首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) and challenged by untreated stormwater collected from the hard-pan and other surfaces of a dairy processing factory in south-west Victoria, Australia. The hydraulic loading rate was tested at two levels, sequentially, 3.75 and 7.5 cm day−1. Some of the monitored variables were removed more efficiently by the planted beds in comparison to unplanted CWs (biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP); p < 0.007) but there was no significant difference between the A. donax and P. australis CWs in removal of BOD, suspended solids (SS) and TN (p > 0.007) at 3.75 cm day−1 or SS and TN at 7.5 cm day−1. At 3.75 cm day−1, BOD, SS, TN and TP removal in the A. donax and P. australis CWs was 71%, 61%, 78% and 75% and 65%, 60%, 73% and 41%, respectively. Nutrient removal at 7.5 cm day−1 in the A. donax and P. australis beds was 87%, 91%, 84% and 71% and 96%, 94%, 87% and 55%, respectively. As expected, the A. donax CWs produced considerably more biomass (10 ± 1.2 kg wet weight) than the P. australis CWs (2.7 ± 1.2 kg wet weight). This equates to approximately 107 and 36 tonnes ha−1 year−1 biomass (dry weight) for A. donax and P. australis, respectively (assuming 250 days of growing season and single-cut harvest). The performance similarity of the A. donax- and P. australis-planted CWs indicates that either may be used in HSSF wetlands treating dairy factory stormwater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.  相似文献   

2.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

3.
Perchlorate (ClO4), a thyroid hormone disruptor, is both naturally occurring and a man-made contaminant increasingly found in a variety of terrestrial environments. The environmental presence of ClO4 is considered to be the result of atmospheric formation and deposition processes. The ultimate processes, particularly heterogeneous-based reactions, leading to natural ClO4 formation are not well understood. Oxidation of chlorine species by an energetic source such as lightning is considered to be one of the potential heterogeneous sources of natural ClO4. Currently, there is very little information available on lightning-induced ClO4. We designed a laboratory electrical discharge reactor capable of evaluating ClO4 formation by the oxidation of “dry” sodium chloride (NaCl) aerosols (relative humidity (RH) <70%) in electrical discharge plasma at voltages and energies up to 24 kV and 21 kJ, respectively. Similar to other non-electrochemical ClO4 production processes, the amount of ClO4 produced (0.5–4.8 μg) was 3 orders of magnitude lower than the input Cl (7.1–60.1 mg). The amount of ClO4 generated increased with peak voltage (V) and theoretical maximum discharge energy with ΔClO4/ΔV = 0.28 × 10−3 μg V−1 (R 2 = 0.94) and ΔClO4/ΔE = 0.44 × 10−3 μg J−1 (R 2 = 0.83). The total ClO4 generated decreased with an increase in relative humidity from 2.8 ± 0.1 μg (RH ∼46%) to 0.9 ± 0.1 μg (RH ∼62%) indicating that the presence of moisture inhibits the formation of ClO4. Additional modifications to the reactor support the hypothesis of ClO4 formation due to the action of plasma on Cl aerosols as opposed to direct oxidation on the surface of the electrodes. Finally, the contribution of lightning-induced ClO4 in North America is calculated to have a wide range from 0.006 × 105 to 5 × 105 kg/year and is within the range of the measured ClO4 depositional flux in precipitation samples obtained across the USA (0.09 × 105–1.2 × 105 kg/y).  相似文献   

4.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

5.
The response of faba bean to the application of four rates of gypsum (0, 2.5, 5.0, 10.0 t ha−1) to a non-saline, alkaline sodic soil was measured in terms of grain yield, dry matter (DM) production, N accumulation and the proportional dependence of the legume on symbiotic N2 fixation (P atm). A yield-independent, time-integrated 15N-dilution model was used to estimate symbiotic dependence. A significant decrease in the exchangeable sodium percentage and significant increases in exchangeable Ca++ and the Ca++:Mg++ ratio in the 0–10-cm soil layer were measured 30 months after application of 10 t ha−1 gypsum. Despite low and erratic rainfall during crop growth, faba bean DM and N uptake responded positively to gypsum application. The symbiotic dependence of the legume at physiological maturity was little affected by sodicity (P atm = 0.74 at zero gypsum and 0.81–0.82 at 2.5–10 t ha−1 gypsum). The increase in fixed N due to gypsum application was mainly due to increases in legume DM and total N uptake. At 10 t ha−1 of gypsum, faba bean fixed more than 200 kg N ha−1 in above-ground biomass.  相似文献   

