首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Eastern boundary upwelling ecosystems are highly productive and sustain the world’s largest fisheries, usually dominated by sardine and anchovy species. Stock size is highly variable from year to year due to the impact of the unstable physical environment on fish early stages. Biophysical models of early life‐stage dispersal of marine organisms have been built by coupling (i) hydrodynamic models and (ii) life history models (i.e. egg and larva stages), and are therefore useful tools to investigate physical–biological interactions. Here, we review biophysical models of anchovy and sardine ichthyoplankton dispersals developed in the Benguela, Humboldt and Canary Current upwelling ecosystems. We also include a similar study conducted in the California Current upwelling on zooplankton. We then integrate this information into a comparative analysis of sardine and anchovy reproductive strategies in the different systems. We found that the main spawning periods match the season of (i) maximal simulated ichthyoplankton retention over the continental shelf in the northern Benguela, southern Humboldt and Canary (for sardine); (ii) maximal food concentration in the southern Benguela, California and Canary (for anchovy); and (iii) maximal shelf retention of ichthyoplankton and food concentration in the northern Humboldt (for both anchovy and sardine). This specificity of the northern Humboldt ecosystem could explain why it sustains the largest small pelagic fish stock. Finally, the possible effects of climate change on these patterns are discussed.  相似文献   

2.
We examined the dominant patterns of variability in the fish fauna of the southern California Current based on a principal component (PC) analysis of the California Cooperative Oceanic Fisheries Investigations ichthyoplankton data set, 1951–2008. Eighty‐six taxa were analyzed, including all ecologically dominant fish species, both exploited and unexploited. The first three PCs accounted for 20.5, 12.4 and 6.8% of the variance of the data, respectively (total: 39.7%). Each was dominated by taxa from particular adult or larval habitats. PC 1 predominantly represented the coherent response of 24 mesopelagic taxa from 10 families and was most highly correlated with long‐term trends in midwater oxygen levels. PC 2 was dominated by six of the seven most abundant ichthyoplankton taxa in the region, predominantly California Current endemics including key pelagic species (northern anchovy, Pacific sardine and Pacific hake), rockfishes (genus Sebastes) and two midwater taxa. It was correlated primarily with sea surface temperature and exhibited a significant declining trend. PC 3 was dominated by coastal and reef‐associated fishes with predominantly southerly affinities. It was positively correlated with sea surface temperature and sea level height, a proxy for diminished flow of the California Current. The taxa dominating PCs 2 and 3 mostly spatially co‐occur as ichthyoplankton. These results suggest that fish assemblages in the California Current are predominantly influenced by environmental forcing of their ocean habitats as adults or larvae, or both.  相似文献   

3.
We model age‐specific growth rates of Chinook salmon (Oncorhynchus tshawytscha) with two life‐history behaviors from Alaska (i. Situk and ii.Taku Rivers), Puget Sound, Washington (iii., iv. Skagit River), and California (v. Smith River) relative to oceanic conditions in those regions. By analyzing over 20 yr of biological and physical data from the NE Pacific downwelling, upwelling, and transition zones, we are able to determine the factors affecting growth across much of the species’ range and between life‐history behaviors. With scale increment data from returning fish, we use path analysis and partial least squares regression to quantify the relationships between growth and regional‐ and large‐scale oceanic conditions (e.g., sea level height, sea surface temperature, upwelling). Alaskan fish with both ocean‐ and stream‐type behaviors were fit best by the environmental data from the winter in Alaska waters. Specifically, coastal and gyre factors such as sea surface temperature, river flow, and Ekman pumping positively correlated to growth, indicating a productive and strong Alaska Current promoted growth. Growth of fish from California was fit by local factors such as increased upwelling, lower coastal sea surface temperature, and wind stresses during summer and spring, indicating a productive and strong California Current promoted growth. For Puget Sound, Washington, growth of fish that migrate to sea in their first year was generally negatively correlated to a strong California Current. Puget Sound fish that spend a year in freshwater before migrating to sea were modeled well with environmental data from their source region for the first 2 yr at sea and by data from Alaska waters in their third year at sea. Results suggest that conditions in which the transition zone is dominated by neither the Alaska nor California Currents are best for increased growth of Puget Sound fish.  相似文献   

