首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
阿勃是中国小麦条锈菌重要鉴别寄主之一,该研究采用经典遗传分析、单体分析等方法,通过不同条锈菌系鉴定,系统分析了阿勃抗条锈性的遗传基础及抗性特点.结果表明,在常温条件下,阿勃在苗期对中国小麦条锈菌系水源致病类型1(Su-1)和印度菌系79009的抗性均由2对抗条锈病基因控制,属细胞核遗传,抗79009茵系的2对基因分别定位在3B和7B染色体上,是与已知抗条锈病基因不同的未知新基因,分别暂定名为YrAbb1和YrAbb2.  相似文献   

2.
 冬小麦品种陇鉴9821是以甘肃陇南感病生产品种洮157为受体,以高粱总体DNA为供体系统选育而成,具有较好的丰产性和抗条锈性。本文对陇鉴9821抗条锈性及其遗传特点进行了研究,结果表明:苗期抗条锈基因推导分析得出,陇鉴9821对供试菌系的抗性谱与已知基因不同,含有未知抗条锈病基因;遗传分析显示对CYR29和CYR33的抗病性均由1对显性基因控制;通过抗病性鉴定和抗谱比较分析,认为陇鉴9821对CYR29和CYR33表现显性抗病性的基因是2对不同的抗条锈病基因,其中1对来自洮157。陇鉴9821可作为生产品种及抗源材料在生产上利用。  相似文献   

3.
小麦品种Strubes Dickkopf是小麦条锈菌国际鉴别寄主,通过对以其为基因供体与完全感病品种Taichung29杂交转育而成的近等基因品系Taichung29*6/Strubes Dickkopf的单体分析,检测和定位Taichung29*6/Strubes Dickkopf中所含的抗条锈病主效基因,并明确其抗性特点。结果表明,Taichung29*6/Strubes Dickkopf对CY26小种的抗性由1对显性主效抗条锈基因所控制,定位在4B染色体上,暂定名为YrSD。同时说明Strubes Dickkopf中含有与Yr25不同的新的抗条锈病基因YrSD。  相似文献   

4.
小麦新品系YW243抗条锈性鉴定和遗传分析   总被引:7,自引:0,他引:7  
 YW243是最近培育出的兼抗条锈病、白粉病和黄矮病的小麦新品系,本文对其条锈病抗性进行研究。小麦条锈菌苗期接种鉴定表明,YW243高抗CY29、CY30、CY31、CY32、CYSu-11等我国条锈菌流行小种。用26个来自世界各地的菌系接种进行基因推导,结果表明,YW243具有较宽的抗谱,试验中21个已知基因系,仅有Yr5的抗性与YW243相似,但YW243的系谱表明不含有Yr5基因,因此YW243很可能含有一个新的抗条锈病基因。用YW243和京771分别作为抗感亲本进行杂交,后代分离结果表明,YW243对条锈菌CY31的抗性由1个显性基因控制。分子标记初步研究表明,该基因与RAPD引物OPY08扩增出的1条特异DNA片段连锁。  相似文献   

5.
中国小麦农家品种红锁条和白蚂蚱的抗条锈性遗传分析   总被引:1,自引:0,他引:1  
为明确小麦农家品种所含抗条锈病基因组成及其抗病性和遗传特点,通过接种中国小麦条锈菌生理小种CYR31、CYR32和CYR33,对红锁条和白蚂蚱2个农家品种进行抗病性鉴定、基因推导及系谱分析和苗期抗病性遗传分析。结果显示,红锁条和白蚂蚱苗期均高抗3个流行小种CYR31、CYR32和CYR33,成株期高抗CYR32;红锁条和白蚂蚱均含有未知抗条锈病基因;红锁条对CYR31和CYR32的抗病性由2对隐性独立或重叠遗传基因控制,对CYR33的抗病性由1对隐性基因控制;白蚂蚱对CYR31的抗病性由2对显性互补基因控制,对CYR32的抗病性由1对显性基因控制,对CYR33的抗病性由2对隐性独立或重叠基因控制。农家品种红锁条和白蚂蚱含有抗条锈病基因,可以为抗病育种提供新抗源。  相似文献   