6.
The photochemical degradation of two widely used organophosphorothioate insecticides, fenitrothion and diazinon, was investigated in aqueous solutions containing three separate dissolved constituents commonly found in natural waters (NO3, CO32− and dissolved organic matter (DOC)). The effect of these constituents on pesticide photodegradation was compared to degradation in “constituent-free” pure water. Solutions were irradiated in an Atlas solar simulator fitted with a UV-filtered Xenon arc lamp with light irradiances (500 W m−2) measured using a spectral radiometer to allow derivation of quantum yields of degradation. Fenitrothion absorbs light within the solar UV range (λ, 295–400 nm) and underwent direct photolysis in pure water whereas diazinon (λ max ∼250 nm) showed no observable loss over the experimental period. However, photodegradation conforming to pseudo-first-order kinetics was observed for both chemicals in the presence of the dissolved constituents (at concentrations typically observed in natural waters), with the rates of photodecay observed in the order of NO3 > CO32− ≅ DOC, with the highest rates observed in the 3 mM NO3 solutions (k Fen = 0.155 ± 0.041 h−1; k Dia = 0.084 ± 0.0007 h−1). For diazinon this rate was comparable to fenitrothion photolysis in pure water (k fen 0.072 ± 0.0078 h−1), highlighting the importance of NO3 on a non-photolabile pesticide, with indirect photodegradation probably attributable to the light-induced release of aqueous hydroxyl radicals (·OH) from NO3. Suwannee river fulvic acid (serving as DOC) did not statistically affect the rate of photodecay for fenitrothion relative to its photolysis in MilliQ water, although measured rates in DOC solutions were slightly lower. However, measurable rates of photodecay were apparent for diazinon in the DOC solutions, indicating that fulvic acid, possibly in the form of “excited” triplet-state-DOC plays a role in diazinon transformation. Hydrolysis was not apparent for fenitrothion (in buffered solutions of pH 5–9) but was notable for diazinon at the lower pHs of 5 and 3 (k Dia-hyd 0.3414 h−1 at pH 3 and 0.228 h−1 at pH 5), resulting in the formation of the degradate, 2-isopropyl–6-methyl–4-pyrimidinol. This work highlights the importance of dissolved constituents on abiotic photodegradation of pesticides and it is recommended that these constituents be incorporated into laboratory-based fate-testing regimes.  相似文献   

7.
Since swine wastewater is used by farmers for soil fertilization, evaluation of toxic compounds or micro-contaminants of separate streams is required. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of swine wastewater. To distinguish the most important toxic compounds, a physicochemical characterization and phase I-TIE procedure were performed. The acute toxic effect of swine wastewater and treated fractions (phase II-TIE) were evaluated using Daphnia magna determining 48-h LC50. Results show a high level of conductivity (23.5 μS cm−1), which is explained as due to the concentration of ions, such as ammonium (NH4+–N 1.6 g L−1), sulfate (SO42− 397.3 mg L−1), and chlorine (Cl 1,230.0 mg L−1). The acute toxicity of the swine wastewater was evaluated on D. magna (48-h LC50 = 3.4%). Results of the different water treatments indicate that anionic exchange treatments could reduce 22.5% of swine wastewater’s acute toxicity by reducing chlorine (to around 51%) and conductivity (8.5%). On the other hand, cationic exchange treatment increased acute toxicity on D. magna (% RT = −624.4%), by reducing NH4+–N (around 100%) and total nitrogen (95.5%). This finding suggests that part of the toxicity comes from anionic compounds, such as chlorine.  相似文献   

