首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同氮收获指数水稻基因型的氮代谢特征   总被引:4,自引:0,他引:4  
采用土培盆栽试验,以3个氮收获指数(NHI)有显著差异的水稻基因型4434(低NHI)、滇瑞302(中NHI)和余赤23(高NHI)为材料,研究了灌浆期叶片、穗颈和籽粒的氮代谢特点及与NHI的关系。结果表明,各基因型的籽粒产量、收获指数和籽粒氮积累量与NHI的变化一致,均以余赤231最大。花后植株氮素转运量表现为4434<滇瑞302<余赤231,基因型间差异极显著,而氮素转运率和转运氮的贡献率差异较小。成熟期水稻茎叶和籽粒的全氮含量、蛋白氮和非蛋白氮含量均表现为4434<滇瑞302<余赤231,全氮含量和蛋白氮含量存在显著差异,而非蛋白氮无显著差异;余赤231茎叶蛋白氮积累量显著低于4434和滇瑞302,而籽粒蛋白氮积累量显著升高,是高NHI水稻氮积累的主要特征。余赤231灌浆期叶片和籽粒谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)活性显著高于4434和滇瑞302,有利于叶片游离氨基酸合成及外运,使得穗颈节伤流强度和游离氨基酸含量升高,为籽粒氮素积累提供了物质基础;同时,较高的籽粒GS和GOGAT活性促进了籽粒蛋白质合成,提高了NHI。逐步回归表明,灌浆期较高的穗颈伤流游离氨基酸含量是高NHI水稻氮代谢的主要生理特征,与较高的花后氮转运量和籽粒蛋白氮积累量可共同作为水稻氮素高效管理和遗传改良的可靠指标。  相似文献   

2.
Summary Ten hexaploid winter triticale lines were grown for two cropping periods at three locations in western Switzerland. Averaged across the six environments, the differences between lines were statistically significant (P=0.05) for grain yield, above-ground biomass, N uptake, grain N yield, nitrogen harvest index, grain N concentration and straw N concentration. There were significant line x environment interactions for all traits. Grain yield and grain N concentration were inversely related (r=–0.74**). Diagrams in which grain yields were plotted against grain N concentration were used to identify lines with a consistently unusual combination of grain yield and grain N concentration. Despite comparable grain yields, Line 3 had a high grain N concentration, while that of Line 7 was low. Line 3 was superior to Line 7 in both N uptake and N harvest index. Averaged across environments and lines, the N harvest index was 0.73 which corresponds to N harvest indices reported for bread wheat in the same region. We considered the feasibility of developing triticale lines which would outperform the best recent ones in N uptake and partitioning. However, we doubted that this would bring about a marked increase in grain N concentration, because, in the long run, the expected genetic progress in grain yield will lead to a dilution of grain protein by grain carbohydrate increments.Abbreviations GNC grain N concentration - GNY grain N yield - GY grain yield - HI above-ground dry matter harvest index - NHI nitrogen harvest index - SNC straw N concentration - TB total above-ground biomass - TPN total plant N  相似文献   

3.
Waterlogging causes long‐lasting damage to wheat (Triticum aestivum). Root growth and respiration were investigated after heading in waterlogged, pot‐grown, wheat plants and also in hydroponically grown, wheat seedlings exposed to a hypoxic treatment. In the pot experiment, plants were subjected to 8 days of waterlogging after heading. This period of waterlogging resulted in reduced shoot and root growth through to maturity. The root CO2 emission rates of previously waterlogged and well‐drained plants were about 220 and 140 nmol g?1 per s, respectively, with the rate differences persisting from 10 days after anthesis through to maturity. In the hydroponic experiments, seedlings (Feekes stage 2.0) were exposed to root‐zone, hypoxic treatment for 10–19 days. The roots showed 27 % higher CO2 emission rates and 37 % higher O2 consumption rates, compared with untreated roots. In whole root systems, the high respiration rates found during hypoxic treatment disappeared during recovery under aerated conditions as a result of the appearance of newly initiated roots. However, measurements of the respiration of the previously hypoxic roots showed abnormally high respiration rates. In roots exposed to hypoxic treatment, total sugar concentrations were 3.6‐times higher than in untreated roots indicating that this elevation of sugar may be responsible for the continued high respiration rate. This study shows that roots exposed to waterlogging or to hypoxic treatments do not increase their weights and thus recover from the metabolic disturbances resulting from these treatments.  相似文献   

