首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravenous anesthesia in the horse: Comparison of xylazine-ketamine and xylaxine-tiletamine-zolazepam combinations. Six healthy adult horses were anesthetized twice at random with following intravenous combinations: 1.1 mg/kg of body weight (BW) of xylazine followed by 2.2 mg/kg BW of ketamine (X-K) and 1.1 mg/kg BW of xylazine followed by 1.65 mg/kg BW of tiletamine-zolazepam (X-TZ). The modifications of some cardiorespiratory parameters and the duration of anesthesia were evaluated and compared for the 2 protocols used. Few significant differences were observed between the 2 protocols in regard to the cardiorespiratory parameters measured. The respiratory rate was lower (7 breaths per minute) and the heart rate was higher (34 beats per minute) with the X-TZ combination. The duration of anesthesia with this technique was 33 +/- 3 minutes (X +/- Sx) and longer than with X-K (18 +/- minutes (X +/- Sx)). Superficial analgesia lasted 14,5 +/- 3 minutes with the X-K combination and 31,7 +/- 3,2 minutes for the X-TZ combination. The 2 protocols are associated with a reduction of PaO2.  相似文献   

2.
OBJECTIVE: To determine cardiorespiratory effects of a tiletamine/zolazepam-ketamine-detomidine (TZKD) combination in horses. ANIMALS: 8 healthy adult horses. PROCEDURE: Horses were instrumented for measurement of cardiorespiratory, acid-base, and electrolyte values. Each horse was given xylazine (0.44 mg/kg of body weight, IV) 10 to 15 minutes prior to induction of recumbency by administration of the TZKD combination. Cardiorespiratory, acid-base, and electrolyte values were measured at 5-minute intervals for > or =30 minutes. RESULTS: All horses became recumbent within 1 minute after IV administration of TZKD. Mean +/- SD duration of recumbency was 40+/-8 minutes. All horses regained standing position after < or =2 attempts. Quality of anesthesia and analgesia was determined to be satisfactory in all horses. Xylazine induced decreases in respiratory rate, heart rate, cardiac output, maximum rate of increase of right ventricular pressure, and rate pressure product. The PaCO2, right atrial pressure, and peripheral vascular resistance increased, whereas blood temperature, PO2, pHa, HCO3-, PCV, total solids, Na, and K values remained unchanged. Subsequent administration of TZKD caused right atrial pressure and PaCO2 to increase and PaO2 to decrease, compared with values obtained after xylazine administration. Remaining cardiorespiratory, acid-base, hematologic, and electrolyte values did not differ from those obtained after xylazine administration. CONCLUSION: IV administration of TZKD induces short-term anesthesia in horses. Potential advantages of this drug combination are the small volume of drug administered; minimal cardiorespiratory depression; quality of induction and maintenance of, and recovery from, anesthesia; and duration of drug effects.  相似文献   

3.
Caudal epidural analgesia induced by xylazine administration in cows   总被引:6,自引:0,他引:6  
Xylazine (0.05 mg/kg of body weight diluted to a 5-ml volume, using 0.9% NaCl) or 5 ml of 0.9% NaCl was administered epidurally into the first caudal intervertebral space (Co1-Co2) in 8 cows (mean +/- SD body weight, 583 +/- 150 kg). Cows were observed for responses to deep needle pricking of the caudal dermatomes (S3 to Co), sedation, and ataxia. Heart rate, respiratory rate, body temperature, rate of ruminal contractions, coccygeal arterial blood pressure, pHa, blood gas tension (PaO2, PaCO2), base excess, total solids concentration, and PCV were determined before and after xylazine administration. Epidurally administered xylazine induced sedation and selective (S3 to Co) analgesia for at least 2 hours. Mild ataxia of hind limbs was observed in 6 cows, but all cows remained standing. Heart rate, respiratory rate, rate of ruminal contractions, arterial blood pressure, PaO2, PCV, and total solids concentration were significantly (P less than 0.05) decreased, and PaCO2, base excess, and bicarbonate concentration were significantly (P less than 0.05) increased after xylazine administration. Epidurally administered 0.9% NaCl did not alter sensory perception to needle pricking and did not affect any of the physiologic variables determined. Although epidural administration of xylazine induced analgesia and sedation in healthy cows, it should be avoided for epidural analgesia in cattle with heart disease, lung disease, and/or gastrointestinal disease because of its potent cardiopulmonary and ruminal depressant effects.  相似文献   