6.
本研究对红秃头和霸王鞭两个小麦农家种抗白粉病基因推导显示,红秃头和霸王鞭均具有较宽的抗性谱,是良好的抗源品种,并可能携带新的抗病基因。抗白粉病遗传分析表明,红秃头对E09的抗性由1对显性基因控制,对E26和E30-2的抗性分别由1对隐性基因控制,其至少携带一显一隐2对抗白粉病基因;霸王鞭对E09的抗性由2对显性基因重叠或者独立控制,对E26的抗性由2对显性基因互补作用控制,对E30-2的抗性由1对显性基因控制,其至少携带2对显性基因。利用基因芯片结合集群分离分析法(Bulk Segregant Analysis,BSA)进行染色体定位推测出,红秃头的抗白粉病基因可能位于染色体7B和6B上,霸王鞭的抗白粉病基因可能位于染色体4A和7B上。  相似文献   

7.
中4是中国小麦条锈菌生理小种的重要鉴别寄主之一。采用常规杂交遗传分析法和花粉母细胞染色体镜检,明确中4抗条锈病基因遗传组成,并探讨利用中国春ph1b突变体分析小麦近缘属(种)抗条锈病基因。将中4分别与中国春ph1b突变体和感病品种铭贤169杂交,对亲本及其杂交后代进行苗期抗条锈性鉴定和遗传分析,发现中4对条锈菌小种CY31和CY32的抗病性由1对显性基因控制;通过等位性分析和抗谱比较,发现中4对小种CY32的抗病基因与T. spelta album、Moro及K733中的抗条锈病基因不同,对中国春ph1b突变体×中4组合的F2代植株染色体数目及其核型变化的研究表明,F2代单株的抗条锈性与来自中间偃麦草X组染色体增加有关,并导致F2单株染色体数目发生变化,且X组染色体在F2代群体对小种CY31表现为抗病和感病植株中随机分布。  相似文献   

8.
三个小麦-簇毛麦易位系抗条锈性遗传及基因间关系分析   总被引:1,自引:1,他引:0  
采用8个我国当前流行的条锈菌生理小种(菌系)对三个易位系进行抗锈性评价,并用CYR30、CYR31、Su-4和单孢菌系CYR32-6对三个易位系与感病品种铭贤169配制的F1、BC,1F1和F2代株系以及三个易位系之间双列杂交的F2株系进行遗传分析和等位性分析.结果表明:三个易位系是优秀的小麦抗条锈病资源;V9128-1对CYR30、CYR32-6和Su-4的抗病性由1对显性基因控制,对CYR31的抗病性由1显1隐2对基因独立控制,V9128-3对四个菌系的抗病性均由1对显性基因控制,V3对CYR32-6和Su-4的抗病性均由2对显性基因互补作用控制,对CYR31的抗病性由1显1隐2对基因独立控制或由1对显性基因控制;V9128-1与V9128-3对CYR31、CYR32-6和Su-4有相同或紧密连锁的抗病基因,且对CYR30、CYR32-6和Su-4的抗病基因与V3都不同.但与V3含有相同或紧密连锁的抗CYR31基因.  相似文献   

9.
美国小麦种质资源IR35抗条锈性评价及遗传分析   总被引:1,自引:0,他引:1  
2006-2011年对美国小麦种质资源材料‘IR35’进行了抗条锈病评价及遗传分析。结果发现,‘IR35’在苗期、成株期均表现中度抗病,苗期基因推导分析发现该品种含有未知抗条锈病基因;遗传分析表明‘IR35’对条锈菌条中32号的抗病性由1对显性基因控制,对条中33号的抗病性由1对隐性基因控制。‘IR35’可作为小麦抗条锈病资源材料进一步研究利用。  相似文献   

10.
种植抗病品种是防治小麦条锈最经济有效且有利于环境保护的措施。2016年-2018年,在甘肃陇南两个不同生态区甘谷和汪川试验点对8个中梁系列冬小麦品种‘中梁25号’~‘中梁32号’进行了成株期抗条锈性分析,并在温室进行了苗期抗条锈病性评价。成株期抗条锈性鉴定结果表明:‘中梁25号’~‘中梁28号’对接种及自然诱发的条锈菌单孢菌系及混合菌均表现感病;‘中梁29号’对条锈菌CYR32、CYR33、中4-1表现抗病,对条锈菌CYR34和G22-14表现中抗~中感;‘中梁30号’~‘中梁32号’对供试条锈菌单孢菌系及混合菌表现免疫到中抗。抗条锈病基因检测发现:‘中梁26号’和‘中梁27号’含有抗病基因Yr9,‘中梁29号’含有抗病基因Yr26,其余品种含有未知抗条锈病基因。同时对后CYR34时期供试品种在甘肃陇南的利用前景进行了讨论。  相似文献   