4.
The ability of a plant to modify its root distribution to exploit deeper stored soil water may be an important mechanism to avoid drought. This study aimed at assessing root distributions, variations in root length density (RLD) and percentage of root distribution, and the relevance of root traits for yield of drought‐resistant peanut genotypes under different available soil water levels. The experiment was conducted in the dry season during the years 2003/04 and 2004/05. Eleven peanut genotypes (ICGV 98300, ICGV 98303, ICGV 98305, ICGV 98308, ICGV 98324, ICGV 98330, ICGV 98348, ICGV 98353, Tainan 9, KK 60‐3 and Tifton‐8) and three soil moisture levels [field capacity (FC), 2/3 available soil water (AW) and 1/3 AW] were laid out in a split‐plot design with four replications. Roots were sampled by a core sampler at 37, 67 and 97 days after sowing (DAS). Root length was determined by a scanner and the WINRHIZO Pro 2004a software. RLD was calculated as the ratio of root length (cm) and soil volume (cm3). Graphical illustration of root distribution was constructed by merging RLD in the first and second soil layers (0–40 cm) as upper roots and pooling RLD at the third, fourth and fifth layers (40–100 cm) as lower roots. Pod yield, biomass and harvest index (HI) were recorded at harvest. A drought tolerance index (DTI) was calculated for each parameter as the ratio of the parameter under stress treatment to that under well‐watered conditions. Variations in RLD in 40 to 100 cm layer (RLD40 to 100 cm) were found under well‐watered conditions, and the peanut genotypes could be readily identified as high, intermediate and low for this trait. Changes in RLD in the 40 to 100 cm soil layer were found at 2/3 AW and were more evident at 1/3 AW. ICGV 98300, ICGV 98303, ICGV 98305, ICGV 98308 and KK 60‐3 were classified as drought responsive as they increased RLD in the deeper subsoil level in response to drought. In general, RLD under drought conditions was not related to biomass production. The ability to maintain the percentage of RLD (DTI for %RLD) was related to pod yield, DTI for pod yield and DTI for HI. ICGV 98300, ICGV 98303, ICGV 98305 exhibited high DTI (RLD40 to 100 cm) which may explain their high pod yield, DTI (PY) and DTI (HI). Based on these observations we classified them as drought‐avoiding genotypes.  相似文献   

5.
选用3个氮利用效率(NUE)和3个氮收获指数(NHI)显著不同的水稻基因型,在土培盆栽试验下,研究了施氮量(0kgN?ha-1、180kgN?ha-1和360kgN?ha-1)对水稻花后植株干物质和氮积累与转运的影响及与氮营养效率的关系。结果表明,施氮降低了水稻NUE和NHI,NUE和NHI差异分别以低氮和高氮为最大。施氮提高了水稻干物质和氮总积累量、花后积累量及转运量。不同NHI水稻花后干物质和氮转运率及转运贡献率随施氮量增加而增加,不同NUE水稻则降低。不同NUE水稻花前干物质积累和花后转运量差异最大,不同NHI水稻花后干物质积累和转运差异量最大。不同NUE水稻花后氮积累量差异最大,不同NHI水稻花后氮积累和转运差异最大。相关分析表明,水稻NUE与干物质积累总量、花后氮积累量、氮转运率和转运氮贡献率密切相关;而NHI与花后干物质转运量和转运氮贡献率的关系最大。因此,同一施氮量下,增加水稻干物质积累总量、降低花后氮积累量和促进花后氮高效转运是提高NUE的重要措施,提高花后干物质转运量和转运氮贡献率则有利于提高NHI。  相似文献   

