首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Nitrogen inputs from biological nitrogen fixation contribute to productivity and sustainability of agroforestry systems but they need to be able to offset export of N when trees are harvested. This study assessed magnitudes of biological nitrogen fixation (natural 15N abundance) and N balance of Acacia mangium woodlots grown in farmer’s fields, and determined if N2 fixation capacity was affected by tree age. Tree biomass, standing litter, understory vegetation and soil samplings were conducted in 15 farmer’s fields growing A. mangium as a form of sequential agroforestry in Claveria, Misamis Oriental, Philippines. The trees corresponded to ages of 4, 6, 8, 10 and 12 years, and were replicated three times. Samples from different plant parts and soils (0–100 cm) were collected and analyzed for δ15N and nutrients. The B-value, needed as a reference of isotopic discrimination when fully reliant on atmospheric N, was generated by growing A. mangium in an N2-free sand culture in the glasshouse. Isotopic discrimination occurring during N2 fixation and metabolic processes indicated variation of δ15N values in the order of nodules > old leaves > young leaves > stems > litterfall and roots of the trees grown in the field, with values ranging from −0.8 to 3.5‰ except nodules which were enriched and significantly different from other plant parts (P < 0.0001). Isotopic discrimination was not affected by tree age (P > 0.05). Plants grown in N free sand culture exhibited the same pattern of isotopic discrimination as plants grown in the field. The estimated B-value for the whole plant of A. mangium was −0.86‰. Mature tree stands of 12 years accumulated up to 1994 kg N ha−1 in aboveground biomass. Average proportion of N derived from N2 fixation of A. mangium was 54% (±22) and was not affected by age (P > 0.05). Average yearly quantities of N2 fixed were 128 kg N ha−1 in above-ground biomass amounting to 1208 kg N fixed ha−1 over 12 years. Harvest of 12-year old trees removed approximately 91% of standing aboveground biomass from the site as timber and fuel wood. The resulting net N balance was +151 kg N ha−1 derived from remaining leaves, twigs, standing litter, and +562 kg N ha−1 when tree roots were included in the calculation. The fast growing A. mangium appears to be a viable fallow option for managing N in these systems. However, other nutrients have to be replaced by using part of the timber and fuel wood sales to compensate for large amounts of nutrient removed in order for the system to be sustainable.  相似文献   

2.
The influence of stand density on Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is conceptually understood, but for wide spacings not well quantified, particularly in Europe. This study used 41 trees from 7 different locations in south-western Germany to compare important tree- and branch-level attributes across three different densities, namely 100, 200, and 1,200 stems ha−1. In general, there were only a few tree and branch attributes that were significantly different between the 100 and 200 ha−1 densities. Crown projection area and diameter of the thickest branches were the most important differences between the 100 and 200 ha−1 densities. The most obvious and significant differences in this study were between 100 and 1,200 ha−1 densities, where nearly every examined tree and branch attributes were statistically significant. However, relative sapwood area, the number of branches, branch angle, and the occurrence of spike knots were insensitive to stand density. Although the two lowest stand densities in this study represent rather extremely wide spacings, these results still have important implications for the development of effective thinning regimes for Douglas-fir in south-western Germany. Important management recommendations from this study include thinned stands should be maintained to at least 200 stems ha−1 to maintain high log quality and stand stability. Furthermore, even at stand densities exceeding more than 1,200 trees ha−1 planted trees, artificial pruning may even be necessary to produce high quality logs.  相似文献   

3.
Generic equations are proposed for stem, branch and foliage biomass of individual trees in even-aged pure stands of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi. Biomass data was collected from a total of 1,016 individual trees from 247 stands throughout Japan, and five regression models were assessed by root mean square error, mean bias, fit index (FI), and AIC. The results show that a power equation using diameter at breast height (dbh) and height is the most suitable for all species and components. This equation is more accurate than the familiar power equation that uses ‘dbh2 height’, and it expresses the greater volume of branch and foliage mass of trees with a lower height/diameter ratio. A power equation using dbh is more reasonable for models with dbh as the only independent variable and more accurate than a power equation using ‘dbh2 height’ for estimating branch and foliage mass. Estimating error for branch and foliage mass is larger than that for stem mass, but the entire aboveground biomass can be estimated with an error of less than 19%, except in the case of small trees with dbh less than 10 cm.  相似文献   

