首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Group retention is a forest harvesting technique designed to sustain biodiversity and mitigate concerns regarding clearcut logging. It is characterized by retained forest patches that vary in number, size, spatial arrangement, and habitat attributes. We used birds to compare community composition and species abundance among clearcut, group retention, and uncut control forest treatments, and evaluated species’ responses to percentage retention. The bird community in group retention was more similar to that in control forests than it was to the community in clearcuts. The probability of occurrence for many bird species typical of uncut control forests was related positively to percentage retention. A preliminary analysis of plot-level effects (i.e., amount of forest sampled) suggests that patch size may be more important than total amount of retention.  相似文献   

2.
The effects of canopy disturbance on the abundance, growth, morphological plasticity, biomass allocation and fruit production of velvet leaf blueberry (Vaccinium myrtilloides Michx.) were examined in 1996 in a second-growth boreal mixedwood forest near Nipigon, northwestern Ontario that had been logged by either shelterwood cutting or clearcutting in 1993. We found that V. myrtilloides was able to persist in both open and closed canopy boreal mixedwood forests managed for commercial timber extraction. Persistence under heavy shade conditions was accompanied by significant morphological and biomass allocation plasticity. Specific leaf area, leaf area, individual leaf weight, and the proportion of total biomass in stems and foliage changed along an understory light gradient from 0% to 67% percent photosynthetic photon flux density (% PPFD). The degree of above-ground morphological plasticity may explain blueberry's ability to survive under low light conditions. Reproductive performance of V. myrtilloides was greatest under the partial shade conditions associated with shelterwood cutting. Blueberry bushes growing in clearcuts overgrown with 3-year old aspen (Populous tremuloides Michx.) saplings remained mostly vegetative whereas the number, fresh weight and dry weight of berries in shelterwood cuts was 94% grater than that produced after clearcutting. We attributed the lower fruit yields in the clearcuts to heavy shading from regenerating hardwoods, and mechanical damage to above-ground biomass. The paucity of seedling regeneration as well as extensive mechanical damage to above-ground stems by logging equipment delayed vegetative regeneration of V. myrtilloides in large canopy openings of the clearcut blocks. Unlike other more aggressive ericaceous species (e.g. Kalmia angustifolia var. angustifolia L., Gaultheria shallon Pursh.), V. myrtilloides was unable to resist invasion from faster growing hardwood species (e.g. P. tremuloides) and was rapidly overtopped. V. myrtilloides plants in the uncut control blocks received 3.9% of full sunlight, whereas those growing in the partial cut and clearcut blocks received an average of 25.3% and 32.5% PPFD, respectively. Cover of vegetation over-topping blueberry plants was highest in the uncut forest (90.3%), but was not significantly different between the partial cut (45.5%) and clearcut (50.1%) treatment blocks.  相似文献   

3.
Drift-fence sampling for 1 year yielded information on effects of clearcutting and site-preparation intensity on flatwoods herpetofauna in northern Florida. Sampling occurred in a naturally regenerated 40-year-old slash pine forest and two adjacent 3–4-year-old clearcuts subjected to different site treatments.Four drift-fence array (16 fences) in the forest captured totals of 6266 amphibians (15 species) and 230 reptiles (21 species). From an equal number of arrays in both the minimum- and maximum-treatment clearcuts, amphibian captures totalled 592 (9 species) and 758 (11 species), respectively, and reptile captures totalled 196 (19 species) and 85 (14 species), respectively. Clearcutting and site-preparation treatments did not affect amphibian species richness, but reptile species richness was lower in the maximum-treatment clearcut, due to the absence of some arboreal lizard and snake species. Clearcutting reduced amphibian abundance tenfold by affecting reproductive success. Reptile abundance was reduced by maximum site preparation but not by minimum site preparation. Arboreal lizard populations were severely reduced by clearcutting.Herpetofaunal biomass was not affected by clearcutting and site preparation, but the biomass was apportioned differently among taxonomic groups. The minimum-treatment clearcut had higher snake biomass and lower anuran biomass than the other two sites, whereas the maximum-treatment clearcut had lower lizard biomass than the other two sites.Reptile communities in flatwoods would be favored by site-preparation practices that minimized site disturbances and maximized presence of logging debris. Responses of amphibian communities seemed to be dependent upon availability of water. Overall herpetofaunal diversity would be greatest in an area containing a mosaif of small clearcuts, cypress domes, and different-aged pine stands.  相似文献   