11.
 本文研究了5个水稻抗瘟品种对稻瘟病稳定菌系81090A或81278的抗性遗传。结果表明,在以感病品种矮脚南特或竹广22号为杂交亲本之一的情况下,对81090A菌系的抗性,谷龙13、双抗77021受2对显性重复基因控制,双抗77005受1对显性上位基因和1对隐性基因控制;梧农1号受2或3对显性重复基因控制;双抗77003受1或2对显性上位基因和1对隐性基因控制。对81278菌系的抗性,梧农1号、双抗77003由1对显性上位基因和1对隐性基因支配;谷龙13由1对显性基因,或1对显性上位基因和1对隐性基因支配;双抗77021由1对显性上位基因和1对隐性基因,或2对显性重复基因支配。谷龙13与双抗77021对81090A菌系的反应,似为同质抗性;谷龙13与双抗77003对81278菌系的反应为异质抗性。可采用回交或其它杂交方式将这些抗病基因导入高产品种和杂交水稻三系中,在杂交组合的选趣上,应注意抗源亲本及其它亲本的选择。  相似文献   

12.
小麦品种对梭条花叶病的抗性研究   总被引:10,自引:0,他引:10  
560份小麦品种(系)对小麦梭条花叶病的抗性表现可划分为高抗、中抗、中感和高感4种类型,其中高抗材料占7.3%,高感材料占87.7%。在抗病品种中,又可划分为抗介体、抗病毒两种类型。通过对8个S×S、6个R×R、16个S×R和12个R×S的抗性表现研究其抗性遗传。结果表明:(1)抗性特性为细胞核遗传,抗性基因为显性;(2)抗病毒基因品种中有3对显性基因控制;(3)抗介体性状由1对、2对或3对显性基因控制。4个单基因抗介体品种的抗性遗传被追踪研究。  相似文献   

13.
为明确普通小麦-簇毛麦易位系材料对不同条锈菌系的抗病水平、抗病基因组成和易位系间抗病基因关系,对V9125-3和V9125-4易位系进行了苗期抗条锈性遗传分析,并利用V9125-2抗条锈基因Yr WV的2个侧翼分子标记,分析了3个易位系抗病基因间的关系。结果表明,2个易位系对当前国内7个优势菌系均表现良好的抗病性,但对不同菌系抗病性的抗病基因遗传特点有所不同。V9125-3对CYR29、CYR30和CYR31的抗病性由2对显性基因独立控制,对CYR32、CYR33和Sun11-11的抗病性由1显1隐2对基因控制,对Sun11-4的抗病性由2对显性基因互补控制;V9125-4对CYR30、Sun11-4和Sun11-11的抗病性由2对显性基因独立控制,对CYR32和CYR33的抗病性由1显1隐2对基因控制,对CYR29和CYR31的抗病性由2对显性基因互补控制;V9125-3对CYR29的抗病基因其中之一可能是Yr WV,另一个为未知基因。  相似文献   

14.
ABSTRACT The Pi-ta gene in rice prevents the infection by Magnaporthe grisea strains containing the AVR-Pita avirulence gene. The presence of Pi-ta in rice cultivars was correlated completely with resistance to two major pathotypes, IB-49 and IC-17, common in the U.S. blast pathogen population. The inheritance of resistance to IC-17 was investigated further using a marker for the resistant Pi-ta allele in an F(2) population of 1,345 progeny from a cross of cv. Katy with experimental line RU9101001 possessing and lacking, respectively, the Pi-ta resistance gene. Resistance to IC-17 was conferred by a single dominant gene and Pi-ta was not detected in susceptible individuals. A second F(2) population of 377 individuals from a reciprocal cross between Katy and RU9101001 was used to verify the conclusion that resistance to IC-17 was conferred by a single dominant gene. In this cross, individuals resistant to IC-17 also were resistant to IB-49. The presence of Pi-ta and resistance to IB-49 also was correlated with additional crosses between 'Kaybonnet' and 'M-204', which also possess and lack Pi-ta, respectively. A pair of primers that specifically amplified a susceptible pi-ta allele was developed to verify the absence of Pi-ta. We suggest that Pi-ta is responsible for resistance to IB-49 and IC-17 and that both races contain AVR-Pita genes.  相似文献   