4.
The potential contribution of agroforestry systems to the management and genetic resources conservation in iroko (Milicia excelsa), an important and valuable timber tree species in sub-Saharan Africa, is addressed in this paper. The structure and dynamics of traditional agroforestry systems and the ecological structure of Milicia excelsa populations in farmlands were studied through a survey carried out in 100 farmlands covering the natural range of iroko in Benin. Forty-five species belonging to 24 plant families were recorded in traditional agroforestry systems. Average tree density varied from 1 to 7 stems ha−1 with diversity index ranging from 2.6 to 2.9. Milicia excelsa occurred sparsely in agroforestry systems in all regions, with density ranging from 1 to 4 stems ha−1; stand basal area varying from 33.10−4 to 129.10−4 m2 ha−1, and negligible seedling regeneration. However, male and female trees were apparently evenly distributed on farmlands in all regions (F/M > 0). Iroko trees produced viable seeds with moderate germination rate and early growth (germination rate 22% and height 7.29 cm after 3 months). Suggestions are made regarding optimal densities for iroko conservation in farmlands, according to farmers’ socioeconomic conditions in different regions, in order to improve traditional agroforestry systems and their use as biological corridors in conservation of Milicia excelsa genetic resources.  相似文献   

5.
Due to the lack of knowledge about ponderosa pine performance under silvopastoral systems (SPS) conditions, the objective of this study was to determine the effect of stand density and pruning on the growth magnitude of ponderosa pines growing in NW Patagonia (SPS with 350 and 500 pines ha−1 vs. commercial densities of 1,300 trees ha−1, HPP). Individual growth rate was higher in SPS 350 trees than in SPS 500 trees, being both higher than in HPP plots, indicating a higher sensitivity of this drought resistance species to relative water availability. The higher individual growth compensated the lower amount of trees per land unit, being the whole stand growth similar or even higher in both SPS treatments than in the HPP stand. Pruning reduced diameter growth in both SPS treatments, at least until 2 years after pruning, with a more marked effect in the pruning treatment with the higher amount of extracted foliage. Carbon fixation reduction in addition to changes in carbon allocation within different plant parts after pruning could be the responsible of observed stem growth reductions. We suggest that higher growth rates in combination with frequent pruning in low density plantations can be applied to shorten the rotation period producing high quality timber in comparison with plantations managed under conventional conditions in Patagonia. Additional advantages could be associated to the lower environmental impact of low canopy cover plantations compared to high density stands.  相似文献   

6.
The effects of stand density on increment and branch properties were studied in three spacing experiments of Norway spruce [Picea abies (L.) Karst.]. The stand densities ranged from 350 stems ha−1, regarded as open-grown trees, up to 1,600 stems ha−1, corresponding to the density recommended for forestry practice. Properties of all the branches were measured from the stem apex downwards. The study material included a total of 5,661 branches from 45 trees. Increasing stand density resulted in a decrease in radial increment as well as shorter and narrower crowns, but it had no effect on height increment. The average number of spike knots per tree was 0.87, 0.27, and 0.33 in densities of 350, 700 and 1,600 ha−1, respectively. Additionally, in the widely spaced stands of 350 stems ha−1, the fraction of trees having spike knots was high (over 50%). At a density of 1,600 ha−1, the sample trees had somewhat less branches in a whorl compared with the more widely spaced plots. The most pronounced effect of stand density was the increase in branch diameter with decreasing stand density. At a density of 350 ha−1, the maximum branch diameter of all the sample trees exceeded the diameter limit of quality class B in the European quality requirements for round wood. The results give some indication that trees subjected to severe competition would produce smaller branches per unit of crown projection area. However, the possibilities for reducing branch dimensions relative to stem and crown size through competition appear quite restricted.  相似文献   