6.
Field studies were conducted during the winter seasons of 1995–96 and 1996–97 at the Agricultural Farm of Aligarh Muslim University, Aligarh, India on mustard ( Brassica juncea L. Czern & Coss., var. Alankar) under non-irrigated conditions, to evaluate the effect of foliar spray of 200 p.p.m. ethrel (2-chloroethyl phosphonic acid) at flowering growth stage along with basal 0, 40, 80 or 120 kg N ha−1 on net photosynthetic rate (PN), stomatal conductance (CS), stomatal resistance (RS), leaf K content, relative water content (RWC), leaf area index (LAI) and total dry matter (TDM) production monitored at 20 days after spray application, and plant N content, seed N content, nitrogen harvest index (NHI), nitrogen yield merit (NYM), pods plant−1, 1000 seed weight, seed yield, biological yield, harvest index (HI), seed yield merit (SYM) and merit of genotype (MOG) at harvest. Results indicated that, at 0 or 40 kg N ha−1, ethrel did not produce any significance effect, but at basal 80 kg N ha−1, ethrel affected the parameters favourably with the exception of 1000 seed weight, HI, seed N and NHI. Ethrel-sprayed plants utilized N from the soil more effectively and showed increased NYM. Yield attributes, seed yield and merit of genotype (in terms of NYM and SYM) were also enhanced. Ethrel spray enhanced seed yield under water stress conditions mainly by increasing K uptake and retaining higher RWC, thereby decreasing RS and increasing LAI, PN and TDM production.  相似文献   

7.
Summary Changes in nitrogen (N) economy and N to dry matter (DM) relationships were studied for six cultivars of bread wheat (Triticum aestivum L.) released in Argentina at different times between 1912 and 1980. Experiments were performed on two successive years.N partitioning to reproductive organs was changed both at anthesis and at maturity. Grain N yield (GNY) was associated to both total N accumulated and N partitioning. Most of the changes produced by genetic improvement on N economy at maturity could be explained by parallel changes at anthesis. Neither biological N yield (BNY) at anthesis nor BNY at maturity showed any trend with the year of release of the cultivars.Grain N concentration (GNC) showed a negative trend with the year of release, and was inversely correlated to both grain yield (GY) and harvest index (HI). However, GNC was positively and significantly associated with NHI to HI ratio, indicating that the main reason for its behaviour along this century was the dilution of N on non N compounds.The N utilization efficiencies (NUE) for both GY and grain number were positively affected by breeding. Moreover, modern Argentinian cultivars are as efficient as the best cultivars showed by other authors.It is suggested that to increase GNC together with GY, breeders should improve N accumulation at anthesis maintaining high remobilization of vegetative N.  相似文献   

8.
It is necessary to clarify the nitrogen (N) demand characteristics with yield levels for wheat after rice in the middle and down reaches of the Yangtze River, which could provide theoretical basis for N fertilizer management. Based-on the multi-years and multi-sites wheat experiments in Jiangsu province, this study constructed the datasets of different yield levels derived from different varieties, N rates, densities, and sowing date experiments. N indicators including N requirement per ton grain (Nreq), dry matter accumulation (DMA), plant N accumulation (PNA), plant N concentration (PNC), straw N concentration (SNC), grain N concentration (GNC), harvest index (HI), N harvest index (NHI) and N nutrition index (NNI) were analyzed. The results showed that there were not significant differences in Nreq among the different yield levels, and the highest Nreq was middle-low yield with 27.8 kg t-1, while the lowest value was 24.8 kg t-1for low yield level. With the increase of yield levels, DMA, PNA and PNC all showed a gradually increasing trend during maturity stage, and there were significant differences among the different yield levels. There was a significant positive correlation between grain yield and PNA, the DMA and PNA increased with the increase of yield in the sowing-jointing stage, jointing-flowering stage and flowering-maturing stage, but the DMA and PNA proportion in different growth stages showed different trends. The SNC and GNC increased with the increase of yield levels. For SNC, there was no significant difference between the high yield and middle yield level, but it was significantly higher than the low-middle and low yield level. For GNC, there were significant differences among different yield levels except for the middle and low-middle yield level. The HI increased gradually with the increase of the yield levels, and its range was 0.39-0.49. The HI for low-middle and low yields were significantly lower than that of middle and high yield levels, while there were not significant differences in NHI among different yield levels. Its variation range was 0.60-0.96. The NNI gradually increased with the increase of the yield levels, and there was significant difference between different yield levels. The NNI of the high-yield level was higher, and some of the values were greater than 1 which indicating that some experiments had excessive nitrogen fertilizer supply. With the increase of the yield level, the Nreq increased first and then decreased, while the DMA, PNA, PNC, SNC, and GNC were gradual increased. The increase of SNC was higher than the GNC, therefore, the extravagant absorption of N by wheat should be avoided in field management. The variation ranges of the HI and NHI were consistent with previous studies. The higher DMA and PNA in the late growth stages were the main reasons for the high yield of wheat. The NNI could be a promising indictor in the field N management of wheat.  相似文献   

