首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective logging of tropical forests damages residual trees and creates canopy openings throughout the stand. In the Amazon, reduced-impact logging results in significantly less damage than conventional unplanned logging; yet either logging method leads to substantial fragmentation of the forest canopy. Increased mortality rates of trees damaged in logging have been documented. In this paper, we investigate the effect of logging disturbance on treefall rates.Using repeat inventories of canopy trees (≥35 cm dbh) in six large (≥50-ha) forest stands at two sites in the eastern Amazon, we measured mortality rates in three treatment classes: unlogged, conventionally logged (CL) and logged using reduced-impact methods (RIL). At least 3000 trees were mapped and inventoried per stand prior to timber harvests. In the second inventory, 3 years after harvests in the logged stands, all trees were located and scored as living, standing dead, uprooted or broken.We found significantly higher overall mortality rates for trees in logged forest (both CL and RIL stands) than in adjacent unlogged forest. This effect was largely due to higher rates of treefall (i.e., stems uprooted or broken from natural causes). Moreover, significantly higher treefall rates were recorded for trees in logged forest that were not damaged in the logging than for trees in unlogged stands. Treefall rates were nearly twice as high in conventionally logged forest as in forest logged using reduced-impact methods. We found indirect support for the hypothesis that increased treefall rates in logged forest are related to increased canopy opening and fragmentation through analysis of the locations of fallen trees in relation to canopy disturbance.  相似文献   

2.
《Southern Forests》2013,75(3-4):133-140
Reduced-impact logging is used to minimise the negative effects of selective logging. However, it has been suggested that low-impact logging may create too little disturbance for the regeneration of the light-demanding timber tree species, hence compromising forest productivity. This study evaluates the impact of low-intensity, non-mechanised, certified community forest management on timber tree regeneration. Particular attention was paid to big-leaf mahogany (Swietenia macrophylla), which has a regeneration pattern linked with large-scale disturbances. Logging gaps were compared to natural treefall gaps of an unlogged forest. There were more species of the light-demanding timber trees, but fewer individuals of the shade-tolerant timber species in the certified forest logging gaps, compared to unlogged forest treefall gaps. Furthermore, significant differences were found in the environmental characteristics of the logging and natural treefall gaps, although these only partially explained the differences in timber regeneration. Mahogany was found in over half of the logged forest gaps, whilst being nearly absent in the natural treefall gaps. However, all mahoganies in the established logging gaps were seedling-sized, indicating that regeneration may be hampered due to competing vegetation. The results of the study suggest that low-impact forest management may, at least in the short term, favour light-demanding species over the shade-tolerant ones, similarly to conventional forest management.  相似文献   

3.
To insure adequate regeneration and future timber yields of mahogany (Swietenia macrophylla King), many logged forests will have to be restocked through enrichment planting and managed using silvicultural techniques that maintain this species’ long-term survival and growth. This study compared the effects of planting method and two silvicultural treatments on the survival and growth of mahogany seedlings in logging gaps in Bolivia. We tested the hypotheses that survival and growth will be higher among transplanted seedlings than seedlings established from sown seeds and higher in silvicultural treatments that reduce competing vegetation and increase light. The first silvicultural treatment consisted of gaps logged 6 months prior to planting, gaps logged just prior to planting, and gaps treated with herbicide prior to planting. The second treatment, applied 12 months after planting, consisted of manual vegetation cleaning around mahogany seedlings in half of the gaps. The first hypothesis was supported in terms of initial seedling growth but not survival, which was similar between planting methods during the 12-92 months after planting. Transplanted seedlings grew significantly faster than those established from sown seeds during the first year, but this growth advantage disappeared by the second year. Although transplants were 84 cm taller than seed-sown seedlings by the end of the study, this height gain was probably not worth the cost of growing and transplanting seedlings. The second hypothesis was supported in terms of both survival and growth. A significantly greater proportion of seedlings survived in herbicide (62%) compared to 6-month-old (46%) and recent gaps (18%) and in cleaned (51%) versus control gaps (39%). Seedlings initially grew faster in herbicide and recent gaps than in 6-month-old gaps. These differences among silvicultural treatments were largely explained by canopy cover, which, throughout the study, was at least 14% lower in herbicide gaps and 9% lower in cleaned gaps relative to their respective alternatives. By 64 months growth diminished to near zero and no longer differed among gap treatments, despite lower canopy cover in herbicide gaps. By 92 months, saplings in herbicide gaps were only 145 and 77 cm taller than those in recent and 6-month-old gaps, respectively. To maximize survival and growth of mahogany seedlings in logging gaps while minimizing costs, silvicultural strategies should focus on direct seed sowing and appropriately timed interventions (i.e. manual cleaning) to control competing vegetation.  相似文献   