7.
The effects of stocking on wood stiffness (MoE) for three Eucalyptus species are quantified using a 6-year-old trial established in New South Wales, Australia. An acoustic time-of-flight tool measured the velocity between two probes in the outerwood, from which the stiffness was estimated. Four stocking levels (714, 1,250, 1,667 and 3,333 sph) were examined. Stiffness varied significantly between all species, with E. cloeziana showing the highest stiffness (14.2–15.7 GPa), followed by E. pilularis (12.2–13.5 GPa) and E. dunnii (10.7–12.6 GPa). There was a stiffness increase (around 11%) between 714 and 1,250 stems/ha for all species but thereafter differences between stockings were not always significant. Trees were also assessed for basic density, dbh, total height, crown area, green crown height and stem slenderness (height/dbh). Only stem slenderness had a significant association (0.41 ± 0.17) with stiffness. These findings suggest that, where stiffness is a priority, forest managers could reduce establishment costs with low stockings (around 1,250 stems/ha).
Luis Alejandro ApiolazaEmail:
  相似文献   

8.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

9.
The distribution of fine (<2 mm diameter) and small roots (2–20 mm diameter) was investigated in a chronosequence consisting of 9-year-old, 26-year-old, 82-year-old and 146-year-old European beech (Fagus sylvatica) stands. A combination of trench wall observations and destructive root sampling was used to establish whether root distribution and total biomass of fine and small roots varied with stand age. Root density decreased with soil depth in all stands, and variability appeared to be highest in subsoil horizons, especially where compacted soil layers occurred. Roots clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all stands, and high values of soil exploitation occurred throughout the entire chronosequence. Overall fine root biomass at depths of 0–120 cm ranged from 7.4 Mg ha−1 to 9.8 Mg ha−1, being highest in the two youngest stands. Small root biomass ranged from 3.6 Mg ha−1 to 13.3 Mg ha−1. Use of trench wall observations combined with destructive root samples reduced the variability of these estimates. These records showed that variability in fine root distribution depended more on soil depth and edaphic conditions than on stand age, and suggest that trench wall studies provide a useful tool to improve estimates of fine root biomass.  相似文献   

10.
The effect of shoot pruning on leaf phenology, stem wood anatomy and sap flow was investigated on Senna spectabilis (DC.) Irwin and Barneby in Machakos, Kenya. Unpruned trees (single stem) were compared to hedges (two to four stems), pruned 4 times a year during two rainy seasons (April–June, 1997 and November, 1997–January, 1998) separated by a dry season (July–October 1997). Trees attained peak leaf area of 55 m2 plant−1 during the rainy seasons, and shed all their leaves naturally during the dry season. Maximum hedge leaf area was 4 m2 plant−1 between pruning events and 5.2 m2 plant−1 during the dry season. Pruning induced multiple stems and narrow xylem vessels with low hydraulic conductivity. Average cross sectional area of conducting wood per plant was at least 1.8 times greater in trees than in hedges. Xylem lumen diameter at 5 mm depth below the cambium was significantly (P < 0.001) larger in trees (53.6 ± 6.21 μm) than that in hedges (36.2 ± 8.21 μm). Maximum sap flow occurred in the wet season for trees (4800 g d−1 plant−1) and in the dry season for hedges (1400 g d−1 plant−1). Wet season pruning suppressed crown expansion and modified the natural phenology of senna, reducing transpiration rate and therefore soil water depletion, causing crowns to grow. This enhanced the ecological combining ability of senna managed as hedges with annual crops.  相似文献   