9.
Three varieties of Pea ( Pimm sativum L.) viz. EC33866 (early), P-116 (medium) and T-163 (late), differing in their flowering and maturity times, were taken for this study. The early variety recorded lower dry matter, CO2 exchange rate and lower yield. The harvest index (HI) was the highest (44 %) in this variety. Though medium and late varieties did not differ significantly in dry matter accumulation and pod yield, they differed in their HI. The HI in the medium variety is 42 % but in the late variety it is only 36%.
The late variety maintained high leaf area, leaf dry weight, high shoot/root, shoot/nodule and root/nodule ratios, increased nodule dry weight and maximum glycolate oxidase activity. But acetylene reduction activity was low, and the harvest index was lowest. On the other hand, in the early variety the dry matter accumulation was lowest but HI was highest. The major reasons for high HI in this variety were translocation of photosynthates to reproductive organs and lower photorespiration as indicated by low glycolate oxidase activity.  相似文献   

10.
A substantial proportion of ammonical fertilizers applied to lowland rice is lost as gaseous N from the soil–plant system. Besides various environmental factors, the low N use efficiency of flooded rice is also attributed to this factor. As atmospheric ammonia found in the leaf environment of the plants could also be responsible for differences in N use efficiency and fertilizer N losses from lowland rice, a greenhouse study was conducted on three rice cultivars varying in physio-morphological characteristics for their dry matter and nitrogen distribution to grains at maturity in response to ammonia (NH3) exposure at tillering and anthesis growth stages. The results revealed that ammonia exposure of plants at two growth stages did not affect the total dry matter and total N yield of the rice cultivars at maturity; however, the grain yield and grain N yield were negatively effected by NH3 exposure of the plants at anthesis. The variation observed in dry matter and N partitioning at maturity to grains/roots of the plants exposed to NH3 at anthesis indicated that the growth stage of the plants at which they are exposed to NH3 has an influence on N use efficiency of crop plants and subsequent vegetative as well as total N losses from the soil–plant system.  相似文献   

11.
Field beans of indeterminate (cv. Nadwiślański) and determinate (cv. Tibo) growth habits were grown on field plots with a density of 20, 40 and 80 plants m−2 at two levels of nitrogen fertilization: low (20 kg N ha−1) and very high (150 kg N ha−1). At the phase of intense pod growth the number and the dry matter weight of root nodules as well as their nitrogenase activity and some features of the plants growth were determined, and in the period of ripeness the components of seed yield were established.
It was found that increased density of sowing as well as the high level of nitrogen fertilization inhibited the growth and development of root nodules and limited their nitrogenase activity in both cultivars. Plants of both varieties were characterized by a similar potential of forming the root nodules, however, in plants of the cv. Tibo the nitrogenase activity of nodules was much lower than in the cv. Nadwiślański.
Increased population density of the plants has in both varieties given increased seed yield when calculated per m2 of the soil, compensating in excess the depression of the seed yield from one plant. Such compensation did not occur in the case of the depression of nitrogen fixation under intense nitrogen fertilization.  相似文献   

