首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
For mapping the Sec2 and Sec5 loci of rye which determine expression of 75K γ-secalins, a partial genetic map of chromosome 2R spanning 64 cM was constructed. The map was developed using an F2 population of 103 plants from a cross between two inbred lines. Both loci were mapped distally on the short arm of chromosome 2R and clearly tagged in relation to 12 restriction fragment length polymorphism (RFLP) markers. The Sec2 locus was localized between the Xiag57 and Xpsr109a loci in an 11 cM interval. The Sec5 locus co-segregated to Xiag57 and was tightly linked to the Sec2 locus at a map distance of 0.5cM.  相似文献   

2.
Most genes for resistance to barley leaf scald map either to the Rrs1 locus on the long arm of chromosome 3H, or the Rrs2 locus on the short arm of chromosome 7H. Other loci containing scald resistance genes have previously been identified using lines derived from wild barley, Hordeum vulgare ssp. spontaneum. A single dominant gene conditioning resistance to scald was identified in a third backcross (BC3F3) line derived from an Israeli accession of wild barley. The resistance gene is linked to three microsatellite markers that map to the long arm of chromosome 7H; the closest of these loci, HVM49, maps 11.5 cM from the resistance gene. As no other scald resistance genes have been mapped to this chromosome arm, it is considered to be a novel scald resistance locus. As the Acp2 isozyme locus is linked to this scald resistance locus, at 17.7 cM, Acp2 is assigned to chromosome 7H. Molecular markers linked to the novel scald resistance gene, designated Rrs15, can be used in breeding for scald resistance.  相似文献   

3.
Y. Weng  M. D. Lazar 《Plant Breeding》2002,121(3):218-223
The greenbug, Schizaphis graminum (Rondani), is the most economically damaging aphid pest of wheat in the southern Great Plains of the USA. In this study, the single, dominant greenbug resistance gene, Gb3, was molecularly tagged and genetically mapped using amplified fragment length polymorphism (AFLP) and simple sequence repeat(SSR) markers. Three AFLP loci were associated with the Gb3 locus in linkage analysis with 75 F2:3 families from the cross between two near‐isogenic lines (NILs) for Gb3,‘TXGBE273’ and ‘TXGBE281′. Two of these loci, XMgcc Pagg and Xmagg Patg cosegregate with Gb3 in the population analysed. Further analysis indicated that XMgcc Pagg and Xmagg Patg are specific for the Gb3 locus in diverse genetic backgrounds. Two SSR markers, Xgwm111 and Xgwm428 previously mapped in wheat chromosome 7D, were shown to be linked with Gb3, 22.5 cM and 33.1 cM from Gb3, respectively, in an F2 population of ‘Largo’בTAM 107’, suggesting that Gb3 is located in the long arm of chromosome 7D. The two AFLP markers cosegregating with Gb3 are valuable tools in developing molecular markers for marker‐assisted selection of greenbug resistance in wheat breeding.  相似文献   

4.
Y. Mano    M. Muraki    M. Fujimori    T. Takamizo    B. Kindiger 《Plant Breeding》2005,124(5):432-439
Two genetic linkage maps of Zea mays were constructed: one population comprised 94 F2 individuals of a dent ‘B64’ × teosinte (Z. mays ssp. huehuetenangensis) cross while the second consisted of 94 F2 individuals of a ‘B64’ × Caribbean flint ‘Na4’ cross. The level of polymorphism was higher in the ‘B64’ × teosinte combination than the ‘B64’ × ‘Na4’ combination. In the ‘B64’ × teosinte cross, a total of 338 amplified fragment length polymorphism (AFLP) and 75 simple sequence repeat (SSR) markers were mapped to 10 chromosomes, which covered 1402.4 cM. In the ‘B64’ × ‘Na4’ cross, a total of 340 AFLP and 97 SSR markers were mapped to 10 chromosomes, covering 1662.8 cM. Segregation distortion regions were found on chromosomes 4, 5 and 8 in the ‘B64’ × teosinte cross and on chromosome 9 in the ‘B64’ × ‘Na4’ cross. Comparison of the two maps revealed that the maize × teosinte map was 11.5% shorter than the maize × maize map. The maps generated in this study may be useful to identify genes controlling flooding tolerance.  相似文献   

5.
D. A. Laurie    N. Pratchett    C. Romero    E. Simpson  J. W. Snape 《Plant Breeding》1993,111(3):198-203
RFLP analysis of 105 doubled haploid lines from a cross between the barley varieties ‘Magnum’ and ‘Goldmarker’ located the denso dwarfing gene on the long arm of chromosome 3(3H), approximately 8 cM distal to the RFLP locus Xpsrl70. Lines with the denso gene showed a distinctive prostrate juvenile growth habit and tended to have later ear emergence times and lower plant grain weights, ear grain weights and 50 grain weights.  相似文献   