4.
The influence of the forest canopy on nutrient cycling   总被引:2,自引:0,他引:2  
Prescott CE 《Tree physiology》2002,22(15-16):1193-1200
Rates of key soil processes involved in recycling of nutrients in forests are governed by temperature and moisture conditions and by the chemical and physical nature of the litter. The forest canopy influences all of these factors and thus has a large influence on nutrient cycling. The increased availability of nutrients in soil in clearcuts illustrates how the canopy retains nutrients (especially N) on site, both by storing nutrients in foliage and through the steady input of available C in litter. The idea that faster decomposition is responsible for the flush of nitrate in clearcuts has not been supported by experimental evidence. Soil N availability increases in canopy gaps as small as 0.1 ha, so natural disturbances or partial harvesting practices that increase the complexity of the canopy by creating gaps will similarly increase the spatial variability in soil N cycling and availability within the forest. Canopy characteristics affect the amount and composition of leaf litter produced, which largely determines the amount of nutrients to be recycled and the resulting nutrient availability. Although effects of tree species on soil nutrient availability were thought to be brought about largely through differences in the decomposition rate of their foliar litter, recent studies indicate that the effect of tree species can be better predicted from the mass and nutrient content of litter produced, hence total nutrient return, than from litter decay rate. The greater canopy complexity in mixed species forests creates similar heterogeneity in nutritional characteristics of the forest floor. Site differences in slope position, parent material and soil texture lead to variation in species composition and productivity of forests, and thus in the nature and amount of litter produced. Through this positive feedback, the canopy accentuates inherent differences in site fertility.  相似文献   

5.
Forest pasturing of livestock in Norway: effects on spruce regeneration   总被引:1,自引:0,他引:1  
Forest pasturing of free-roaming livestock is a common practice in many parts of the world, but knowledge on how it affects tree regeneration in boreal forests is lacking. We mapped tree density, livestock site use and accumulated damage to young trees of commercial interest(Norway spruce, Picea abies L. Karst.) on 56 clearcuts inside and outside a fenced forest area used for livestock pasturing in Ringsaker, Norway. Inside the fence 56±1.8% of spruce trees were damaged compared to 37±3.4% outside. Proportion of damaged spruce trees was positively related to cattle use of the clearcut, but not so for sheep. On the most intensively used clearcuts, four out of five trees were damaged. The density of deciduous trees was five times lower inside compared to outside of the fence(varying with plant species). While livestock grazing may reduce resource competition in favour of spruce, the current animal density clearly is impeding forest regeneration in the study area.  相似文献   