8.
Temporal depositional rates are important in order to understand the production and occurrence of perchlorate (ClO4) as limited information exists regarding the impact of anthropogenic production or atmospheric pollution on ClO4 deposition. Perchlorate concentrations in discrete ice core samples from the Eclipse Icefield (Yukon Territory, Canada) and Upper Fremont Glacier (Wyoming, USA) were analyzed using ion chromatography tandem mass spectrometry to evaluate temporal changes in the deposition of ClO4 in North America. The ice core samples cover a time period from 1726 to 1993 and 1970 to 2002 for the Upper Fremont Glacier (UFG) and Eclipse ice cores, respectively. The average ClO4 concentration in the Eclipse ice core for the time period from 1970 to 1973 was 0.6 ± 0.3 ng L−1, with higher values of 2.3 ± 1.7 and 2.2 ± 2.0 ng L−1 for the periods 1982–1986 and 1999–2002, respectively. All pre-1980 ice core samples from the UFG had ClO4 concentrations <0.2 ng L−1, and the post-1980 samples ranged from <0.2 ng L−1 to a maximum of 2.6 ng L−1 for the year 1992. A significant positive correlation (R = 0.75, N = 15, p < 0.001) of ClO4 with SO42− was found for the annual UFG ice core layers and of ClO4 with SO42− and NO3 in sub-annual Eclipse ice samples (R > 0.3, N = 121, p < 0.002). The estimated yearly ClO4 depositional flux for the Eclipse ice core ranged from 0.6 (1970) to 4.7 μg m−2 year−1 (1982) and the UFG from <0.1 (pre-1980) to 1.4 μg m−2 year−1 (1992). There was no consistent seasonal variation in the ClO4 depositional flux for the Eclipse ice core, in contrast to a previous study on the Arctic region. The presence of ClO4 in these ice cores might correspond to an intermittent source such as volcanic eruptions and/or any anthropogenic forcing that may directly or indirectly aid in atmospheric ClO4 formation.  相似文献   

9.
Plant growth-promoting rhizobacteria (PGPR) play an important role in the biodegradation of natural and xenobiotic organic compounds in soil. They can also alter heavy metal bioavailability and contribute to phytoremediation in the presence or absence of synthetic metal chelating agents. In this study, the inhibitory effect of Cd2+ and Ni2+ at different concentrations of Ca2+ and Mg2+, and the influence of the widely used chelator EDTA on growth of the PGPR Pseudomonas brassicacearum in a mineral salt medium with a mixture of four main plant exudates (glucose, fructose, citrate, succinate) was investigated. Therefore, the bacteriostatic effect of Cd2+, Ni2+ and EDTA on the maximum specific growth rate and the determination of EC50 values was used to quantify inhibitory impact. At high concentrations of Ca2+ (800 μmol L-1) and Mg2+ (1,250 μmol L-1), only a small inhibitory effect of Cd2+ and Ni2+ on growth of P. brassicacearum was observed (EC50 Cd2+, 18,849 ± 80 μmol L−1; EC50 Ni2+, 3,578 ± 1,002 μmol L−1). The inhibition was much greater at low concentrations of Ca2+ (25 μmol L−1) and Mg2+ (100 μmol L−1) (EC50 Cd2+, 85 ± 0.5 μmol L−1 and EC Ni2+, 62 ± 1.8 μmol L−1). For the chosen model system, a competitive effect of the ions Cd2+ and Ca2+ on the one hand and Ni2+ and Mg2+ on the other hand can be deduced. However, the toxicity of both, Cd2+ and Ni2+, could be significantly reduced by addition of EDTA, but if this chelating agent was added in stoichiometric excess to the cations, it also exhibited an inhibitory effect on growth of P. brassicacearum.  相似文献   

10.
Biological soil crusts (BSC), most notably lichen crusts, develop and diversify in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China. Four different successional stages of BSC, including bare sand, microalgal crusts, lichen crusts, and moss crusts, were selected to determine successional changes in microalgal species composition and biomass and formation of BSC. A 10 × 10-m observation plot was established in an interdune region of the Gurbantunggut Desert and data were collected over an 8-year study period. The main results were: (1) different successional stages of BSC significantly affected the content of soil organic C and total and available N but not the total and available P and K content of soil; (2) composition of microalgal communities differed among the four successional stages; (3) significant differences in microalgal biomass were observed among the four successional stages; (4) bare sand was mainly uncompacted sand gains; (5) filamentous cyanobacteria, particularly Microcoleus vaginatus, were the dominant species in the early phase of crust succession. The presence of fungal mycelium and moss rhizoids prevented water and wind erosion.  相似文献   