4.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

5.
Effects of ketamine, xylazine, and a combination of ketamine and xylazine were studied in 12 male Pekin ducks (7 to 12 weeks old; mean [+/- SD] body weight, 3.1 +/- 0.3 kg). After venous and arterial catheterization and fixation of a temperature probe in the cloaca, each awake duck was confined, but not restrained, in an open box in a dimly lit room. Blood pressure and lead-II ECG were recorded. Three arterial blood samples were collected every 15 minutes over a 45-minute period (control period) and were analyzed for pHa, PaCO2 and PaO2. After the control period, each duck was assigned at random to 1 of 3 drug groups: (1) ketamine (KET; 20 mg/kg of body weight, IV), (2) xylazine (XYL; 1 mg/kg, IV), and (3) KET + XYL (KET 20 mg/kg and XYL, 1 mg/kg; IV). Measurements were made at 1, 5, 10, 15, 30, 45, 60, and 90 minutes after drug administration. All ducks survived the drug study. Cloacal temperature was significantly (P less than or equal to 0.05) increased above control cloacal temperature at 90 minutes after the administration of ketamine, and from 10 through 90 minutes after administration of ketamine plus xylazine. In ducks of the KET group, pHa, PaCO2, and PaO2, remained unchanged after administration of the drug. In ducks of the XYL group, pHa and PaO2 decreased significantly (P less than or equal to 0.05) from control values for all time points up to and including 15 minutes after drug administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of 3 commonly used dosages (0.3, 0.5, and 1.1 mg/kg of body weight, IV) of xylazine on ventilatory function were evaluated in 6 Thoroughbred geldings. Altered respiratory patterns developed with all doses of xylazine, and horses had apneic periods lasting 7 to 70 seconds at the 1.1 mg/kg dosage. Respiratory rate, minute volume, and partial pressure of oxygen in arterial blood (PaO2) decreased significantly (P less than 0.001) with time after administration of xylazine, but significant differences were not detected among dosages. After an initial insignificant decrease at 1 minute after injection, tidal volume progressively increased and at 5 minutes after injection, tidal volume was significantly (P less than 0.01) greater than values obtained before injection. Partial pressure of carbon dioxide in arterial blood (PaCO2) was insignificantly increased. After administration of xylazine at a dosage of 1.1 mg/kg, the mean maximal decrease in PaO2 was 28.2 +/- 8.7 mm of Hg and 22.2 +/- 4.9 mm of Hg, measured with and without a respiratory mask, respectively. Similarly, the mean maximal increase in PaCO2 was 4.5 +/- 2.3 mm of Hg and 4.2 +/- 2.4 mm of Hg, measured with and without the respiratory mask, respectively. Significant interaction between use of mask and time was not detected, although the changes in PaO2 were slightly attenuated when horses were not masked. The temporal effects of xylazine on ventilatory function in horses should be considered in selecting a sedative when ventilation is inadequate or when pulmonary function testing is to be performed.  相似文献   