6.
We studied the occurrence of 22 plant functional groups and the distribution patterns of 12 forest herbs in four clear-felled areas of different ages, and across ecotones between the forest and clearcuts in a 4383 ha beech forest in central Belgium. The main goal was to improve our knowledge on the clearcut harvesting system and its possible influence on herb vegetation. Within each study site, the herbaceous vegetation was sampled along a north–south and an east–west transect with points at 20 or at 10 m intervals. We studied a total of 82 vegetation relevés (4 m2) on 18 transects according to the Braun–Blanquet method. Around the study sites, the abundance of each species present was noted according to a grid-map with cells of 50 m × 50 m, up to a distance of 150 m from the clearcut edges. Differences in species’ cover percentage and frequency between the clearcuts and the surrounding matrix were tested. The colonisation rate for each species was calculated and possible effect of clearcut age on the plant composition was examined. Results of this study show that plant functional groups with a high conservation value, such as ancient-forest species, stress-tolerant species and autochorous species showed a progressive decrease in time after clearcutting. Most of the studied forest herbs had a lower frequency and/or cover in the clearcut areas than in the surrounding forest matrix. For some of these species, we found a progressive abundance decrease along a 150 m-gradient within the forest towards the clearcut (e.g. Dryopteris dilatata, Luzula pilosa, L. sylvatica, Oxalis acetosella). Others, such as Anemone nemorosa and Circaea lutetiana, are characterised by a regular cover in the forest which suddenly drops at the edge and sustains a very low level throughout the clearcut. If some forest herbs recover better than others, data collected so far indicate that most of the studied species are not able to recover such disturbed sites within a few years. We conclude that silvicultural systems should be adapted to the dispersal and recruitment limitations of forest herbs in order to enable their long-term conservation. To achieve this goal, management without large clear fellings and harvesting methods that never leave the ground completely bare are proposed as alternatives to the clearcutting system.  相似文献   

7.
热带次生林面积巨大且在热带森林资源中的作用越来越重要,因而拥有巨大的经营潜力和生态功能。次生林演替过程中的主要研究成果如下:土壤贮存的种子对次生林的再生非常重要,光投射的强度增加和温度提高将刺激种子萌芽,而残余植被群落强烈影响次生林种子的散布,食种子动物影响次生林的成林;次生林群落植物种类数量一般随演替的进程而增加;随着演替的进程,次生林内阳生树种趋于衰亡,耐荫树种不断增加;次生林的树种数量能接近原生林水平的时间过程更随着林分种类、过去土地的利用强度和利用种类,以及环境条件的不同而异;在一定环境中,人工林树种通过人工林树种改变光、温度和土壤表层的湿度,能够促进发芽和种子生长,改善林地和林下植被的状况,从而加速次生林演替。大多数食草动物喜欢在次生林中取食,因为次生林中先锋树种很少或没有机械和化学保护,且林内许多树种产生大量可食用的果实;环境和火对次生林演替有一定影响;在早期的演替过程中,更多的生物量分配到资源需求旺盛的组织(如叶和细根),在演替晚期阶段,更多的生物量则分配到结构组织中(如木质部和根端)。次生林在15至20年内能迅速积累生物量,然后积累逐渐减慢;次生林被砍伐或火烧后,森林土壤的结构被破坏,导致土壤有机质和氮减少。  相似文献   

8.
In forests worldwide, ~10?40% of bird and mammal species require cavities for nesting or roosting. Although knowledge of tree cavity availability and dynamics has increased during past decades, there is a striking lack of studies from boreal Europe. We studied the density and characteristics of cavities and cavity-bearing trees in three categories of forest in a north-Swedish landscape: clearcuts with tree retention, managed old (>100 years) forest, and unmanaged old forest. Unmanaged old forests had significantly higher mean density of cavities (2.4?±?2.2(SD)?ha?1) than managed old forest (1.1?±?2.1?ha?1). On clearcuts the mean cavity density was 0.4?±?2.3?ha?1. Eurasian aspen (Populus tremula) had a higher probability of containing excavated cavities than other tree species. There was a greater variety of entrance hole shapes and a higher proportion of cavities with larger entrances in old forest than on clearcuts. Although studies of breeding success will be necessary to more accurately assess the impact of forest management on cavity-nesting birds, our results show reduced cavity densities in managed forest. To ensure future provision of cavities, managers should retain existing cavity-bearing trees as well as trees suitable for cavity formation, particularly aspen and dead trees.  相似文献   

9.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

10.
Oaks (Quercus spp.) are experiencing recurring regeneration failures associated with pervasive mid- and under-story strata of shade tolerant species in intact, undisturbed forests. Where oak regeneration occurs, inadequate vertical height and depleted root carbohydrate stores impede the ability of regenerating oaks to respond when light does become available. A variety of silvicultural techniques have been developed to increase the penetration of diffuse light, enhancing the light environment on the forest floor, and thereby increasing the likelihood of regenerating oaks to successfully respond to increased light transmittance. We measured shoot and root characteristics, and root soluble non-structural carbohydrate concentrations of white oak (Q. alba L.) advance regeneration exposed to enhanced light intensities associated with a mid-story removal and a clearcut, and compared white oak regeneration vigor to untreated controls.