11.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

12.
Cotton Verticillium wilt is a destructive soil-borne disease affecting cotton production. In this study, application of bio-organic fertilizer (BIO) at the beginning of nursery growth and/or at the beginning of transplanting was evaluated for its ability to control Verticillium dahliae Kleb. The most efficient control of cotton Verticillium wilt was achieved when the nursery application of BIO was combined with a second application in transplanted soil, resulting in a wilt disease incidence of only 4.4%, compared with 90.0% in the control. Denaturing gradient gel electrophoresis patterns showed that the consecutive applications of BIO at nursery and transplanting stage resulted in the presence of a unique group of fungi not found in any other treatments. Humicola sp., Metarhizium anisopliae, and Chaetomium sp., which were considered to be beneficial fungi, were found in the BIO treatment, whereas some harmful fungi, such as Alternaria alternate, Coniochaeta velutina, and Chaetothyriales sp. were detected in the control. After the consecutive applications of BIO at nursery and transplanting stage, the V. dahliae population in the rhizosphere soil in the budding period, flowering and boll-forming stage, boll-opening stage, and at harvest time were 8.5 × 102, 3.1 × 102, 4.6 × 102, and 1.7 × 102 colony-forming units per gram of soil (cfu g−1), respectively, which were significantly lower than in the control (6.1 × 103, 3.4 × 103, 5.2 × 103, and 7.0 × 103 cfu g−1, respectively). These results indicate that the suggested application mode of BIO could effectively control cotton Verticillium wilt by significantly changing the fungal community structure and reducing the V. dahliae population in the rhizosphere soil.  相似文献   

13.
High yield culture medium is fundamental for production of inoculants for plant growth-promoting bacteria. Based on substitution of glucose in tryptone–yeast extract–glucose medium by Na-gluconate or glycerol, two new culture media were developed for mass cultivation of the commonly used plant growth-promoting bacterium Azospirillum sp. After 18 h of incubation, these modifications increased populations of different strains of Azospirillum (to ∼1011 cells ml−1 [single cell count] and ∼5 × 109 CFU ml−1 [plate count method]), significantly reduced generation time, and were also suitable for production of common synthetic inoculants.  相似文献   

14.
The abandonment of cultivated wetland soil increased the contents of light fraction organic matter (LFOM), heavy fraction organic matter (HFOM) and soil organic matter (SOM). The LFOM and HFOM content increased to 13.3 g kg−1 and 62.4 g kg−1 after 5 years whereas they were 8.4 and 47.9 g kg−1 after 9 years of cropping, respectively. Fourteen years after abandonment, HFOM content increased to 104.3 g kg−1. LFOM was positively correlated with HFOM (p < 0.001). A Langmuir equation was used to calculate the highest HFOM value. The value for the natural wetland soil was closed to this theoretical value (140.8 g kg−1). After 14 years of abandonment, the HFOM maximum (HFOMMax) value was lower than the equilibrium value suggesting that a further increase in HFOM can occur after abandonment. Assuming a linear accumulation (3.87 Mg C ha−1yr−1), it would take approximately 24 years after the abandonment to reach the HFOMMax value.  相似文献   

15.
Secondary salinity effects on soil microbial biomass   总被引:2,自引:0,他引:2  
Secondary soil salinilization is a big problem in irrigated agriculture. We have studied the effects of irrigation-induced salinity on microbial biomass of soil under traditional cotton (Gossypium hirsutum L.) monoculture in Sayhunobod district of the Syr-Darya province of northwest Uzbekistan. Composite samples were randomly collected at 0–30 cm depth from weakly saline (2.3 ± 0.3 dS m−1), moderately saline (5.6 ± 0.6 dS m−1), and strongly saline (7.1 ± 0.6 dS m−1) replicated fields, 2-mm sieved, and analyzed for pH, electrical conductivity, total C, organic C (COrg), and extractable C, total N and P, and exchangeable ions (Ca2+, Mg2+, K+, Na+, Cl, and CO32−), microbial biomass (Cmic). The Na+ and Cl concentrations were 36-80% higher in strongly saline compared to weakly saline soil. The COrg concentration was decreased by 10% and CExt by 40% by increasing soil salinity, whereas decrease in Cmic ranged from 18-42% and the percentage of COrg present as Cmic from 8% to 26%. We conclude that irrigation-induced secondary salinity significantly affects soil chemical properties and the size of soil microflora.  相似文献   