7.
OBJECTIVE: To evaluate the effect of the tiletamine/zolazepam (TZ) combination (Zoletil 100; Virbac, Carros, France) with and without atropine on blood gas values and acid-base status in dogs. STUDY DESIGN: Randomized cross-over experimental study. ANIMALS: Six healthy adult cross-bred dogs, weighing 11.0-18.5 kg. MATERIALS AND METHODS: Each dog received four different drug treatments at intervals of at least 15 days: (i) 5 mg kg(-1) intravenous (IV) TZ (TZ.IV); (ii) 10 mg kg(-1) intramuscular (IM) TZ (TZ.IM); (iii) atropine, 20 microg kg(-1) IV, followed 5 minutes later by 5 mg kg(-1) TZ IV (A.TZ.IV); and (IV) atropine (same dose) given 5 minutes before 10 mg kg(-1) TZ IM (A.TZ.IM). Arterial blood samples were collected from each dog before drug administration (baseline) at induction of anaesthesia (time 0) and 2, 5, 10 and 30 minutes thereafter. RESULTS: Transient hypoxaemia and respiratory acidosis were observed just after induction. PaO(2) and SaO(2) dropped, while H(+) concentration and PaCO(2) rose significantly above baseline values. In groups TZ.IV and A.TZ.IV, PaO(2) values as low as 6.0-6.4 kPa (45-48 mm Hg) were recorded. However, there was no significant difference in blood gas variables among the groups encountered during the evaluation period. The overall change in [HCO(3) (-)] and base excess (BE) was not significant among groups. Atropine did not affect the above variables. CONCLUSIONS AND CLINICAL RELEVANCE: Tiletamine/zolazepam injection may induce transient hypoxaemia and respiratory acidosis, but acid-base status changes are clinically unimportant. Particularly, close observation of dogs is recommended during the first 5-10 minutes after induction with TZ, especially in animals with cardiopulmonary disease. TZ should perhaps not be used in animals intolerant of tachycardia.  相似文献   

8.
Objective To evaluate the use of a combination of tiletamine/zolazepam and xylazine (TZX) in collared and white‐lipped peccaries and to compare its efficacy as an anesthetic technique with that of tiletamine/zolazepam and butorphanol (TZB). Study design Prospective experimental trial. Animals Seven white‐lipped peccaries (Tayassu pecari) (four females and three males) and four collared peccaries (Tayasu tajacu) (two males and two females). Methods Animal immobilization was attempted with TZX and TZB (IM) on two different occasions. Heart and respiratory rates (HR, RR), rectal temperature (RT), sedation, muscle relaxation, posture, auditory response and analgesia were evaluated every 15 minutes during immobilization. Induction, anesthesia, standing and walking time were determined after drug administration. Results Doses for white‐lipped peccaries were 1.23 ± 0.26 mg kg?1 (mean ± SD) of TZ and 1.23 ± 0.26 mg kg?1 of X, and 1.46 ± 0.09 mg kg?1 of TZ and 0.14 ± 0.008 mg kg?1 of B; doses for collared peccaries were 1.51 ± 0.29 mg kg?1 of TZ and 1.51 ± 0.29 mg kg?1 of X and 1.68 ± 0.02 mg kg?1 of TZ and 0.17 ± 0.002 mg kg?1 of B. In white‐lipped peccaries, both drug combinations provided a smooth induction and good immobilization for more than an hour. Anesthesia and standing times were significantly longer in animals given TZB, whereas walking time was significantly longer in animals given TZX. A significant decrease in HR was observed with both treatments. Respiratory rate decreased significantly with TZX, but the rate remained higher than with TZB. Induction and recovery quality in white‐lipped peccaries was better with TZB than with TZX. Neither protocol provided adequate immobilization in collared peccaries. Conclusion and clinical relevance At the doses described, TZB is effective in providing a long period of immobilization, whereas TZX is adequate for short to medium immobilization in white‐lipped peccaries. Neither drug combination was effective in collared peccaries at the doses given.  相似文献   

9.
Effects of the drug xylazine were determined on arterial pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2), aortic blood pressure, aortic flow, heart rate, pulse pressure, stroke volume, and peripheral resistance of dogs. The drug was given intravenously (IV) with and without atropine and was given intramuscularly (IM) without atropine. After IV administration of xylazine (1.1 mg/kg), arterial pH, PaO2, and PaCO2 values were not changed from control values. However, the drug did produce a statistically significant decrease in heart rate, decrease in aortic flow, initial increase in blood pressure followed by decrease, and increase in peripheral resistance. Stroke volume and pulse pressure were not significantly changed. Atropine (0.02 mg/kg, IV) did not significantly change any of the effects produced by xylazine. Intramuscular administration of xylazine (2.2 mg/kg) did not produce significant changes in arterial pH, PaO2, or PaCO2. Heart rate and aortic flow decreased significantly, but statistically significant changes did not occur in aortic blood pressure or peripheral resistance; however, the changes in these last 2 values were in the same direction and were of similar magnitude as those which occurred afger IV administration of xylazine.  相似文献   