4.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

5.
In the Congo Basin where most timber species are light-demanding, the low logging intensities commonly implemented (1-2 trees harvested ha−1) do not provide sufficient canopy gaps to ensure species regeneration. The regeneration of light-demanding timber species may therefore benefit from more intensive logging, or from post-harvest treatments such as thinning by poison girdling that increases light penetration. Little is known of the impact of post-harvest treatments on the floristic composition of tropical moist forests. This study therefore aimed to assess the effects of low and high selective logging (?2.33 and 4.73 trees harvested ha−1, and ?4.96 and 9.16 m2 ha−1 of basal area removed (logging + damage), respectively) - followed or not by thinning (?21.14 trees thinned ha−1, and ?6.57 m2 ha−1 of basal area removed) - on the floristic composition of a tropical moist forest in the Central African Republic, from 7 to 23 years after logging.We analyzed abundance data for 110 tree genera recorded every year for 14 years in 25 one-hectare permanent subplots. We used multivariate analysis to detect floristic variations between treatments and we assessed changes in floristic composition throughout the period. We compared floristic composition recovery between thinned and unthinned subplots, using unlogged subplots as a reference characterizing the pre-logging floristic composition.Logging and thinning had little impact on the floristic composition of the subplots as quantified 7 to 23 years later, though they did increase the proportion of pioneer species. Surprisingly, additional thinning at both logging levels failed to further distance floristic composition from that of the unlogged subplots, though it did increase disturbance intensity. Floristic composition recovery appeared to be facilitated when thinning was associated with logging. Thinning seemed to favor the growth and survival of non-pioneer species, to the detriment of pioneer species. These non-pioneer species could either be non-pioneer light demanders or shade-bearers. One explanation for this is that thinning by tree-poison girdling increased light availability without causing major damage to the forest, and thus increased the growth and survival of advance regeneration. The resulting enhanced competition then reduced the survival of pioneer species.  相似文献   

6.
We studied the effects of line thinning on stand structure, microclimate and understory species diversity of two Cryptomeria japonica D. Don plantations in south-central Japan. In each of two study sites we compared stand structure between the thinned stand and an adjacent unthinned stand and found that line thinning increased the growth rate of residual trees such that stand basal area may recover within 10 years after thinning. In the thinned stand, more open canopy conditions resulted in higher maximum temperatures on the forest floor during the early growing season than in the unthinned stand. The thinned stand had greater understory plant species richness and biomass than the unthinned stand. This study suggested that line thinning could potentially enhance biodiversity while simultaneously increasing tree-growth rates in overstocked Cryptomeria japonica plantations.  相似文献   

7.
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees ≥20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha−1. Size class frequency distributions appeared unimodal at two high-density sites, but were essentially amodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93–95% of commercial trees (≥45 cm diameter at the time of logging), illegally eliminated 31–47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9–37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany.  相似文献   