6.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

7.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

8.
Some sorghum cultivars are sensitive to organophosphate insecticides, which cause red to purple injury spots and, in severe cases, leaf death. Sensitivity to organophosphates is conditioned by a single locus on chromosome 5. We constructed a high-density genetic map around the locus, termed osr, using DNA markers, and delimited osr to a 377-kb region on the short arm of chromosome 5. Sequence analysis of this region predicted 19 gene candidates. Four of the candidates are homologous to a disease resistance NBS-LRR gene. mRNA-Seq analysis of gene expression and SNPs from two resistant cultivars (‘JN43’ and ‘Greenleaf’) and one sensitive cultivar (‘Nakei MS3B’) suggest that one or more members of this NBS-LRR gene family are osr. Our results suggested that the recessive allele of osr results in sensitivity to OP insecticides.  相似文献   

9.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

10.
In this study, we characterized and mapped a new and rare resistance gene (RphFT) in the Chinese barley variety ‘Fong Tien’. RphFT, a dominant gene, was mapped to chromosome 5HL at a genetic position of 142.1 cM using DArT‐seq markers. The gene was also confirmed to be present in Australian cultivar ‘Yagan’ based on allelic tests, and likely ‘Lockyer’ based on multipathotype tests. The genetic studies also confirmed the presence of Rph12 in Australian cultivar ‘Baudin’. Rph12 is also located on chromosome 5HL close to RphFT, and the two loci were confirmed to be independent. Gene RphFT is of limited breeding value because it is effective to only one pathotype of P. hordei, 220P+ +Rph13 in Australia; nevertheless, it may play a role in controlling leaf rust if used in combination with other Rph genes. The locus symbol Rph25 is recommended for RphFT in accordance with the rules and numbering system of barley gene nomenclature.  相似文献   

11.
To develop molecular markers against Pyrenophora teres f. teres in barley, a detached leaf assay was conducted on two DH populations with a set of 11 single conidial lines (SCLs). Out of these, three showed different reactions in the DH population ‘Uschi × HHOR3073’ and two in ‘(P x V) × HHOR9484’. For SCL ‘QLB’, a 1r : 1s (χ² = 2.78) segregation was observed in the population ‘Uschi × HHOR3073’. In contrast to this, a continuous variation was observed for the SCL ‘WvB’ and ‘d8_4’ in the DH population ‘Uschi × HHOR3073’ and for ‘AR’ and ‘net1840’ in ‘(P × V) × HHOR9484’. With respect to resistance to the SCL ‘QLB’, a single major gene was located on chromosome 7H, and for resistance against SCL ‘WvB’, two QTLs were detected on chromosome 3H and 7H, and against SCL ‘d8_4’, two loci were mapped on chromosome 3HS in ‘Uschi × HHOR3073’. In the DH population ‘(P x V) × HHOR9484’, one locus conferring resistance to the SCL ‘AR’ was located on chromosome 3H. For resistance to SCL ‘net1840’, two QTLs were mapped on chromosome 4H and 5H.  相似文献   

12.
Previous studies established that the Australian barley cultivar ‘Prior’ possessed resistance to Puccinia hordei (RphP), displaying the same specificity as an uncharacterized resistance in the differential cultivar ‘Reka 1’ (also possessing Rph2). Multipathotype tests confirmed the presence RphP in nine additional barley cultivars and indicated that RphP differed in specificity to the genes Rph1 to Rph15 and Rph18, plus the gene RphX present in the barley cultivar ‘Shyri’. RphP was inherited as a single dominant gene. Mapping studies using a doubled haploid population derived from ‘Chebec’/‘Harrington’ located RphP to the long arm of chromosome 7H, and demonstrated linkage with an restriction fragment length polymorphism marker (pTAG732), a resistance gene analogue marker (RLch4(Nc)), and two microsatellite markers (HVM11 and HVM49) at genetic distances of about 4‐10 cM. RphP showed linkage of 28 ± 4.3 cM with Rph3. RphP was designated Rph19, with the allele designation Rph19.ah. Previous studies have established that virulence for Rph19 occurs in many barley growing regions of the world.  相似文献   

13.
Genetic studies of F2 progeny from a cross between Aegilops tauschii accessions AUS18913 and CPI110856 revealed that Gli‐DtT1 is tightly linked with a γ‐gliadin gene at the Gli‐Dt7 locus located on the short arm of chromosome 1D. Acid‐polyacrylamide gel electrophoresis (A‐PAGE) used to examine the gliadins of this population revealed two genes that encode a ω‐gliadin (T1) protein and a novel γ‐gliadin protein. The ω‐gliadin (T1) protein and the novel γ‐gliadin protein cosegregated, while having 0.69 cM recombination with the other locus (Gli‐Dt1). N‐terminal sequences were used to further classify the proteins studied.  相似文献   

14.
Isoelectric focusing (IEF) and immunoblotting were used to detect genetic variants of malt endopeptidase (MEP1), an enzyme related to malting quality in barley and coded by the CepB locus on barley chromosome 3 (= 3H). A variant was found in a Turkish accession of wild barley (Hordeum vulgare ssp. spontaneum). The self progeny of a hybrid between this accession and the barley cultivar ‘Clipper’ were analyzed for recombination between the CepB locus and other isozyme loci. The estimates of recombination linked the CepB locus to an NADH diaphorase locus (Ndh2), which in turn was linked to the seedling esterase complex (Est1, Est2, and Est4) situated near the distal end of the long arm of chromosome 3. The Ndh2 locus was independent of two other NADH dehydrogenase loci (Ndh3, Ndh5) which were mapped on barley chromosome 5 (= 1H) in relation to the three hordein loci (Hor1, Hor2, and Hor3).  相似文献   