12.
种植密度、氮肥和水分胁迫对玉米产量形成的影响   总被引:20,自引:1,他引:20  
为阐明种植密度、氮肥和水分胁迫对不同玉米品种产量形成的影响,选用6个玉米品种,在两种密度(45 000株 hm-2和75 000株 hm-2)、两种施氮水平(纯氮112.5 kg hm-2和337.5 kg hm-2)和两种水分(前期干旱控水和正常灌水)处理下进行大田试验,调查玉米源库性状的主要生理参数和籽粒产量。结果表明,在环境压力较小时(低密度、高氮和正常灌水),玉米品种间籽粒产量、源性状(叶面积指数、穗位叶净光合速率和群体源供应能力)、库性状(群体库容量)、源库协调性状(群体库源比值、籽粒灌浆速率和收获指数)以及成熟期干物质积累量和吐丝期至成熟期干物质积累量差异较小,而逆境胁迫下(高密度、低氮和干旱),差异较大。环境压力较大时(高密度、低氮和干旱),叶面积指数、群体源供应能力、成熟期干物质积累量、吐丝期至成熟期干物质积累量、群体库容量和收获指数与籽粒产量呈显著或极显著正相关。由此说明,在玉米品种产量改良中要强化逆境人工选择,以适应自然选择,改善玉米品种逆境下的群体源库性状,增强吐丝期至成熟期叶片的光合生产效率,强源促库,提高逆境下的生产能力和适应性。  相似文献   

13.
In this study, we examined responses of maize hybrids differing in susceptibility to soil compaction and drought in the case of their separate or combined action. We ran field and greenhouse experiments and determined effects on grain yield, biomass, weight of 1000 grains, shoot and roots dry matter (DM), shoot-to-roots ratio, harvest index, plant height, emergence index, leaf area and greening and root number and length. Individual and combined effects of both stresses were observed in the field and greenhouse. Compared with plants growing in loose soil and optimal irrigation (LI), the resistant hybrids in treatments HI, LD and HD showed a smaller reduction in GY, BY, S, R, RN and RL than the sensitive. In both groups, stress influence on HA, W-1000, LA and SPAD was smaller and the differences were insignificant. Compared with LI treatment, the roots of LD, HI and HD increased their DM, number and length in the upper level of the soil profile and the number of roots developed at 0–30° and 30–60° in relation to the root main axis. Analysis of those traits in the hybrids resistant and sensitive to both stress factors enabled to explain a defence response. Our study demonstrated that soil compaction and soil drought, which usually occurs simultaneously, caused significant changes in components of plant yield and showed plant plasticity in response to environmental factors under natural conditions.  相似文献   

14.
综合农艺管理对夏玉米氮效率和土壤硝态氮的影响   总被引:11,自引:0,他引:11  
通过对播种方式、播种时间、施肥时期及用量和收获时间等农艺措施的优化组合,设置综合农艺管理和施氮量试验,研究了对夏玉米氮效率和土壤硝态氮积累的影响。结果表明,随着施氮量的增加,氮肥偏生产力显著提高,氮肥农学利用效率显著下降,氮素利用效率和氮收获指数先增加后降低,施氮184.5 kg hm-2时达到最高;施氮显著提高了花前氮素积累量和0~30 cm土层硝态氮累积量;0~30 cm土层硝态氮累积量随施氮量的增加逐渐提高,即单一氮肥运筹下,氮效率不能持续提高,且土壤硝态氮积累量却因增施氮肥而逐渐升高。综合农艺管理的再高产高效处理(Opt-2)的氮肥偏生产力、氮肥农学利用效率、氮素利用效率和氮收获指数均最高;花前氮素积累量较低,收获后植株氮素积累总量高于农民习惯处理且低于超高产处理;玉米收获后,0~30 cm、30~60 cm和60~90 cm土层硝态氮累积量均低于农民习惯处理,即通过优化的综合农艺管理,夏玉米氮效率显著提高,生育期内氮素积累趋势合理,玉米收获后土壤硝态氮积累量较低。  相似文献   