4.
In this analysis, an atypical northward shift in the distribution of age‐1 ocean shrimp (Pandalus jordani) recruits off Oregon in 2000 and 2002–2004 was linked to anomolously strong coastal upwelling winds off southern Oregon (42°N latitude) in April–July of the year of larval release (t?1). This is the first clear evidence that strong upwelling winds can depress local recruitment of ocean shrimp. Regression analysis confirmed a long‐term negative correlation between loge of ocean shrimp recruitment and April sea level height (SLH) at Crescent City, California, in the year of larval release, for both northern and southern Oregon waters. The regional pattern of ocean shrimp catches and seasonal upwelling winds showed that, although the timing of the spring transition as reflected in April SLH drives ocean shrimp recruitment success off Oregon generally, the strength and consistency of spring upwelling limits the distribution of large concentrations of ocean shrimp at the southern end of the northern California/Oregon/Washington area. A northward shift in 1999 and 2001–03 in the northern edge of this ‘zone of maximum upwelling’ is the likely cause of the weak southern Oregon recruitment and resulting atypical distribution of ocean shrimp observed off Oregon in 2000 and 2002–04, with a return to a more typical catch distribution as spring upwelling moderated in subsequent years. It is noted that a northward shift in the conditions that produce strong and steady spring upwelling winds is consistent with many predictions of global climate models under conditions of global warming.  相似文献   

5.
We applied dendrochronology (tree‐ring) methods to develop multidecadal growth chronologies from the increment widths of yelloweye rockfish (Sebastes ruberrimus) otoliths. Chronologies were developed for the central California coast, a site just north of Vancouver Island, British Columbia, and at Bowie Seamount west of the Queen Charlotte Islands, British Columbia. At each site, synchronous growth patterns were matched among otoliths via the process of cross‐dating, ensuring that the correct calendar year was assigned to all increments. Each time series of growth‐increment measurements was divided by the values predicted by a best‐fit negative exponential function, thereby removing age‐related trends. These detrended time series were averaged into a master chronology for each site, and chronologies were correlated with monthly averages of sea surface temperatures, upwelling, the Northern Oscillation Index, and the Pacific Decadal Oscillation. The two northern growth chronologies positively correlated with indices of warm ocean conditions, especially from the prior summer through the spring of the current year. During the same period, the California chronology positively correlated with indices of cool ocean conditions, indicating an opposing productivity regime for yelloweye rockfish between the California Current and the Gulf of Alaska. Overall, this study demonstrates how tree‐ring techniques can be applied to quickly develop annually resolved chronologies and establish climate–growth relationships across various temporal and spatial scales.  相似文献   

6.
European sardine (Sardina pilchardus) and round sardinella (Sardinella aurita) comprise two‐thirds of total landings of small pelagic fishes in the Canary Current Eastern Boundary Ecosystem (CCEBE). Their spawning habitat is the continental shelf where upwelling is responsible for high productivity. While upwelling intensity is predicted to change through ocean warming, the effects of upwelling intensity on larval fish habitat expansion is not well understood. Larval habitat characteristics of both species were investigated during different upwelling intensity regimes. Three surveys were carried out to sample fish larvae during cold (permanent upwelling) and warm (low upwelling) seasons along the southern coastal upwelling area of the CCEBE (13°–22.5°N). Sardina pilchardus larvae were observed in areas of strong upwelling during both seasons. Larval habitat expansion was restricted from 22.5°N to 17.5°N during cold seasons and to 22.5°N during the warm season. Sardinella aurita larvae were observed from 13°N to 15°N during cold seasons and 16–21°N in the warm season under low upwelling conditions. Generalized additive models predicted upwelling intensity driven larval fish abundance patterns. Observations and modeling revealed species‐specific spawning times and locations, that resulted in a niche partitioning allowing species' co‐existence. Alterations in upwelling intensity may have drastic effects on the spawning behavior, larval survival, and probably recruitment success of a species. The results enable insights into the spawning behavior of major small pelagic fish species in the CCEBE. Understanding biological responses to physical variability are essential in managing marine resources under changing climate conditions.  相似文献   