8.
Selective logging is the most widely employed method of commercial timber production in Asia, and its impact on forest structure, composition, and regeneration dynamics is considerable. However, the successional processes in forest communities after logging in semiarid mountains are poorly understood. To provide more information on these processes, we used data from tree rings, direct and indirect age determinations, and field measurements of stand structure to reconstruct the historical disturbance regime, stand development patterns, and successional processes in a natural Picea crassifolia forest community in the Qilian Mountains of northwestern China. The results showed that the density of P. crassifolia forest increased significantly after logging. The densities of second growth forests 30 and 70 years after logging disturbance had increased to 2874% and 294% of primary forest's density, respectively. Logging disturbance did not alter tree species composition of logged stands. However, the diversity of understory species changed significantly among the successional phases. Logging disturbance decreased the spatial heterogeneity of second growth forest. The spatial distributions of recruitment were affected by the location of the remaining trees. There was less recruitment near the remaining trees than near forest that had been cut. In addition, logging disturbance also induced a growth release for the trees on the sites sampled. Our results imply that the succession and regeneration of P. crassifolia forest may be improved if the remaining trees could be retained relative uniform distribution pattern, thinning or selective logging could be performed to height density, exotic shrubs could be removed or the shrubs cover could be reduced during the earlier successional stages.  相似文献   

9.
A major impediment to the sustainable management of tropical dry forests in Bolivia is the scarcity of natural regeneration of commercial timber tree species. Where regeneration is present, true seedlings of many species are outnumbered by vegetative sprouts from roots, broken stems, and the stumps of felled trees. This study evaluates the importance of resprouts promoted by logging operations for the regeneration of commercially important canopy tree species. The objectives of the study were: (1) to characterize stump and root sprouting behaviors of canopy tree species harvested for timber; (2) to quantify the effect of logging on relative abundances and growth rates of stump sprouts, root sprouts, and true seedlings; (3) to relate the species-specific probabilities of stump sprouting to stump diameter and stump height; and (4) to explore how sprouting varies with the ecological requirements of canopy tree species. The study was carried out 1–5 years after logging of a privately owned land in a Bolivian tropical dry forest. Twenty-seven of the 31 species monitored resprouted at least occasionally, among which Centrolobium microchaete (Leguminosae-Fabaceae) and Zeyheria tuberculosa (Bignoniaceae) were the most frequent stump sprouters, and Acosmium cardenasii (Leguminosae-Fabaceae) and C. microchaete were the most frequent root sprouters. In all species the number of sprouts declined with increasing stump diameter and stump height. The probability of stump resprouting differed among species but did not vary consistently with stump diameter, except in Z. tuberculosa in which it declined. Approximately 45% of juveniles <2 m tall of canopy tree species originated from root or stem sprouts. Light-demanding species tended to regenerate more from seeds and root sprouts than from stumps. Seedling densities were higher in microsites opened by logging, while root and stem sprouts were equally common across microsites. Given their abundance and the fact that root and stem sprouts at least initially grew faster than true seedlings, we conclude that vegetative regeneration in this tropical dry forest is an important mode of post-logging regeneration especially for species that regenerate poorly from seed. Resprout management should be considered as a potentially effective strategy for the procurement of regeneration following logging, especially for species that do not readily recruit from seed.  相似文献   

10.
We investigated the effects of selective logging on stand structure and regeneration in selectively logged subboreal forests in Taisetsuzan National Park in Hokkaido in northern Japan. The basal area decreased and the size structure of trees altered in the stands studied due to repeated, intense selective logging, in which larger trees were cut down as a priority. Sapling density in the stands was much lower than that in primary forests. In the simple and multiple regression analyses that were used to estimate the effects of selective logging on sapling density, sapling density had a significant positive correlation with tree density and had little correlation with the density of logged stumps or the height ofSasa (dwarf bamboo) growing on the forest floor. These results suggest that the establishment sites around canopy trees influenced the establishment of saplings, rather than the gaps caused by selective logging. However, both the coefficient of determination and the standardized partial regression coefficient of multiple regression analysis were higher for the stand with a dense cover ofSasa than for the stand with a sparse cover ofSasa. Thus, the success of regenerating forests with selective logging depends on both the site of advanced regeneration and the light conditions that regulate growth.  相似文献   