15.
The contribution of improvements in morphophysiological traits to increased gram yield in spring wheat (Triticum aestivum L.) and the achievements of breeding for high bread-making quality in Finland since the 1930s were assessed. Ten wheat cultivars released in Finland between 1939 and 1990 were evaluated in Held experiments at the Viikki Experimental Farm, University of Helsinki, Finland (60°13′N) in 1991 and 1992. Twenty-two traits representing maturity, plant architecture, plant stand structure and N accumulation, and nine quality traits, including protein concentration and protein quality, were assessed. A 20 % increase in grain yield arising from cultivar improvement was associated with a 7 % reduction in height, an 80 % improvement in lodging resistance, and a 15 % higher harvest index (HI). Ear weight was 30 % higher in the modern cultivars. The higher ear weight of the modern cultivars was a result of more grains per ear and a higher spikelet weight. No decrease in vegetative phytomass in modern cultivars was recorded in this study. Grain yield and total N accumulation increased simultaneously and a positive correlation between year of cultivar release and nitrogen index was established. Although use of high N fertilizer application rates resulted in significantly improved baking quality of the flour, no trend between baking quality and year of cultivar release was recorded. The relatively low HI recorded in this study suggests that further yield increases art-likely to be achieved by selecting for higher HI.  相似文献   

16.
籼稻品种的氮素累积量与根系性状的关系   总被引:13,自引:3,他引:10  
2001和2002年,在群体水培条件下,分别以国内外不同年代育成的籼稻代表品种88个和122个为材料,测定植株的干物重、全氮含量以及13个有关根系性状,采用组内最小平方和的动态聚类方法对供试籼稻品种成熟期的氮素累积量进行聚类,分析不同氮素累积量类型籼稻品种根系有关性状的差异以及影响籼稻品种氮素累积量的主要根系性状。结果表明:(1) 供试籼稻品种成熟期氮素累积量差异很大,2001年A、B、C、D、E、F类籼稻品种的氮素累积量分别为10.40、13.47、16.17、18.50、20.72、25.13 g·m-2,2002年分别为8.53、12.44、15.80、19.87、25.15、33.31 g·m-2,类型间的差异均达显著水平;(2)全生育期天数和每日氮素吸收量对品种成熟期氮素累积量均有显著影响(R2 = 0.960~0.996),并且后者显著大于前者;(3)成熟期氮素累积量与单株不定根数、单株根干重、单株不定根总长、单株根系总吸收面积、单株根系活跃吸收面积、单株根系α-NA氧化量等全株根系性状关系密切,与单条不定根长、单条不定根粗、单条不定根重等单条不定根性状和单位干重根系总吸收面积、单位干重根系活跃吸收面积等单位干重根系活性指标关系不密切;(4)多元逐步回归分析表明,单株根干重、冠根比、单株不定根数和单株不定根总长是影响籼稻品种氮素累积量的主要根系性状(R2=0.429~0.591)。  相似文献   

17.
水稻剑叶角度与氮素营养效率的关系   总被引:1,自引:1,他引:0  
剑叶角度是构成水稻理想株型的重要指标和影响水稻产量的重要因素。通过水稻剑叶角度与氮营养效率的关系研究,为水稻塑造理想株型和提高氮营养效率提供理论依据与技术途径。试验采用盆栽土培法,以不同年代的9个典型稻种资源为材料,设置不施氮(0 kg/hm2尿素)、正常施氮(240 kg/hm2尿素)和高施氮(480 kg/hm2尿素)3个施氮水平,于水稻灌浆期测量剑叶角度、各器官含氮量和土壤含氮量,进行剑叶角度与氮营养效率间的相关分析与函数拟合。结果表明,不同水稻品种的剑叶角度和氮营养效率存在显著的基因型差异,且随施氮水平而异。剑叶角度随施氮量的增加而急剧增加,不施氮下的基因型间差异明显小于正常施氮和高施氮。剑叶角度与氮利用效率、土壤氮生产力、植株氮生产力和氮收获指数呈显著负相关,不同氮营养效率间存在极显著正或负相关。氮利用效率、土壤氮生产力、植株氮生产力和氮收获指数随剑叶角度呈显著的对数递减,顺序为植株氮生产力>氮收获指数>氮利用效率>土壤氮生产力。因此,在生产上可根据水稻剑叶角度来预测氮营养效率,并以其为依据实时地调控氮肥运筹来实现氮营养的高效利用。  相似文献   