10.
The influence of atropine on anesthesia induced by xylazine-pentobarbital administration was studied in 5 dogs. The combination of xylazine (2.2 mg/kg of body weight, IM) and pentobarbital (14.0 mg/kg, IV) caused anesthesia with the duration of absence of the pedal reflex, duration of anesthesia, and the time from return of consciousness to ambulation to be 107.4, 123.4, and 59.2 minutes, respectively. Bradycardia and short-term respiratory depression were observed. An IM injection of atropine sulfate (0.045 mg/kg) did not significantly change the durations of absence of the pedal reflex and of anesthesia, the time from return of consciousness to ambulation, or the pattern of respiration in the anesthetized dogs. The PaO2 increased gradually in both groups; however, atropine caused a marked tachycardia and increased the PaCO2. Fifteen minutes after pentobarbital injection, administration of atropine sulfate caused a slight but significant (P less than 0.01) decrease in arterial pH. Although atropine sulfate antagonized xylazine bradycardia, the data indicated that it may have caused increased respiratory depression in dogs anesthetized with xylazine and pentobarbital.  相似文献   

11.
Antagonism of xylazine-pentobarbital anesthesia by yohimbine in ponies   总被引:1,自引:0,他引:1  
Effects of yohimbine on xylazine-pentobarbital anesthesia were evaluated in ponies. Five minutes after the IV injection of xylazine (1.1 mg/kg of body weight), pentobarbital sodium (12.7 mg/kg, IV) and additional xylazine (2.2 mg/kg, IM) were given and produced anesthesia in 12 ponies for 64.0 +/- 16.4 minutes (mean +/- SD) as well as immobilization for 89.8 +/- 34.2 minutes. Eleven ponies were given yohimbine (0.1 mg/kg, IV) 50 minutes after pentobarbital dosing. In these 11 ponies, durations of anesthesia and immobilization were shorter, 52.0 +/- 1.4 and 65.5 +/- 14.8 minutes, respectively. The xylazine-pentobarbital combination caused bradycardia that was reversed by yohimbine injection. Xylazine-pentobarbital produced a small, but steady, decrease of mean arterial blood pressure, which was compounded by yohimbine administration and was evident for approximately 2 minutes. Within a minute after yohimbine injection, the ponies' respiratory rate decreased and the length of inspiration and expiration and thoracic breathing increased. This lasted approximately 2 to 3 minutes and was followed by an increase in respiratory rate. The anesthesia also produced a decrease in PaO2 that gradually returned to base line in 12 control ponies, but was more pronounced in 11 ponies given yohimbine. The PaCO2, although remaining moderately high in control ponies, returned to base line after yohimbine injection. An increased pHa was seen 60 minutes after induction of anesthesia and was especially noticeable after yohimbine administration. Decreases in the number of WBC, hemoglobin content, PCV, plasma protein and serum aspartate transaminase resulting from xylazine-pentobarbital were reversed by yohimbine. Conversely, serum glucose values and creatine kinase activities were increased by xylazine-pentobarbital.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effects of body position and type of ventilation were determined on arterial blood gases (PaO2, PaCO2) and pH during and immediately following clinical halothane anesthesia in 36 young, physically conditioned horses. Horses in dorsal recumbency had a lower PaO2 than did similarly breathing horses in a lateral position. Predictably controlled positive-pressure ventilation inproved arterial oxygenation and permitted maintenance of a normal PaCO2. Most horses, regardless of type of ventilation and operative body positioning, were hypoxemic in the immediate postanesthetic period.  相似文献   