11.
Silvicultural treatments are often needed in selectively logged tropical forest to enhance the growth rates of many commercial tree species and, consequently, for recovering a larger proportion of the initial volume harvested over the next cutting cycle. The available data in the literature suggest, however, that the effect of silvicultural treatments on tree growth is smaller in dry forests than in humid forest tree species. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates of future crop trees (FCTs; i.e., trees of current and potentially commercial timber species with adequate form and apparent growth potential). The study was carried out in a tropical dry forest in Bolivia where a set of 21.25-ha plots were monitored for 4 years post-logging. Plots received one of four treatments that varied in intensity of both logging and silvicultural treatments as follows: normal (reduced-impact) logging; normal logging and low-intensity silviculture; increased logging intensity and high-intensity silviculture; and, unlogged controls. The silvicultural treatments applied to FCTs involved liberation from lianas and overtopping trees. Results showed that rates of FCT stem diameter growth increased with light availability, logging intensity, and intensity of silvicultural treatments, and decrease with liana infestation degree. Growth rate increment was larger in the light and intensive silvicultural treatment (22–27%). Long-lived pioneer species showed the strongest response to intensive silviculture (50% increase) followed by total shade-tolerant species (24%) and partial shade-tolerant species (10%). While reduced-impact logging is often not sufficient to guarantee the sustainability of timber yields, application of silvicultural treatments that substantially enhanced the growth rates of FCTs will help move the management of these forests closer to the goal of sustained yield.  相似文献   

12.
Forest thinning utilizing cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their impacts on water storage in the extensible tissues of dominant and codominant trees in an uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) stand on the east slope of the Sierra Nevada. Prior to the onset of the third growing season following thinning and the second season after burning, manual band dendrometers were installed at breast height on the selected trees and readings of diurnal fluctuation in stem circumference, an indication of bole water status, were taken monthly for one year. Diameter and relative diameter fluctuation were calculated from the circumference measurements. Overall, thinning had a positive influence on stem water recharge capacity, with the most pronounced effects evident in the latter part of the growing season. During this period, bole contraction in thinned stand portions was 49 to 55% greater than in the unthinned control, suggesting that both a greater volume of stored water was available for transpiration and was transpired in trees of the former treatment. There was no clear evidence that harvesting method affected stem water storage and influences of underburning were also absent entirely. Seasonal effects on diurnal changes in stem diameter were prominent, as the extent to which boles contracted generally increased over the course of the growing season, whereas fluctuations were at a minimum during the colder months. The magnitude of stem dimensional flux was found to be negatively correlated with initial tree DBH in one instance, while negative relationships between the former and live crown length as well as percentage were also revealed, albeit infrequently. Changes in bole size were positively correlated with residual basal area in some cases. These results suggest that improvement in water relations can be realized from density management in a dry site forest type with no apparent compromise of this benefit by broadcast underburning.  相似文献   