18.
Abstract It is a challenge to obtain the appropriate protein concentration in cereals for the intended end‐use. This study examined ambient temperature effects on two spring malting barley cultivars (Henley and Tipple) grown in soil or in solution culture with controlled nitrogen supply in daylight chambers with low temperature (day 18 °C, night 12 °C), and high temperature (23 °C/17 °C) to/after anthesis. In soil‐grown plants, high temperature to anthesis resulted in higher grain nitrogen amount (GNA), grain nitrogen concentration (GNC) and straw nitrogen concentration (SNC). In plants grown in solution, high temperature to anthesis resulted in lower GNA and higher GNC. A temperature rise of 1 °C during the growing period in solution cultivation increased GNC, root nitrogen concentration (RNC) and SNC, by 1.20, 1.35 and 0.33 mg g?1, respectively. In solution culture, GNC was positively correlated with RNC and SNC (P < 0.01). Cv. Henley had higher GNC but lower SNC than cv. Tipple. Cv. Henley was more stable in grain size and cv. Tipple in GNC. The results showed that temperature has a direct effect on GNC. Accounting for temperature fluctuations up to the latest possible nitrogen fertilisation occasion can therefore help when deciding appropriate nitrogen supply for intended end‐use.  相似文献   

19.
For three successive growing seasons (1999–2001), a completely randomized block design experiment was established at the surrounding area of each of four sugar beet processing plants of Hellenic Sugar Industry SA, Greece (a total of 12 experiments). Nitrogen was applied at five rates (0, 60, 120, 180 and 240 kg N ha−1) and six replications per rate. Nitrogen fertilization had site-specific effects on quantitative (fresh root and sugar yields) and qualitative (sucrose content, K, Na, α-amino N) traits. When data were combined over years and sites, fresh root and sugar yields were maximized at high N rates (330.75 and 295 kg N ha−1 respectively), as derived from quadratic functions fitted to data. In three trials, increased N rates had negative effects on root and sugar yield. These sites were characterized by high yield in control plots, light soil texture (sand > 50 %) and low CEC values. When data were converted into relative values (the ratio of the trait values to the control mean of each experiment), root and sugar yield was found to be maximized at higher N rates (350 and 316 kg N ha−1, respectively). Sucrose content was strongly and linearly reduced by the increased N rates when data were combined but a significant reduction with increasing N rates was found in only two sites. Non-sugar impurities (K, Na, α-amino N) were positively related to the increased N rates when data were combined. Sodium and α-amino N showed to be most affected by N fertilization as positive relationships were found in six and eight of 12 locations, respectively. Increased N supply resulted in higher soil NO3-N concentrations (0–90 cm depth) at harvest which were related with amino N contents in sugar beet roots (in 1999 and 2001).  相似文献   

20.
M. A. Faluyi 《Euphytica》1990,50(3):197-201
Summary Three maturity groups of soybeans (Glycine max L.) were used to investigate the relationship between dry-matter accumulation (DMA) and grain yield (GY), and the prospects for selection of high seed yielding strains among the existing soybean cultivars in a tropical environment. The positive and significant association between DMA and GY (r=0.888***) indicated that selection for high DMA could give gains in GY. However, the higher harvest index (HI=37.5%) for the low seed yielding early maturing genotypes than the more vegetatively endowed and higher seed producing late maturity group, is an indication that excessive DMA could be disadvantageous. Total seed yield per land area for the three maturity groups of soybeans showed that the genotypes with high harvest index and low seed yield could be as good as those ones with high seed and dry-matter yields with low harvest index. The high coefficient of variation which ranged between 18.1 and 59.8% and the heritability estimations which also ranged from 34.4 to 82.2% are indicative of the presence of substantial genetic diversity and there are good prospects for the improvement of the crop through selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号