7.
The poleward flowing East Australian Current (EAC) drives sporadic upwelling, entrains coastal water and forms the western Tasman Front (wTF), creating a mosaic of water types and larval transport routes along south eastern Australia. The spatial distribution, otolith chemistry and growth rates of larval sardine (Sardinops sagax) were examined to infer spawning location and larval transport. A gradient of increasing larval size from north to south along the shelf was not detected but was evident between the shelf and offshore in the wTF. Here larvae were larger and older. Based on the occurrence of newly hatched larvae, spawning by S. sagax between southern Queensland and mid New South Wales (NSW) was more extensive than previously reported. The otolith chemistry from two wTF larval size classes differed, implying different origins. The otolith chemistry of wTF post‐flexion larvae was similar to larvae from northern NSW, whereas wTF flexion larvae were similar to larvae observed nearby from mid‐NSW. Two possible larval transport routes, direct and indirect, are inferred from otolith chemistry, current velocities and a previously published particle tracking study. Either larvae from northern NSW were advected south and entrained with younger larvae directly into the wTF, or larvae from a range of shelf regions were advected around the southern edge of an anticyclonic eddy, to join younger larvae directly entrained into the wTF. Based on the co‐occurrence of larval ages and sizes in the wTF and their advection routes, the wTF appears to be an important larval retention zone.  相似文献   

8.
The distributions, concentrations, and community structure of pelagic larval fishes collected from the central and northern California Current in the northeast Pacific Ocean during May 2004, 2005, and 2006 were analyzed to investigate inter-annual, latitudinal, cross-shelf, and depth-stratified variability. The inter-annual climate-induced variability during the sampling period provided a unique opportunity to observe how larval fish communities adjust to rapidly changing environmental conditions. The 170 depth-stratified samples collected from three cruises yielded 14 819 fish larvae from 56 taxa representing 23 families. Dominant larval taxa were Engraulis mordax , Citharichthys spp., Sebastes spp., and Stenobrachius leucopsarus . Larval concentrations decreased significantly in 2006 from 2004 and 2005 levels following the anomalous oceanic conditions observed in 2005 and decreased water temperature in 2006. Larvae were generally found in higher concentrations at northern (>43°N) versus southern (<43°N) stations, with larval E. mordax and Citharichthys spp. found almost exclusively in the north during all sampled years. Inter-annual variability related to dynamic upwelling intensity was observed in cross-shelf larval distributions, although concentrations of S. leucopsarus larvae consistently increased in the offshore direction, while larval Sebastes spp. were generally found in highest concentrations at intermediate stations along the shelf. Multivariate analyses revealed that latitude, station depth, and sea-surface temperature were the most important factors explaining variability in larval concentrations. The present study shows that the ichthyoplankton community of the central and northern California Current changed dramatically in response to the variable environmental conditions of 2004–06.  相似文献   

9.
We used retrospective scale growth chronologies and return size and age of female Chinook salmon (Oncorhynchus tshawytscha) from a northern California, USA, population collected over 22 run years and encompassing 18 complete cohorts to model the effects of oceanographic conditions on growth during ocean residence. Using path analyses and partial least squares regressive approaches, we related growth rate and maturation to seven environmental variables (sea level height, sea surface temperature, upwelling, curl, scalar wind, northerly pseudo‐wind stress and easterly pseudo‐wind stress). During the first year of life, growth was negatively related to summer sea surface temperature, curl and scalar winds, and was positively related to summer upwelling. During the second, third and fourth growth years growth rate was negatively related to sea level height and sea surface temperature, and was positively related to upwelling and curl. The age at maturation and the fork length at which three ocean‐winter fish returned were related to the environment experienced during the spring before the third winter at sea (the year prior return). Faster growth during the year before return led to earlier maturation and larger return size.  相似文献   

10.
In recent years, returns of adult sockeye salmon Oncorhynchus nerka to the Columbia River Basin have reached numbers not observed since the 1950s. To understand factors related to these increased returns, we first looked for changes in freshwater production and survival of juvenile migrants. We then evaluated productivity changes by estimating smolt‐to‐adult return rates (SAR) for juvenile migration years 1985–2010. We found SAR varied between 0.2 and 23.5%, with the highest values coinciding with recent large adult returns. However, the largest adult return, in 2012, resulted not from increased survival, but from increased smolt production. We evaluated 19 different variables that could influence SARs, representing different facets of freshwater and ocean conditions. We used model selection criteria based on small‐sample corrected AIC to evaluate the relative performance of all two‐ and three‐variable models. The model with April upwelling, Pacific Northwest Index (PNI) in the migration year, and PNI in the year before migration had 10 times the AICc weight as the second‐best‐supported model, and R2 = 0.82. The variables of April ocean upwelling and PNI in the migration year had high weights of 0.996 and 0.927, respectively, indicating they were by far the best of the candidate variables to explain variations in SAR. While our analyses were primarily correlative and limited by the type and amount of data currently available, changes in ocean conditions in the northern California Current system, as captured by April upwelling and PNI, appeared to play a large role in the variability of SAR.  相似文献   