16.
A pot experiment was conducted to evaluate the influence of pre-inoculation of cucumber plants with each of the three arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus mosseae, and Glomus versiforme on reproduction of the root knot nematode Meloidogyne incognita. All three AM fungi tested significantly reduced the root galling index, which is the percentage of total roots forming galls. Numbers of galls per root system were significantly reduced only in the G. intraradices + M. incognita treatment. The number of eggs per root system was significantly decreased by AM fungus inoculation, no significant difference among the three AM fungal isolates. AM inoculation substantially decreased the number of females, the number of eggs g−1 root and of the number of eggs per egg mass. The number of egg masses g−1 root was greatly reduced by inoculation with G. mosseae or G. versiforme. By considering plant growth, nutrient uptake, and the suppression of M. incognita together, G. mosseae and G. versiforme were more effective than G. intraradices.  相似文献   

17.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

18.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   

19.
In this study, the effects of 1 h aeration, nitrogen gas N2(g) sparging (15 and 30 min) and increasing ferric ions (Fe+3) as FeSO4 (10, 20 and 50 mg L−1) and Fe3O4 nanoparticles (1, 2 and 4 g L−1) concentrations on three less hydrophobic and three more hydrophobic polycyclic aromatic hydrocarbons (PAHs) and toxicity removals from a petrochemical industry in Izmir (Turkey) were investigated in a sonicator with a power of 650 W and an ultrasound frequency of 35 kHz; 1 h aeration increased the yields in benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene PAHs (less hydrophobic) from 62% to 67% to around 95–97% after 150 min sonication at 60°C. However, 1 h aeration did not contribute to the yields of more hydrophobic PAHs (indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene). The maximum yields were obtained at acidic and alkaline pH for more and less hydrophobic PAHs, respectively, after 60 and 120 min sonication at 30°C; 30 min N2(g) sparging, 50 mg L−1 Fe+3 increased the yields of less hydropobic PAHs after 150 min sonication at 60°C. Two milligrams per liter of Fe3O4 nanoparticles increased both less (87–88%) and more (96–98%) hydrophobic PAH yields. The Daphnia magna acute toxicity test showed that the toxicity decreased significantly with an hour aeration, 30 min N2(g) sparging, 50 mg L−1 Fe+3 and 2 g L−1 Fe3O4 nanoparticles at 60°C after 120 and 150 min sonications. Vibrio fischeri was found to be more resistant to the sonicated samples than D. magna. Significant correlations were found between the physicochemical properties of sonicated PAHs and acute toxicities both organisms.  相似文献   

20.
We compared, from 2004 through 2006, rates of soil–atmosphere CH4 exchange at permanently established sampling sites in a temperate forest exposed to ambient (control plots; ∼380 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. A total of 880 observations showed net atmospheric CH4 consumption (flux from the atmosphere to the soil) from all static chambers most of the time at rates varying from 0.02 mg m−2 day−1 to 4.5 mg m−2 day−1. However, we infrequently found net CH4 production (flux from the soil to the atmosphere) at lower rates, 0.01 mg m−2 day−1 to 0.08 mg m−2 day−1. For the entire study, the mean (±SEM) rate of net CH4 consumption in control plots was higher than the mean for CO2-enriched plots, 0.55 (0.03) versus 0.51 (0.03) mg m−2 day−1. Annual rates of 184, 196, and 197 mg m−2 for net CH4 consumption at control plots during the three calendar years of this study were 19, 10, and 8% higher than comparable values for CO2 enriched plots. Differences between treatments were significant in 2004 and 2005 and nearly significant in 2006. Volumetric soil water content was consistently higher at CO2-enriched sites and a mixed-effects model identified a significant soil moisture x CO2 interaction on net atmospheric CH4 consumption. Increased soil moisture at CO2-enriched sites likely increases diffusional resistance of surface soils and the frequency of anaerobic microsites supporting methanogenesis, resulting in reduced rates of net atmospheric CH4 consumption. Our study extends our observations of reduced net atmospheric CH4 consumption at CO2-enriched plots to nearly five continuous years, suggesting that this is likely a sustained negative feedback to increasing atmospheric CO2 at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号