15.
小麦抗白粉病品种的基因分析与归类研究   总被引:13,自引:5,他引:13  
 研究出用抗谱及抗谱的近似,分析小麦抗白粉病品种的基因与归类的方法,测试了152个小麦抗白粉病品种,归类出15个类群,共120个品种,分析了类群主效抗病基因,并根据测试结果分析提出,为聚合主效抗病基因,进行复合杂交,在选取抗病亲本对上,要掌握毒性频率低,抗谱上互补,抗病基因非等位三项基本原则,才能取得预期成效。抗谱、近似分析法快速,准确,能同时测量大量品种、获得较多可靠信息,适用于基因对基因专化性病害抗病品种的基因分析与归类。  相似文献   

16.
三个小麦新品系抗白粉病基因分析   总被引:6,自引:0,他引:6  
 用4个具有不同毒力的小麦白粉菌生理小种,分别接种5个小麦品种(系)半双列杂交的F1、F2和BC1F1群体的幼苗离体叶段,初步鉴定出野二燕3号具有1对抗1号和11号小种的显性抗病基因;JYP-2具有2对独立的显性抗病基因,其中1对基因抗1、11和311号小种,另1对基因只抗1和11号小种;贵农21号具有2对显性抗病基因,其中1对抗311和313号小种,另1对只抗1和11号小种,这对基因与JYP-2具有的抗1和11号小种的基因是相同的。3个小麦新品系共鉴定出4对不同的抗病基因。本文还讨论了采用幼苗离体叶段接种,同一批单株接种2个以上小种,定单株编号,记载和统计的方法,在抗白粉病基因分析中的作用。  相似文献   

17.
本研究测试了八个水稻白叶枯病抗性基因Xa3、Xa4、xa5、Xa7、Xa10、Xa11、Xa14和Xa23在相应载体品种上对华南白叶枯病优势致病菌系Ⅳ型菌和强毒菌系Ⅴ型菌的抗性反应;分析了Xa4、xa5、Xa7和Xa23抗病基因与不同感病品种杂交组合F_1的抗性表达模式以及显性抗病基因Xa7和Xa23在杂交水稻上的利用价值。结果表明:大部分抗性基因在不同载体品种上抗性表达一致,但也有少数基因在不同载体品种上抗性表现不一,甚至截然相反,说明不同遗传背景对抗性表达有影响,而这种影响因不同抗性基因而异。隐性抗病基因xa5(IRBB5)和显性抗病基因Xa23(CBB23)与感病亲本组合的F_1代分别表现感病和抗病,符合隐性基因或显性基因的抗性表达模式;而2个显性抗病基因Xa4(IRBB4))和Xa7(IRBB7)与感病亲本组合的F_1代,有部分组合的F_1代表现抗病,符合显性基因的抗性表达模式,有部分组合的F_1代表现感病,不符合显性基因的抗性表达模式。在杂交水稻上的利用价值方面,Xa7与2个不育系组合的F_1代均表现高感,不宜在杂交水稻上利用;Xa23(CBB23)与4个感病亲本,无论是不育系还是常规稻组合的4个F_1代全部表现抗病,抗性在F_1充分表达,在杂交水稻上有重要的利用价值。  相似文献   

18.
The response of cotyledons of oilseed rape ( Brassica napus ssp. oleifera ) accessions to infection by isolates of Peronospora parasitica under controlled conditions was assessed on a 0–7 scale (disease reaction). In interactions scored 0–3, 4–5 and 6–7, the host was considered resistant, partially resistant and susceptible, respectively. Accession RES-26, selected from the spring oilseed rape cultivar Janetzkis, was partially resistant to isolate R1 and resistant to isolate P003 of P. parasitica , which distinguishes it from three previously described differential response groups ('A', 'B' and 'C') of accessions in B. napus . The resistance of RES-26 to isolate P003 seemed to be conditioned by a single, partially dominant gene and the resistance of RES-02, which belongs to group 'A' (resistant to R1 and P003), by two independent partially dominant genes. The gene for resistance to P003 in RES-26 is either closely linked, allelic or identical to one of the two genes for resistance in RES-02. Resistance of RES-02 to R1 is conditioned by a single, incompletely dominant gene. The genes for resistance to isolates R1 and P003 in RES-02 are either closely linked, allelic or identical. The cotyledonary leaves of each seedling responded independently when inoculated simultaneously each with a different isolate of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号