11.
Time series of adult recruitment for natural runs of coho salmon from the Oregon coastal region (1970–94) and marine survival of hatchery-reared coho salmon from California to Washington (1960–94) are significantly correlated with a suite of meteorological and oceanographic variables related to the biological productivity of the local coastal region. These variables include strong upwelling, cool sea surface temperature (SST), strong wind mixing, a deep and weakly stratified mixed layer, and low coastal sea level, indicating strong transport of the California Current. Principal component analysis indicates that these variables work in concert to define the dominant modes of physical variability, which appear to regulate nutrient availability and biological productivity. Multiple regression analysis suggests that coho marine survival is significantly and independently related to the dominant modes acting over this region in the periods when the coho first enter the ocean and during the overwintering/spring period prior to their spawning migration. Linear relationships provided good fits to the data and were robust, capable of predicting randomly removed portions of the data set.  相似文献   

12.
The feeding habits of juvenile coho salmon, Oncorhynchus kisutch, in the northern California Current were examined using samples from two different time periods (1980–85 and 1998–2003) of highly contrasting oceanographic conditions. The goal was to test the influence of interannual and interdecadal changes in taxonomic composition of prey, feeding intensity, and size spectra of teleost prey. Analyses were done for samples taken both early in the summer (June) shortly after the salmon enter the ocean, and also in late summer (September) following some ocean residency. Fish prey dominated coho salmon diets by weight during most years, but this trend was more pronounced during the 1980–85 sampling period. In terms of numerical composition, the diets were more variable on an interannual basis, but decapod larvae and euphausiids were important prey in most years. Pteropods and copepods were important prey during weak upwelling or El Niño years, whereas euphausiids were important during strong upwelling or otherwise highly productive years. Hyperiid amphipods comprised a substantial proportion of the diets only in 2000. Coho salmon showed highly significant differences in prey composition among years or between decades both in weight and numerical composition. The percentage of empty stomachs was highly variable by year in both June and September, but was significantly different only for September between decades. In contrast, an index of feeding intensity did not show many significant changes in either comparison. However, the relative size ratios for fish prey consumed were highly variable by year, and larger than average fish prey were consumed during 1998, leading to the highest feeding intensity observed.  相似文献   

13.
Time series of condition factors for mackerel, Scomber japonicus , jack mackerel, Truchurus symmetricus , and northern anchovy, Engraulis mordax , stocks in the Southern California region were compared with time series of oceanographic indices to develop hypotheses concerning physical environmental forcing of the population dynamics and energetics of small pelagic fishes. Mackerel and jack mackerel condition factor time series showed decade-scale variation, whereas those of anchovy showed coherent fluctuations for 1 to 2 years. Mackerel, and to a lesser extent jack mackerel, condition factors were correlated with proxy indices of alongshore advection (sea level), offshore advection (Ekman transport), ambient temperature (shore station temperature), and ambient salinity (shore station salinity). The condition factor of anchovy was much less correlated with environmental variables. Multiple regression analyses which included sea level, upwelling and salinity proxies explained 80% (33%) of the variance in the annual (monthly) condition factor of mackerel. The first-order variation in condition factors of mackerel and jack mackerel suggests that they are responding to very large-scale perturbations of the California Current system which are at least partially described by variations in sea level. The population size of mackerel is apparently also responding to these large-scale perturbations, making it difficult to isolate environmental dependence of condition factors from density dependence. The second-order variation is more regional in nature and unexpectedly it appears to be associated with upwelling in the Baja California region.  相似文献   

