63.0、43.3和40.8 h。2,4-滴异辛酯水解及光解的主要产物是2,4-滴,其降解机制主要是酯水解反应。研究结果可为2,4-滴异辛酯的合理使用及其环境风险评估提供参考。  相似文献   

7.
实验室条件下,利用高效液相色谱研究了大黄酚在水中的光解特性。结果表明:大黄酚在水中光解符合一级动力学方程,25℃下,光照强度为4000 lx时,初始质量浓度为2.0、5.0、10.0mg/L大黄酚的半衰期分别为66、239、433h,即初始质量浓度越高,降解时间越长;5.0mg/L大黄酚在8000 lx光照强度下的半衰期为77h,说明光照强度越大,降解越快;在pH值为4、7、9的缓冲溶液中,5.0mg/L大黄酚的半衰期为107、71、3h,即偏酸条件对大黄酚的水中光解有一定的抑制作用,偏碱环境可显著促进大黄酚的水中光解。根据我国农药的光解特性等级划分标准,大黄酚在水中的光解性能为难光解。  相似文献   

8.
3,5-二氯苯胺 (3,5-DCA) 是二甲酰亚胺类杀菌剂 (DCFs) 在环境和植物中的主要降解代谢产物,比其母体化合物具有更强的毒性和持久性。本研究通过室内模拟试验,利用气相色谱-质谱联用仪 (GC-MS) 和高效液相色谱 (HPLC),研究了3,5-DCA的光解和水解特性。结果表明:初始质量浓度为5 mg/L的3,5-DCA在氙灯和紫外灯下光解的半衰期分别为49.5 和11.6 min;在中性、酸性和碱性条件下光解的半衰期分别为9.9、168和10.7 min;在甲醇、乙腈、正己烷中光解的半衰期分别为4.10、2.69和0.58 h。进一步研究发现,3,5-DCA在正己烷中的光解产物为单脱氯产物。3,5-DCA在中性、酸性和碱性条件下的水解半衰期分别为40.8、77.0和86.6 d。不同浓度的表面活性剂十二烷基磺酸钠 (SDS) 和十六烷基三甲基溴化铵 (CTAB) 溶液均可抑制3,5-DCA的水解,其中CTAB的抑制效果强于SDS。研究结果有助于更全面地了解二甲酰亚胺类杀菌剂的环境归趋,可为其合理使用及环境安全性评价提供数据支持。  相似文献   

9.
乙草胺在水中的光化学降解   总被引:14,自引:2,他引:12  
以高压汞灯、氙灯、自然光为光源 ,研究了乙草胺在不同类型水中的光解动态。结果表明 :乙草胺的光量子产率低 ;高压汞灯光照下 ,乙草胺在水中的光解速度为纯水 >河水 >塘水 >稻田水 ,其光解率与水介质的 pH呈正相关 ;不同光源照射下 ,乙草胺于纯水中的光解速率有显著的差异 ,表现为高压汞灯 >氙灯 >自然光 ,同时其光解产物也存在明显的不同。  相似文献   

10.
以高压汞灯和太阳光为光源,以不同波长滤光片处理得相应波长区域,研究了乙草胺在水中的光解动态。结果表明:在胡敏酸存在下,乙草胺的光解动态符合一级动力学规律,其光解速度随着照射光波长的延长而减慢,光解半衰期延长,与未用滤光片处理的对照相比,差异极显著,表明乙草胺在水中的光解速度与照射光波长关系极大。  相似文献   

11.
以紫外光(254 nm)为光源,研究了氰氟草酯及其活性代谢产物氰氟草酸(ACID)在不同水溶液中的光化学降解。结果表明:氰氟草酯及ACID在pH 5.0的缓冲溶液和pH 6.8的去离子水中易发生光解,丙酮的存在对氰氟草酯及ACID的光解有延缓作用。通过GC-MS和HPLC鉴定了氰氟草酯及ACID光解后的部分产物,从而推测了其可能的光解途径。  相似文献   

12.
噻呋酰胺的光解和水解特性研究   总被引:1,自引:1,他引:0  
为了明确噻呋酰胺的环境行为规律,采用室内模拟试验方法,研究了噻呋酰胺在不同条件下的光解和水解特性。结果表明:紫外灯照射下,噻呋酰胺在碱性条件下光解速率大于中性和酸性条件下的;不同溶剂中,噻呋酰胺的光降解速率依次为正己烷 >乙腈 >甲醇 >乙酸乙酯 >超纯水;三价铁离子、二价铁离子以及腐殖酸均能抑制噻呋酰胺的光降解。中性条件下,噻呋酰胺水解速率最快,同时,噻呋酰胺的水解受温度影响,温度越高,水解速率越快,平均温度效应系数1.39~2.23;表面活性剂十六烷基三甲基溴化铵(CTAB)和十二烷基磺酸钠(SDS)均可抑制噻呋酰胺在水中的降解。  相似文献   