Root diameter and soluble non-structural carbohydrates increased with increasing light availability. Our data suggest that white oak responds to increases in light transmittance by building below-ground biomass and carbohydrates in the root system prior to an above-ground response. Our study shows that white oak regeneration vigor increases with only modest increases in light. In the absence of other pressures, enhancing the light environment to the forest floor should contribute to successful regeneration of this species.  相似文献   


11.
Habitat alteration caused by forest harvesting seems to contribute to the decline of forest-dwelling caribou, an ecotype of woodland caribou (Rangifer tarandus caribou) inhabiting the boreal ecosystem. To serve as basework to the establishment of conservation measures for the species, we have studied the hierarchical habitat selection of forest-dwelling caribou in a boreal landscape of Québec strongly impacted by logging. Fifteen females were surveyed by GPS telemetry between April 2004 and March 2006. Home ranges showed a high proportion of 90–120 year-old forests, a low proportion of regenerating forests (20–40 years old) and a tendency to include a greater proportion of 6–20 year-old clearcuts in relation to their availability in the study area. At the home range scale, selection patterns differed between periods, possibly reflecting specific requirements linked to caribou life cycle. Caribou selected open lichen woodlands throughout the year while mature closed forests (≥50 years) were selected uniquely during summer. The 6–20 year-old clearcuts were avoided during calving, in summer and during the rutting period but were selected during spring. Our results indicate that mature forest and open lichen woodlands are highly selected forest cover types by caribou at both spatial scales. Although clearcuts were generally avoided at the home range scale, such avoidance was not observed at the larger scale, the search for 90–120 year-old forests being hampered by a uniform distribution of clearcuts. An a posteriori landscape analysis highlighted the spatial association between 6–20 year-old clearcuts and 90–120 year-old forests, an association that can be explained by the current regulations used in Québec. Our results underline the importance of pursuing research concerning the impact of such an exploitation regime on the long-term maintenance of the forest caribou in the boreal landscape.  相似文献   

12.
Dry Douglas-fir (Pseudotsuga menziesii) forests offer a wide range of timber and non-timber values, which may benefit from a balanced timber harvest by variable retention systems with conservation of biodiversity. A major component of biodiversity are forest floor small mammal communities whose abundance and diversity serve as ecological indicators of significant change in forest structure and function from harvesting activities. This study was designed to test the hypotheses that abundance, reproduction, and survival of (i) the southern red-backed vole (Myodes gapperi, formerly Clethrionomys gapperi), will decline; (ii) the deer mouse (Peromyscus maniculatus), will be similar; and (iii) the meadow vole (Microtus pennsylvanicus) and northwestern chipmunk (Tamias amoenus), will increase, with decreasing levels of tree retention. Small mammal populations were live-trapped from 1994 to 1997 in replicated sites of uncut forest, 20% and 50% volume removal by single tree selection, 20%, 35%, and 50% patch cuts based on openings of 0.1–1.6 ha, and small 1.6 ha clearcuts in Douglas-fir forest near Kamloops, British Columbia, Canada. M. gapperi dominated the small mammal community, starting with an abundance of 74–98 animals/ha with mean values ranging from 33 to 51 animals/ha. In the two post-harvest years, abundance, reproduction, and survival of M. gapperi populations were consistently similar among uncut forest and the various levels of tree retention. Thereafter, M. gapperi was seldom found on the small clearcuts. M. pennsylvanicus, T. amoenus, and P. maniculatus occurred predominantly in clearcut sites. As with other types of forest disturbance, responses to our treatments were species-specific. The most striking result was the high abundance and productivity of M. gapperi populations in a dry forest ecosystem, a novel result for this bio-indicator species of closed-canopy forest conditions. At least with respect to small mammals, the retention systems studied seem to enable timber extraction and maintenance of mature forest habitat in these dry fir ecosystems.  相似文献   