14.
Shelf waters of southern Australia support the world's only northern boundary current ecosystem. Although there are some indications of intense nitrate enrichment in the eastern Great Australian Bight (GAB) arising from upwelling of the Flinders Current, the biological consequences of these processes are poorly understood. We show that productivity in the eastern GAB is low during winter, but that coastal upwelling at several locations during the austral summer–autumn results in localized increases in surface chlorophyll a concentrations and downstream enhancement of zooplankton biomass. Sardine (Sardinops sagax) and anchovy (Engraulis australis) eggs and larvae are abundant and widely distributed in shelf waters of the eastern and central GAB during summer–autumn, with high densities of sardine eggs and larvae occurring in areas with high zooplankton biomass. Egg densities and distributions support previous evidence suggesting that the spawning biomass of sardine in the waters off South Australia is an order of magnitude higher than elsewhere in southern Australia. Sardine comprised >50% of the identified prey species of juvenile southern bluefin tuna (SBT, Thunnus maccoyii) collected during this study. Other studies have shown that the lipid content of sardine from the GAB is relatively high during summer and autumn. We suggest that juvenile SBT migrate into the eastern and central GAB during each summer–autumn to access the high densities of lipid‐rich sardines that are available in the region during the upwelling period. Levels of primary, secondary and fish production in the eastern GAB during summer–autumn are higher than those recorded in other parts of Australia, and within the lower portion of ranges observed during upwelling events in the productive eastern boundary current systems off California, Peru and southern Africa.  相似文献   

15.
Horizontal ocean transport can influence the dynamics of higher‐trophic‐level species in coastal ecosystems by altering either physical oceanographic conditions or the advection of food resources into coastal areas. In this study, we investigated whether variability in two North Pacific Current (NPC) indices was associated with changes in productivity of North American Pacific salmon stocks. Specifically, we used Bayesian hierarchical models to estimate the effects of the north‐south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Pacific Gyre Oscillation (NPGO), on the productivity of 163 pink, chum, and sockeye salmon stocks. We found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the BI and NPGO had significant positive effects on productivity, indicating that a northward‐shifted bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA and BC regions, the estimated NPGO effect was over two times larger than the BI effect for pink and chum salmon, whereas for sockeye salmon the BI effect was 2.4 times higher than the NPGO. In contrast to WA and BC stocks, we found weak effects of both horizontal ocean transport processes on the productivity of salmon stocks in Alaska. Our results indicated that horizontal transport pathways might strongly influence population dynamics of Pacific salmon in the southern part of their North American ranges, but not the northern part, suggesting that different environmental pathways may underlie changes in salmon productivity in northern and southern areas for the species under consideration.  相似文献   

16.
Quantifying the dispersion and habitats of far‐ranging seabirds, turtles, and cetaceans is essential to assess whether zoning strategies can help protect upper‐trophic marine predators. In this paper, we focus on Black‐footed Albatross (Phoebastria nigripes) use of three US national marine sanctuaries off central California: Cordell Bank, Gulf of the Farallones, and Monterey Bay. We assessed the significance of these protected areas to albatrosses by: (i) documenting commuting flights between Hawaiian breeding sites and the California Current System (CCS); (ii) quantifying albatross dispersion patterns on the central California continental shelf and slope, and (iii) characterizing albatross habitats within sanctuary waters using concurrent satellite‐tracking data and vessel‐based sightings. Chick‐rearing albatrosses commuted from their colony on Tern Island, Hawaii (23.878°N, 166.288°W), to the CCS (34–48°N) and two of the eight satellite‐tracked birds entered the marine sanctuaries. Among the telemetry locations within sanctuary waters, two‐thirds (24 of 36) straddled the shelf break and slope (201–2000‐m depth), a pattern underscored by a concurrent vessel‐based survey in which 144 Black‐footed Albatrosses were sighted. This study illustrates the value of coordinated satellite telemetry and vessel‐based surveys to assess the distributions of protected species within existing marine protected areas. More specifically, our results underscore the importance of three central California marine sanctuaries to Hawaiian albatrosses breeding in subtropical waters, approximately 4500 km away.  相似文献   

17.
The reproductive biology of Centroberyx gerrardi (Günther) was investigated across ~2,000 km of its southern Australian distribution, encompassing different jurisdictions and varying environmental features. Greater gonad mass and prevalence of spawning fish, along with lower ratios of lengths at maturity:maximum lengths and ages at maturity:maximum ages, were identified at the western‐most (Capes) and eastern‐most (Great Australian Bight; GAB) regions. Across the study region, spawning peaks in summer/autumn, when water temperatures are warmest. Regional differences in potential “reproductive output,” while not consistent with the eastward decline in mean monthly water temperature, may instead be related to summer upwelling in the Capes and GAB, driving greater oceanic productivity prior to peak spawning, supporting larval survival. In autumn, the prevailing southward and eastward flowing, downwelling Leeuwin Current (LC) strengthens, providing a dispersal mechanism along the west and south Australian coasts, but limiting upwelling effects. Predicted changes in environmental conditions and their potential impacts on C. gerrardi are discussed, in particular how these factors may affect recruitment to stocks and fisheries, requiring a better understanding of source‐sink relationships for this species. As environmental changes occur, management strategies to sustain fish resources must adapt to spatially variable and changing reproductive output and be collaborative across jurisdictions.  相似文献   