13.
实验室条件下,采用高效液相色谱法研究了东莨菪内酯在水溶液中的光解特性以及初始质量浓度、光源、pH值和温度等因素对其光解的影响。结果表明,东莨菪内酯在水溶液中的光解均符合一级动力学方程。在初始质量浓度为5~40 mg/L范围内,其光解速率随初始质量浓度的增大而降低;在不同光源条件下,其光解速率从大到小依次是:500 W高压汞灯18 W紫外灯500 W氙灯;在pH值为5~9的缓冲溶液中,其光解半衰期随pH值的升高而降低,pH为9时的光解半衰期最短,为4.81 h;在5~65℃范围内,其光解速率随温度升高呈先升高后降低趋势,于15℃时达到最大值。研究表明,东莨菪内酯在水溶液中的光解与其初始质量浓度、光源、pH值和温度相关。所得结果可为其环境风险评价提供参考。  相似文献   

14.
溴虫腈在不同溶剂中的光化学降解   总被引:3,自引:3,他引:0  
研究了高压汞灯光源下溴虫腈在不同溶剂中的光化学降解特性及其影响因素。在室内模拟条件下,初始质量浓度为2 mg/L的溴虫腈在纯水中的光解半衰期为25.86 min,在1~10 mg/L范围内,其光解速率随初始浓度的增大而降低;溴虫腈在pH值为5、7和9的缓冲溶液中的光解半衰期分别为42.52、24.49和32.39 min,即其在中性条件下光解最快;不同形态含氮离子(NO2-、NO3-、NH4+)对溴虫腈的光解均表现为抑制作用,且在离子质量浓度<20 mg/L时,NO3-、NO2-的抑制作用较强,≥20 mg/L时则NH4+的抑制作用较强;溴虫腈在不同有机溶剂中的光解速率从大到小依次为:正己烷>甲醇>乙酸乙酯>丙酮,其光解速率与有机溶剂的极性大小无关。研究结果可为溴虫腈的环境风险评价提供参考。  相似文献   

15.
在实验室条件下,采用高效液相色谱和高效液相色谱-串联质谱研究了唑啉草酯在不同条件下的水解和光解特性。结果表明:在pH值分别为4.0、7.0和9.0的缓冲溶液中,25 ℃时唑啉草酯的半衰期分别为347、40.8和1.08 h,50 ℃时则分别为57.8、11.6和0.498 h,均为易水解;唑啉草酯在碱性条件下易水解,酸性条件下水解较慢;其水解速率随温度升高而升高,温度效应系数为2.18~6.00。在模拟太阳光氙灯辐射下,唑啉草酯在缓冲溶液中的光解速率随其pH值的升高而加快,在pH值为8.0时最短,为10.0 h;唑啉草酯在自然水体中的光解速率依次为池塘水 > 稻田水 > 河水 > 纯水,4种条件下的半衰期分别为5.17、7.79、8.56和38.5 h。唑啉草酯水解的主要产物是 M2 (8-(2,6-二乙基-4-甲基苯基)-9-羟基-1,2,4,5-四氢吡唑[1,2-d][1,4,5]噁二氮杂卓-7-酮),其降解机理主要是酯水解反应, M2 在光照条件下进一步降解,表明光解为唑啉草酯降解的一个重要途径。研究结果可为唑啉草酯在水体中的环境行为及其环境安全性评价提供参考。  相似文献   

16.
采用叶片浸渍法和紫外分光光度法研究了锡兰肉桂Cinnamomum zexlanicum Nees丙酮提取物对棉铃虫Heliothis armigera (Hübner)的毒力及其代谢酶活性的影响,旨在为进一步深入了解锡兰肉桂的杀虫活性 及其在有害生物防治中的开发应用提供理论依据。试验结果表明,锡兰肉桂丙酮提取物对棉铃虫具有较强的毒杀作用,处理后72 h的LC50和LC95值分别为5.16 mg/mL和27.26 mg/mL,其13.33 mg/mL对棉铃虫的48 h和72 h校正死亡率分别为69.8%和80.2%,其6.67 mg/mL对棉铃虫的72 h校正死亡率为64.0%。锡兰肉桂丙酮提取物对棉铃虫酯酶、羧酸酯酶、酸性磷酸酯酶和碱性磷酸酯酶均具有明显的抑制作用,作用大小随处理浓度增加而增强。  相似文献   

17.
Hydrolysis and photolysis of flumioxazin in aqueous buffer solutions   总被引:2,自引:0,他引:2  
To determine the degradation rates and degradation products of the herbicide flumioxazin in aqueous buffer solutions (pH 5, 7 and 9), its hydrolysis and photolysis were investigated at 30 degrees C in the dark, and in a growth chamber fitted with fluorescent lamps simulating the UV output of sunlight. The rate of hydrolysis of flumioxazin was accelerated by increasing pH. The t(1/2) values at pH 5, 7 and 9 were 16.4, 9.1 and 0.25 h, respectively. Two degradation products were detected and their structural assignments were made on the basis of LC-MS data. Degradation product I was detected in all buffer solutions while degradation product II was detected in acidic buffer only. Both degradation products appeared to be stable to further hydrolysis. After correcting for the effects of hydrolysis, the photolytic degradation rate also increased as a function of pH and was approximately 10 times higher at pH 7 than that at pH 5, showing t(1/2) values of 4.9 and 41.5 h, respectively. Degradation products formed by photolysis were the same as those formed by hydrolysis. Flumioxazin was degraded more extensively at high pH and should degrade in surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号