13.
Cardiopulmonary effects were assessed in 12 yearling steers anesthetized with guaifenesin and thiamylal sodium, intubated, and allowed to breathe isoflurane or halothane in oxygen spontaneously. Light surgical anesthesia, determined using eye position as a clinical indication of anesthetic depth, was maintained during surgical placement of a rumen cannula. Heart rate and respiratory rate were measured while the steers were standing quietly (baseline). Atropine (0.06 mg/kg of body weight, IM) was given after baseline measurements were taken. Heart rate, respiratory rate, arterial blood pressures, pHa, PaCO2, PaO2, arterial [HCO3-], esophageal temperature, and end-tidal anesthetic concentration were measured every 15 minutes for 90 minutes after induction of anesthesia. Mean heart rate increased significantly (P less than 0.05) above baseline in the isoflurane group at 15 and 30 minutes. Mean respiratory rate increased significantly (P less than 0.05) above baseline in the halothane group at 45 minutes. At 45 minutes, mean respiratory rate was lower (P less than 0.05) in the isoflurane group, compared with that in the halothane group. Mean values for arterial blood pressures and arterial gases were similar for both agents at comparable times. Mean end-tidal isoflurane concentrations were less than mean end-tidal halothane concentrations at each comparable time during maintenance of similar anesthetic depth. Maintenance of anesthesia with isoflurane resulted in higher heart rates and lower respiratory rates, compared with maintenance of anesthesia with halothane in these steers.  相似文献   

14.
Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.  相似文献   

15.
Anesthesia was induced in 14 greyhounds with a mixture of diazepam or midazolam (0.28 mg/kg) and ketamine (5.5 mg/kg), and maintained with halothane. There were no significant differences in weight, age, or duration of anesthesia between the treatment groups. Time to intubation with diazepam-ketamine (4.07 +/- 1.43 min) was significantly longer than with midazolam-ketamine (2.73 +/- 0.84 min). Heart rate, respiratory rate, PaCO2, and arterial pH did not vary significantly during anesthesia in either treatment group. Arterial blood pressures, PaO2, halothane vaporizer setting, and body temperature changed significantly from baseline values in both treatment groups during anesthesia. Times to sternal recumbency and times to standing were not significantly different. These data suggest that both diazepam-ketamine and midazolam-ketamine are useful anesthetic combinations in greyhounds. In combination with ketamine, midazolam offers little advantage over diazepam.  相似文献   

16.
Loss of rear motor control is the main limiting factor in the use of caudal epidural anesthesia in the horse. In man and laboratory animals, a small dose of an opiate combined with a local anesthetic enhances analgesia without impairing motor function. Thus, the amount of local anesthetic administered may be reduced. Butorphanol is an opiate widely used in horses. It has a good margin of safety and few cardiorespiratory effects. The effects of lidocaine (0.25 mg/kg) and lidocaine-butorphanol (0.25 mg/kg, and 0.04 mg/kg, respectively) were compared in 2 groups of 5 healthy unsedated mares. Horses in each group received either lidocaine or lidocaine-butorphanol in saline solution for a total volume of 0.0165 mg/kg. Epidural injection was performed at the first coccygeal interspace. Each mare was used only once. Cutaneous analgesia was assessed by a response to a pin prick; and visceral analgesia was assessed by response to a noxious stimulus applied to the urethra. Heart rate, respiratory rate, and arterial blood pressure were also measured. Analysis of the results showed an increase in duration of both cutaneous and visceral analgesia in the mares given lidocaine-butorphanol. Cutaneous analgesia increased from 36 +/- 13 to 150 +/- 21 min and visceral analgesia increased from 22 +/- 10 to 162 +/- 16 min. A cranial extension of the cutaneous analgesia was also observed. Cardiorespiratory depression or signs of excitation were not observed. However, these mares demonstrated peculiar walking in the hind limbs, not associated with signs of ataxia or hyperkinesia.  相似文献   

17.
The effect of IV administration of the alpha 2-adrenoceptor agonist xylazine hydrochloride (0.5 mg/kg of body weight) was examined in ponies with recurrent obstructive pulmonary disease, commonly called heaves. Six ponies with the disease (principals) were studied during clinical remission and during an acute attack of airway obstruction precipitated by stabling and feeding of dusty hay. Six control ponies were also studied. In principal ponies with airway obstruction, xylazine administration significantly (P < 0.05) decreased pulmonary resistance and increased dynamic compliance, but did not affect PaO2 or PaCO2. The alpha 2-antagonist yohimbine blocked the pulmonary effects of xylazine. Administration of saline solution was without effect in both groups of ponies at all periods and xylazine did not have effect in controls or in principals in clinical remission.  相似文献   