13.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

14.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

15.
Tree seedling recruitment was monitored after various types of logging in mixed conifer and deciduous forests of northern British Columbia, Canada. Predicting tree seedling recruitment after disturbance is fundamental to understanding forest dynamics and succession and is vital for forest management purposes. Seedling recruitment success in multi-species northern latitude forests varied as a function of mature tree canopy cover, gap size and position in a gap. Recruitment was abundant within canopy gaps across a wide range of gap sizes (20–5000 m2), but recruit numbers dropped off rapidly under the closed forest canopy and in the open conditions of clearcuts. Inside canopy gaps, recruitment was similar by gap position in small gaps (<300 m2) but, in these northern latitude forests, exhibited a trend of increasing density from the sunny north to shady south end of larger gaps. This was true for all tree species regardless of their shade tolerance ranking. There was no evidence of gap partitioning by any of the tree species during the regeneration phase suggesting that adaptation to the subtleties of gap size during early recruitment are not well developed in these tree species. Favorable locations for emergence and early establishment of germinants were less favorable for growth and survival of established seedlings, i.e. the regeneration niches in these forests were discordant. Tree abundance and species diversity appears to be controlled more by differentiation among growth and survival niches than by the regeneration niches. From the perspective of forest management, abundant natural regeneration of all the dominant tree species of these mixed-species forests can be obtained after partial cutting.  相似文献   

16.
Five soil treatments in a 4-year-old clearcut in southern Sweden affected biomass increase and net nitrogen uptake by planted Norway spruce (Picea abies (L.) Karst.) seedlings through their on net mineralisation and root growth. The patch soil treatments studied were: (i) soil inversion in an old clearcut; (ii) mineral soil from the clearcut remaining, (iii) mineral soil from the clearcut with fertiliser application during the first season; (iv) mineral soil from a nearby uncut forest replacing the clearcut mineral soil; and (v) an untreated control. Growth increased in seedlings in treatments (i) and (iii), but growth in soil treatments with humus removal was not better than that of seedlings in untreated soil. High N uptake early in the first growing season resulted in increased growth during this season in contrast to late N uptake that resulted in a high N concentration in the seedlings after the first growing season. This in turn led to a high growth rate during the next growing season. Generally, both root growth and net N mineralisation were positively correlated to N uptake in the soil treatments. Therefore, a combination of low net N mineralisation and poor root growth as a result of high soil density appears to explain the low N uptake in seedlings in undisturbed soil. The importance of competition with field vegetation for N and water was not clear. Net mineralisation was larger in soil treatments where the humus layer was retained than where it was removed. Net N mineralisation in soil from old clearcuts was the same as in soil from fresh clearcuts.  相似文献   

17.
A 3 year field and pot study was conducted to determine the effects of several biotic and abiotic factors on the early growth of western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata, Donn) and Sitka spruce (Picea sitchensis, Bong. Carr.) seedlings established on 2- and 8-year-old clearcut sites previously occupied by old-growth western hemlock and western redcedar forests (referred to as younger and older CH, respectively), and on adjacent 2-year-old clearcut sites previously occupied by second-growth western hemlock and amabilis fir (Amabilis amabilis (Dougl.) Forbes) forests (referred to as younger HA) in coastal British Columbia. The objective of the study was to determine which factors are associated with the poor growth characteristic of the salal (Gaultheria shallon, Pursh) dominated CH clearcut sites.