13.
Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1–5 yr after selective logging, and experimentally tested the effect of forest fire on populations of invasive grasses. In unlogged forests and in microhabitats created by selective logging we found a total of four alien and 16 native grass species. Grasses covered 2% of unlogged and 4% of logged forest, with grass cover in logged forest concentrated in areas directly disturbed by logging; log landings and roads had relatively greater grass cover (37% and 17%, respectively) than did skid trails (10%) and felling gaps (8%). Total grass cover and grass species richness increased with canopy openness and were greatest in sites most severely disturbed by logging. The grass flora of these disturbed areas was composed mostly of native ruderal species (e.g., Digitaria insularis, Leptochloa virgata), a native bamboo (Guadua paniculata), and Urochloa (Panicum) maxima, a caespitose C4 pasture grass introduced from Africa. Urochloa maxima formed monodominant stands (up to 91% cover and 2–3 m tall) and grew on 69% of log landings and 38% of roads. To better understand the potentially synergistic effects of logging and fire on the early stages of grass invasion, we tested the effect of a 12-ha experimental fire on U. maxima populations in a selectively logged forest. Three years after the fire, the area covered by alien grass in burned forest increased fourfold from 400 m2 (pre-fire) to 1660 m2; over the same period in a logged but unburned (control) area, U. maxima cover decreased from 398 m2 to 276 m2. Increased canopy openness due to fire-induced tree mortality corresponded with the greater magnitude of grass invasion following fire. Selective logging of this dry forest on the southern edge of the Amazon Basin promotes alien grass invasion; when coupled with fire, the rate of invasion substantially increased. Recognition of the grass-promoting potential of selective logging is important for understanding the possible fates of tropical forests in fire-prone regions.  相似文献   

14.
We evaluated the survival and growth of Amburana cearensis, Cedrela fissilis, and Sterculia striata seedlings in three seasonally tropical dry forest fragments that were subjected to different logging levels (intact, intermediately and heavily logged). In each fragment, we planted 40 seedlings of each species and monitored these over a period of 1 year. The highest seedling survival rate (64%) occurred in the heavily logged fragment, which, however, also had the highest mortality risk for all species during the dry season. Only S. striata seedlings had different survival rates among the fragments. Height and diameter growth were higher at sites with higher canopy openness in the wet season. The survival and growth rates of seedlings planted in logged fragments indicate that this technique can be applied to restore and enrich logged forests of the Paran? River Basin.  相似文献   

15.
Based on paper of “Theoretical derivation of risk-ratios for assessing wind damage in coastal forest“,wind damage in the pine coasteal forest,which was thinned at four levels in December of 1997,was investigated for four successive growing seasons.Besides wind damage,the wind profiles outside and inside the coastal forest stand and the distributions of optical stratification porosity (OSP) were also observed.Based on these data,risk-ratios of wind damage for both individual trees and stands were estimated according to the methods developed in “Theoretical derivation of risk-ratios for assessing wind damage in a coastal forest“.The results showed that risk-ratios of wind damage,which were calculated from the meen height and diameter only and from the combination of wind and stand sructure profiles,accurately predicted wind damage in the plantation.Relationships between different thinning ratios and incidence of wind damage showed that stand stability decreased soon after the thinning.This was due to the immediate effects of thinning on increasing the canopy roughness and wind load,and on decreasing the sheltering effects from surrounding trees.However,thinning strategies could improve the stability by long-term effects on growthand development of trees against extreme wind.Only canopy damage was recorded during the experimental period,no stem damage was found,even though the maximum 10-min wind speed outside the coastal forest attained 30.2m s^-1.The results obtained in this study indicate that thinning is the most effective silvicultural strategy available for managing coastal forest despite the increased probability of wind damage soon after thinning.  相似文献   

16.
Although bigleaf mahogany (Swietenia macrophylla King) is one of the most important commercial timber species in the neotropics, little is known about its site preferences in the Yucatan Peninsula. We evaluated the association of mahogany with soil characteristics using the easily observed characteristics of soil color, stoniness, and relief position. The study was conducted in a commercially managed, medium-height, semi-evergreen, dry tropical forest. A total of 609 mahogany were located along 119 km of transects established in the forest. Forest site conditions were classified in 2,464, 0.78 m2 circular plots located systematically along transects, and site conditions of mahogany along the transects were recorded for the area within 1 m radius of each tree. Mahogany preferred level sites with 93% occurring on level conditions compared to 75% for forest site plots (P < 0.001). There was also a preference for black soils (76% of mahogany versus 68% of forest site plots) and a negative preference for red soils (17% versus 27%, P < 0.001). Observed soil site preferences can improve management decisions, including where to plant mahogany and where to apply silvicultural treatments, such as liberation thinning.  相似文献   