11.
On-farm trials were conducted to assess the effects of four branch pruning levels on maize grain yield, tree growth and stem shape. The experimental plots consisted of Gmelina (Gmelina arborea R.Br.) trees planted at 1 × 10 m with maize intercropped in the 10 m-wide alleys between lines of trees. Pruning levels consisted of retaining a live crown ratio of 60–70% (T 1), 40–50% (T 2); 30–40% (T 3) and of 20–30% (T 4). At the end of the experiment, the total maize grain yield was highest under the high pruning intensity (T 4) (18.06 t ha−1) and lowest under T 1 (14.48 t ha−1). Maize grain yield under the pruning regime T 2 and T 3 were 16.08 and 17.21 t ha−1, respectively. Mean annual increment (MAI) in tree diameter was greater (5.0 cm year−1) under T 1 than those at T 4 (4.1 cm year−1). Pruning regimes T 2 and T 3 resulted in a MAI of 4.7 and 4.5 cm year−1, respectively. Financial analysis showed that maize-tree systems under T 4 were more profitable than under T 1 as long as the reduction of the average dbh at harvest were not greater than 1 cm. Pruning trees intensively also generated greater returns from labour than moderate pruning, as the greater maize grain yields under T 4 compensated for the cost of pruning and the lower timber yield. In the context of resource-poor farmers, intensive branch pruning was a practice that prolonged the period of profitable intercropping and was compatible with commercial timber production.  相似文献   

12.
Addition of tree or shrub prunings through alley cropping or biomass transfer systems have contributed to sustainable land-use systems in the tropics. Long term productivity of biomass transfer systems require shrub or tree species that coppice after cutting to provide sufficient plant nutrients. The effect of pruning frequency and cutting height on the biomass production of Tithonia diversifolia was studied to provide information for managing hedges. Results showed that height of cutting, pruning frequency, and their interactions significantly affected dry matter production of T. diversifolia. The results also showed that a significantly higher biomass production could be produced when Tithonia was pruned at long time intervals. Pruning height was also of importance in the harvesting of Tithonia biomass and it was evident that dry matter production was highest when Tithonia was pruned bimonthly at 50 cm height. With bi-monthly pruning frequency, dry matter production could be as high as 7.2 t ha−1 yr−1 which might be a sufficient biomass to improve soil productivity in biomass transfer systems.  相似文献   

13.

Key message

Quercus robur seedling mass was affected more by planting density than by taproot pruning. Root pruning enhanced stem biomass at the expense of roots in later growth stages. Alteration of biomass allocation due to nursery practices may result in greater susceptibility to injury and death of the seedlings under unfavorable environmental conditions.

Context

Plants adjust their growth and modulate the resource allocation in response to applied treatments and environmental conditions.

Aims

The aim was to examine how taproot pruning in seedlings grown at different densities affected long-term growth of Quercus robur.

Methods

Seedlings, sown as acorns at two planting densities, with or without pruned roots were harvested in the second, fourth, and fifth years of growth. The effect of root pruning on biomass allocation was determined by measuring leaf, stem, and root mass fractions; carbohydrate concentrations in the roots; and C/N ratios. Specific leaf area and root length were also determined to assess morphological adaptations to growth conditions.

Results

Total seedling mass was affected more by planting density than by taproot pruning. After 4 years of growth, root mass fractions were lower and stem mass fractions were greater in seedlings planted at a higher density. Five-year old root-pruned seedlings also had a lower root mass fraction and higher stem mass fractions than unpruned seedlings. Specific root length was not affected by root pruning or planting density.