No soil moisture deficits were measured on any of the three types of clearcut sites at any time of year. The best seeding growth was on the younger HA sites followed by the younger CH sites and then the older CH sites. The better growth on the younger HA sites was associated with a higher availability of N and P in the first 20 cm depth of the forest floor. No differences in matric soil water potential and pH, and only small differences in soil temperature were measured between the three types of clearcut sites. Complete removal of the competing vegetation on the younger and older CH sites resulted in an increase in conifer seedling growth and in the availability of N (22–40%) and P (15–32%); however, it did not affect cellulose decomposition and matric soil water potential, and increased soil temperature only slightly. Both western hemlock and Sitka spruce seedlings were very responsive to differences in nutrient availability measured between types of clearcut sites and planting treatments. In contrast, western redcedar was not responsive. All three conifer species had very high mycorrhizal colonization on the younger CH sites, and this was not altered by the removal of the competing vegetation (mainly salal).

These results suggest that the nutritional stress and poor growth of conifers on salal-dominated CH clearcut sites in coastal British Columbia can be explained by:(1) inherently low forest floor nutrient availability; (2) competition between salal and conifer seedlings for scarce nutrients and nutrient immobilization in salal; (3) declining nutrient availability a few years after clearcutting and slashburning.  相似文献   


18.
We measured concentrations of sodium, potassium, magnesium, and calcium in forest canopy arthropod functional groups collected from vegetation of clearcut and uncut hardwood forests at Coweeta Hydrologic Laboratory, North Carolina during 1977 and 1978. Functional groups differed significantly in concentrations of the four elements. Spiders had the significantly highest sodium concentrations, followed in decreasing order by some other predators and then herbivores. Caterpillars and sawfly larvae had the significantly highest potassium and magnesium concentrations and high calcium concentration. Detritivores had the significantly highest calcium concentrations. Our data indicate that nutrients contained in nominal biomass of canopy arthropods do not contribute significantly to litter nutrient pools.  相似文献   

19.
We studied the effects of six levels of dispersed green-tree retention (GTR) harvesting (clearcut (0%), 10%, 20%, 50%, and 75%, and unharvested reference (100%)) on understory plant communities in the 8th growing season post-harvest in the mixedwood boreal forest in northwestern Alberta. For the partial harvest treatments (10%, 20%, 50%, 75%) sample plots were located in the partially harvested (retention) strips as well as in the intervening machine corridors used by the harvesting equipment. The understory plant community was significantly influenced by the gradient of retention level. The cover of understory vegetation, especially graminoids, increased with increasing harvesting intensity for the retention strips and overall considering both plots types. Species richness was unaffected by retention level but did decrease as tree density increased. Lower levels of retention lead to increased abundance of early successional, shade-intolerant species. The results suggest a threshold in understory response to GTR harvesting between the 10% and 20% retention treatments. In terms of understory cover and composition, machine corridors within partially harvested forests resembled clearcuts. The results suggest that retaining more than 10% during GTR harvesting could have significant benefits in terms of maintaining understory plant communities more similar to unharvested reference forest.  相似文献   

20.
In several areas in Northeast Thailand, evergreen and deciduous forests coexist under uniform climatic conditions. To identify the factors that determine the distribution of these different forest types, we compared soil depth and soil physical properties between evergreen and deciduous forests, and monitored soil moisture conditions for a year in both forest types at the Sakaerat Environmental Research Station. The soil was significantly deeper under the evergreen forests (mean 97 cm) than under the deciduous forest (mean 64 cm). The soil under the evergreen forests retained much more water throughout the year than the soil under the deciduous forest, and there was also a clear tendency for the evergreen forests to occur in ravine areas, regardless of soil depth. It is possible that the evergreen trees can maintain transpiration during the dry season on thicker soils or in ravine areas, whereas shallower soils cannot provide enough water for these trees to maintain their evapotranspiration during the dry period. From the present study, we showed that soil water availability could be a significant factor determining the distribution of the deciduous and evergreen forests in our catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号