18.
Mesopelagic species are the principal constituents of larval fish assemblages inhabiting the southerly California Current region. Seasonal larval abundance is influenced by circulation of the California Current and subtropical Countercurrent, including regional changes of the physical, chemical, and biological characteristics during the El Niño‐Southern Oscillation. This study examines the mesopelagic fish larvae distribution and abundance patterns between seasons and years, with the aim of describing the mesopelagic larval assemblages during dynamic environmental changes induced by El Niño (1997–1998) and the rapid transition to La Niña (1998–2000) along the west coast of the Baja California Peninsula (25–31°N). Despite large oceanographic variability, larval assemblages varied principally on a seasonal basis, related to reproductive periods and the north–south gradient influenced by the seasonal pattern of the California Current. An increased diversity, number of species, and abundance of tropical species was noticeable during the northward expansion of warm‐water taxa during El Niño, principally in the northern areas (Ensenada and Punta Baja). After El Niño, population adjustments and rapid recovery occurred during La Niña conditions, which reflected seasonal differences in the mesopelagic community structure that are closely related to the seasonal pattern of oceanic currents.  相似文献   

19.
The Bergen Ocean Model (BOM), a three-dimensional physical coastal ocean model, was used for a numerical simulation experiment to investigate short-term effects of wind-generated coastal upwelling and downwelling on the dynamics of adjacent large outer and smaller inner fjords. The effect of the real alongshore wind regime on advection for an idealized fjord topography, resembling Masfjorden, western Norway, is used as an example. This modelling exercise is a supplement to, and its predictions support, the various hypotheses investigated in ecosystem simulation studies of the Masfjorden. The model predicts that coastal winds from the north cause upwelling and transport the upper water layer out from the fjords. Winds from the south cause downwelling and transport the upper water layer into the fjords. The transport is rapid and ≈50% of the upper water layer may be replaced within 1–2 days. Implications of these physical processes for the dispersal and retention of planktonic organisms and the early life stages of fish are discussed. If strong southerly winds occur frequently, this will transport planktonic organisms into the fjord and may increase the carrying capacity for planktivorous fish. In contrast, frequent strong northerly winds may reduce the abundance of planktonic organisms, including the early life stages of marine fish, and thus possibly reduce recruitment to fjord fish populations. Frequent shifts between southerly and northerly winds would cause an exchange of early life stages between neighbouring fjords and thus enhance genetic exchange.  相似文献   

20.
The South Equatorial Counter Current (SECC) strongly influences the American Samoa Exclusive Economic Zone (EEZ) and changes strength on a seasonal and ENSO cycle. A strong SECC is associated with a predominantly anticyclonic eddy field as well as increased micronekton biomass and catch-per-unit-effort (CPUE) for albacore tuna, the economically important target species of the local longline fishery. A strong SECC carries chlorophyll a -rich waters from upwelling regions at the north coast of New Guinea towards the EEZ, most likely resulting in the observed increase in micronekton biomass, forage for albacore. Relatively stable anticyclonic eddies show a further increase in micronekton biomass, apparently advected from neighboring SECC waters. The presence of forage presumably concentrates albacore, thus resulting in the observed increase in CPUE. High shear regions of neither anticyclonic nor cyclonic eddies correlate with increased micronekton biomass. Areas characterized by South Equatorial Current (SEC) waters correspond to areas with the lowest micronekton biomass and the highest number of aggregative structures, which are most likely small pelagic fish shoals. Micronekton composition in SEC waters differs from that in the SECC. During El Niños, the seasonal signals at the north shore of New Guinea and in the SECC are exceptionally strong and correspond to higher albacore CPUE in the EEZ. My results suggest that the strength of upwelling and the resulting increase in chlorophyll a at New Guinea, as well as the Southern Oscillation Index, could be used to predict the performance of the local longline fishery for albacore tuna in the American Samoa EEZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号