Conclusion

Decrease of relative root biomass with simultaneous increase of stem biomass may be a long-term consequence of taproot pruning of Q. robur, and the effects may manifest years after the seedling stage.
  相似文献   

14.
Thinning experiments were conducted in larch (Larix olgensis) plantations to assess the feasibility of converting even-aged plantation stands to uneven-aged forests with more complex stand structures. Stands established in 1965 and 1960 were thinned in 2004 (Regime A, for determining the effect of recent thinning on emergence of seedlings) and 1994 (Regime B, for examining the effects of the past thinning on establishments of recruitments), respectively, at two intensities each. Natural regeneration, together with litter depth, canopy openness and vegetation cover, was surveyed in the thinned plots. Results indicated that larch seedlings started to emerge in May, reached a peak in June, decreased from June through September, and then disappeared in October. No larch seedlings exceeded 1 year old in the thinned plots because of the low levels of light and dense litter and vegetation cover. However, there were many naturally regenerated seedlings (5–50 cm in height) and saplings (50–500 cm in height) of broadleaved tree species such as Acer spp., Fraxinus spp., Cornus controversa, Quercus mongolica, and even the climax tree species, Pinus koraiensis, in the thinned plots. The mean density of regenerated seedlings reached 6.7 and 4.5 stems m−2 in Regimes A and B, respectively, whilst the mean density of regenerated saplings reached 4,595 stems ha−1 in Regime B. These results suggest that it is impractical to turn even-aged larch plantations to uneven-aged larch forests, but it may be feasible to develop uneven-aged larch-broadleaved forests from even-aged larch plantations through thinning.  相似文献   

15.
A century of fire suppression culminated in wildfire on 28 October 2003 that stand-replaced nearly an entire 4000 ha “sky island” of mixed conifer forest (MCF) on Cuyamaca Mountain in the Peninsular Range of southern California. We studied the fire affected Cuyamaca Rancho State Park (CRSP), which represents a microcosm of the MCF covering approximately 5.5 × 106 ha (14%) of California, to evaluate how fire suppression unintentionally destabilizes this ecosystem. We document significant changes in forest composition, tree density, and stem diameter class distribution over a 75-year period at CRSP by replicating ground-based measurements sampled in 1932 for the Weislander Vegetation Type Map (VTM) survey. Average conifer density more than doubled, from 271 ± 82 trees ha−1 (standard error) to 716 ± 79 ha−1. Repeat aerial photographs for 1928 and 1995 also show significant increase in canopy cover from 47 ± 2% to 89 ± 1%. Changes comprise mostly ingrowth of shade-tolerant Calocedrus decurrens [Torr.] Floren. in the smallest stem diameter class (10–29.9 cm dbh). The 1932 density of overstory conifer trees (>60 cm dbh) and 1928 canopy cover at CRSP were similar to modern MCF in the Sierra San Pedro Mártir (SSPM), 200 km S in Baja California, Mexico, where fire suppression had not been practiced, verifying that the historical data from the early twentieth century represent a valid “baseline” for evaluating changes in forest structure. Forest successions after modern crown fires in southern California demonstrate that MCF is replaced by oak woodlands and shrubs. Post-fire regeneration in severely burned stands at CRSP includes abundant basal sprouting of Quercus chrysolepis Liebm. and Quercus kelloggii Newb., but only few seedlings of Abies concolor [Gord. and Glend.] Lindl (average 16 ± 14 ha−1), while whole stands of C. decurrens, Pinus lambertiana Dougl., and Pinus ponderosa Laws. were extirpated. Prescribed burning failed to mitigate the crown fire hazard in MCF at CRSP because the low-intensity surface fires were small relative to the overall forest area, and did not thin the dense understory of sapling and pole-size trees. We propose that larger, more intense prescribed understory burns are needed to conserve California's MCF.  相似文献   

16.
Survival and growth data (ages 0–5 years) are presented for two timber species (Acacia mangium, Cordia alliodora) planted in monocultures or in association with a sequence of agricultural cropsZea mays, Zingiber officinale andEugenia stipitata (a fruit shrub) in the tropical humid Caribbean lowlands of Costa Rica. Average annual height and diameter growth rates were 3.2 m and 4.0 cm (C. alliodora), 3.5 m and 3.8 cm (A. mangium).C. alliodora associated with crops gave the greatest productivity with an average total stem volume increment of 19 m3 ha–1 yr–1. Root rot ofA. mangium (mainlyRosellinia sp.), leading to tree mortality, was greater in pure plots compared to associated plots.A. mangium can not be recommended for similar sites because of this problem.  相似文献   