15.
Black rot is the most devastating disease of cauliflower worldwide causing severe damage to crop. The identification of markers linked to loci that control resistance can facilitate selection of plants for breeding programmes. In the present investigation, F2 population derived from a cross between ‘Pusa Himjyoti’, a susceptible genotype, and ‘BR‐161’, a resistant genotype, was phenotyped by artificial inoculation using Xcc race 1. Segregation analysis of F2 progeny indicated that a single dominant locus governed resistance to Xcc race 1 in ‘BR‐161’. Bulk segregant analysis in resistant and susceptible bulks of F2 progeny revealed seven differentiating polymorphic markers (three RAPD, two ISSR and two SSR) of 102 markers screened. Subsequently, these markers were used to genotype the entire F2 population, and a genetic linkage map covering 74.7 cM distance was developed. The major locus Xca1bo was mapped in 1.6‐cM interval flanked by the markers RAPD 04833 and ISSR 11635. The Xca1bo locus was located on chromosome 3. The linked markers will be useful for marker‐assisted resistance breeding in cauliflower.  相似文献   

16.
K. Williams    P. Bogacki    L. Scott    A. Karakousis  H. Wallwork   《Plant Breeding》2001,120(4):301-304
Seedlings of the barley line ‘B87/14’ were resistant to 22 out of 23 Australian isolates of Rhynchosporium secalis, the causal agent of leaf scald.‘B87/14’‐based populations were developed to determine the location of the resistance locus. Scald resistance segregated as a single dominant trait in BC1F2 and BC1F3 populations. Bulked segregant analysis identified amplified fragment length polymorphisms (AFLPs) with close linkage to the resistance locus. Fully mapped populations not segregating for scald resistance located these AFLP markers on chromosome 3H, possibly within the complex Rrs1 scald locus. Microsatellite and restriction fragment length polymorphism markers adjacent to the AFLP markers were identified and validated for their linkage to scald resistance in a second segregating population, with the closest marker 2.2 cM from the resistance locus. These markers can be used for selection of the Rrs.B87 scald‐resistance locus, and other genes at the chromosome 3H Rrs1 locus.  相似文献   

17.
Liu B.  H 《Plant Breeding》1987,98(3):266-267
The genes Ms2 for male sterility and Rht10 for dominant dwarfing located on the short arm of chromosome 4D in common wheat arc closely linked. Male sterile, dwarf F1 plants from the cross of male sterile‘Chinese Spring’× dwarf‘Ai-bian’were backcrossed with the variety‘Chinese Spring, From this offspring a spontaneous chromosome translocation was isolated resulting in a recombinant male sterile and dwarf genotype.  相似文献   

18.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

19.
A novel photoperiod response gene, designated Ppd-B2, was mapped to wheat chromosome arm 7BS, using a set of lines carrying various segments of 7BS from the early flowering breeding line ‘F26-70 7B’ in a background of the variety ‘Favorit’. The gene was 4.4 cM distal of the microsatellite locus Xgwm0537 and 20.7 cM proximal to Xgwm0255. In contrast to the well-characterized Ppd-1 genes, which require short days for expression, Ppd-B2 was detected when plants were exposed to a long photoperiod. The accelerated flowering produced by Ppd-B2 was correlated with increased grain protein content.  相似文献   

20.
Septoria tritici blotch (STB) is one of the most destructive foliar diseases in many of the wheat (Triticum aestivum) growing regions of the world. Gene Stb2, derived from cultivar ‘Veranopolis’, provides effective resistance against STB. In our attempts to refine the map location of this resistance gene we could not confirm a previous report that Stb2 is on wheat chromosome 3BS. Instead, based on characterization of the same doubled-haploid population used for the original mapping derived from a cross between Veranopolis and susceptible line RAC875-2, and linkage analysis of the resistance phenotype to previously mapped SSR loci, we report that Stb2 is located on the short arm of wheat chromosome 1B, flanked by microsatellite loci Xwmc406 and Xbarc008 (with Xwmc230 closely located) at map distances of 6 and 5 cM, respectively. Presence of the markers on chromosome arm 1BS was confirmed by analysis of nullisomic-tetrasomic lines. These three co-dominant markers can be used in wheat breeding programs to facilitate combining Stb2 with genes of interest. Other STB resistance genes, including Stb11, have been reported on wheat chromosome arm 1BS, with locus Xbarc008 as a diagnostic marker. Whether Stb2, Stb11 and the previously identified Stb11-like genes are the same, allelic, or different but closely linked has not been determined. In addition to STB, numerous genes for resistance to many other fungal pathogens have been reported on wheat chromosome arm 1BS, including those for yellow (or stripe) rust, leaf rust and common bunt. The approximate locations for all of these genes were added onto the Stb2 map based on published distances from common markers to provide a rough guide for future wheat improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号