17.
ABSTRACT

A natural holm oak forest was selectively thinned to test thinning as a tool to reduce tree mortality, increase productivity, and reverse the recent regression of the dominant species (Quercus ilex) induced by climate change. Thinning increased aboveground productivity and reduced stem mortality in this Mediterranean forest during four years just after thinning, contributing to the maintenance of forest functioning under changing climatic conditions. Q. ilex was the only species positively affected by the thinning: stem growth increased for all stem sizes, and mortality was significantly lower in thinned plots. On the contrary, mortality rates of Phillyrea latifolia and Arbutus unedo were not significantly lower. Stem growth increased for P. latifolia only in the smallest stem-size class. Our results highlight the suitability of selective thinning for improving the forest productivity and ensuring the conservation of Mediterranean coppices. Other benefits of selective thinning, such as a decrease in the risk of fire dispersion and an increase in the water supply for human populations, are also discussed.  相似文献   

18.
Timber quality and logging damage after different thinning types in Scots pine (Pinus sylvestris L.) stands were studied in a field experiment in north Sweden. Thinning operations were mechanized and carried out according to normal Swedish practise. The treatments were thinning from below and thinning from above. The quality of the residual stand was evaluated using variables such as diameter of the thickest branch, stem taper, annual ring width, straightness and lean of trees. The only variables showing differences between treatments were lean of tree and stem straightness. No difference in the frequency of trees with logging damage was found. The conclusion of this study is that differences between thinning types in first thinning may be evened out when carried out as in commercial forestry due to extraction of strip road and damaged trees. Consequently, differences in timber quality and logging damage in the residual stand may be small.  相似文献   

19.

Coastal spruce forests of central Norway harbour a unique assemblage of epiphytic lichens and are given high priority with respect to conservation of biodiversity. To assess the historical impact of logging during the last 100-150 yrs, 31 remnant stands were studied by means of tree-ring analysis of 2199 trees and the decay stage of 1605 stumps. No stands had been clear-cut, but all had been selectively logged at least twice during the last 150 yrs. Total harvested timber volume ranged from 65 to 409 m3ha-1 (31-124% of present-day standing volume) and the selective logging kept standing volume low (40-200 m3ha-1) during 1890-1930. Present-day stand characteristics were strongly correlated with site productivity and topographic position within the ravine valleys. Low amounts of dead wood at sites with high historical logging activity was the only consistent relationship found after covariance of site productivity, topographic position and deciduous trees were taken into account. The results indicate that old-growth stand characteristics, such as reversed J-shaped age distributions and dead wood in advanced decay classes, can be obtained 100-150 yrs after intensive selective logging.  相似文献   

20.
Physiological parameters were measured under natural light conditions and needle orientation from towers and walkways erected in the canopy of a loblolly pine (Pinus taeda L.) plantation. Four silvicultural treatments were randomly assigned to the twelve plots in the fall of 1988. Plots were thinned to a density of 731 trees per hectare or left unthinned, at a density of 2990 trees per hectare. The plots were left unfertilized or fertilized with 744 kg/ha of diammonium triple superphosphate was applied. During the fifth growing season (1993) following thinning and fertilization, needle level physiology was not different with respect to the thinning treatment for fertilized or unfertilized plots. In contrast, upper crown levels within the fertilized and unfertilized plots had significantly higher light levels and photosynthetic rates than lower crown foliage. Light levels were greater in the thinned, fertilized plots than in the unthinned, fertilized plots. In contrast, no effect of thinning on canopy light levels was found in the unfertilized plots. Within crown variation in photosynthesis was strongly dependent on canopy light levels. A strong interaction of canopy level with thinning was apparent for net photosynthesis. Loblolly pine, being a shade intolerant species, showed only small physiological differences between needles from different parts of the crown. Because of the variability found in this study, more extensive sampling is needed to correctly describe the physiology of a forest canopy with adequate precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号