17.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

18.
Root biomass and root distribution were studied in Entisols derived from the thick deposition of volcanic pumice on Hokkaido Island, Japan, to examine the effect of soil conditions on tree root development. The soil had a thin (<10 cm) A horizon and thick coarse pumiceous gravel layers with low levels of available nutrients and water. Two stands were studied: a Picea glehniiAbies sachalinensis stand (PA stand) and a Larix kaempferiBetula platyphylla var. japonica stand (LB stand). The allometric relationships between diameter at breast height (DBH) and aboveground and belowground biomass of these species were obtained to estimate stand biomass. The belowground biomass was small: 30.6 Mg ha−1 for the PA stand and 24.3 Mg ha−1 for the LB stand. The trunk/root ratios of study stands were 4.8 for the PA stand and 4.3 for the LB stand, which were higher than those from previous studies in boreal and temperate forests. All species developed shallow root systems, and fine roots were spread densely in the shallow A horizon, suggesting that physical obstruction by the pumiceous layers and their low levels of available water and nutrients restricted downward root elongation. The high trunk/root ratios of the trees may also have resulted from the limited available rooting space in the study sites.  相似文献   

19.
Faidherbia (Faidherbia albida) is being promoted widely in interventions for combating desertification, re-greening of the Sahel, carbon offset and various agroforestry projects. However, there is a dearth of information on its growth and canopy development. There are also no guidelines for optimum stocking densities for practitioners to follow. Therefore, the objective of this work was to evaluate scaling relationships between its growth in height, stem diameter and crown size and based on these relationships define stocking densities. In order to achieve this we: (1) modelled its growth in relation to plant density; (2) identified appropriate models for scaling stem height and diameter with crown size; (3) using information from step 2, we derived stocking densities under different scenarios. Crown diameter (CD) was found to scale with stem diameter (D) isometrically, while stem height scaled with CD allometrically. The scenarios derived using the CD–D scaling indicated that densities >50 plants ha?1 are untenable when DBH exceeds 40 cm. High initial densities (>625 plants ha?1) appear to lead to rapid self-thinning. Starting with low initial densities (<100 plants ha?1) was also expected to result in sub-optimal use of site resources and delayed net ecosystem production. As a compromise, we recommend establishment of stands at initial densities of about 625 trees ha?1 (or 4 m × 4 m spacing) and progressive thinning as stem diameter increases. The focus of this analysis has been on monoculture plantations of Faidherbia and the spacing may not be directly applicable where crops are integrated with trees. Therefore, we propose a follow-up study including modelling tree behaviour in mixed stands in order to refine recommendations.  相似文献   

20.
Daniellia oliveri is an indigenous tree with multiple coppicing that is harvested as firewood by local people from savannas and traditional fallows in West Africa. We investigated the effects of periodic weed removal on D. oliveri resprouting and growth in traditional fallows and its use for firewood production by smallholder harvesters. Protected plots were established in D. oliveri dominated fallows at four sites with contrasting soil types. The weedy control plots experienced periodic fires and grass competition. Sizes of firewood logs were surveyed on local markets and used to estimate the quantity of marketable firewood for each treatment. The species sprouted vigorously, forming pure stands. Leading shoot density on weed-free plots was three times higher, reaching 7,250 ± 454 shoots ha−1 34 months after land clearance when compared to 2,425 ± 215 shoots ha−1 on weedy plots. The weed removal treatment increased shoot height from 18 to 34 months after land clearance, while shoot diameter was not affected. After 24 months, 50% of the shoots were of marketable size for the weedy treatment, while this was reached at 18 months for the weed-free treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号