18.
Ten neonatal calves were anesthetized with xylazine and ketamine intramuscularly and breathed air spontaneously. Drug injection was repeated after 45 minutes. Each injection resulted in a rapid and sustained increase in respiratory rate, but arterial carbon dioxide tension (PaCO2) increased, indicating hypoventilation. Arterial hypoxemia, primarily caused by hypoventilation, developed within 15 minutes of each injection, but gradually disappeared. Acidemia was primarily respiratory in origin. Heart rate and arterial blood pressure decreased for the duration of anesthesia (90 minutes). This form of anesthesia is a satisfactory alternative to inhalation anesthesia of neonatal calves.  相似文献   

19.
We compared the ability of 3 alpha 2-adrenoreceptor antagonists, idazoxan (0.05 mg/kg), tolazoline (2 mg/kg), and yohimbine (0.2 mg/kg) to reverse xylazine (0.3 mg/kg)-induced respiratory changes and CNS depression in 6 ewes. Once weekly, each ewe was given a random IV treatment of xylazine, followed in 5 minutes by either an antagonist or 0.9% NaCl solution. Xylazine alone caused recumbency for 54.2 +/- 5.3 minutes (mean +/- SEM). Xylazine also increased respiratory rate and decreased PaCO2 for at least 45 minutes, but did not significantly change arterial pH or PaCO2. Idazoxan and tolazoline were equally effective in reversing the respiratory actions of xylazine; however, yohimbine was less effective in reducing the respiratory rate and was ineffective in antagonizing the decreased PaO2. Idazoxan and tolazoline decreased the duration of xylazine-induced recumbency to 6.3 +/- 0.6 and 9.5 +/- 2.3 minutes, respectively, whereas yohimbine did not significantly change this effect of xylazine. Thus, at the dosages studied, idazoxan and tolazoline appeared to be more effective than yohimbine in reversing the respiratory and CNS depressant actions of xylazine in sheep.  相似文献   

20.
Using a crossover design, the effects of the addition of ketamine to a previously determined optimal hand-injected immobilization dosage of carfentanil/xylazine were evaluated in 11 adult white-tailed deer (Odocoileus virginianus). Two i.m. ketamine dosages were evaluated: 0.15 mg/kg (low ketamine) and 0.30 mg/kg (high ketamine). Each deer was immobilized twice 2 wk apart. Inductions were video recorded and reviewed by observers, who had been blinded to drugs and dosages, who rated qualitative aspects. There were significant (P < 0.05) dosage-dependent decreases in heart rate, SaO2, and arterial pH, and a significant dosage-dependent increase in PaCO2. Induction times with both dosages were more rapid (mean 2.3 +/- 0.9 min for low ketamine and 2.3 +/- 0.6 min for high ketamine) than those reported for the same carfentanil/xylazine dosage used without ketamine. Mean quality ratings, though improved compared to those reported for carfentanil/xylazine alone, were considered "undesirable" for both dosages. Hyperthermia (temperature > 41 degrees C) was noted in 13 of 22 immobilizations. Arterial pH and PaO2 increased significantly from 10 to 20 min postrecumbency, but acidemia (pH < 7.3) was present throughout immobilization periods for all deer. There were ketamine dosage-dependent increases in respiratory components of this acidemia compared with that associated with carfentanil/xylazine alone. Possible hypoxemia was present at both sampling times for both groups, while hypercapnea (PaCO2 > 60 mm Hg) was present for the high-ketamine group only. Reversal times for naltrexone and yohimbine were rapid (mean 2.9 +/- 0.7 min for low ketamine and 3.3 +/- 0.8 min for high ketamine), with no evidence of renarcotization. Although the addition of ketamine to carfentanil/xylazine caused faster inductions and improved induction qualities, it also produced an increased incidence of hyperthermia, acidemia, hypoxemia, and hypercapnea. Supplemental oxygen and close monitoring of body temperature is recommended when using this immobilization regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号