首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gap junctional intercellular communications (GJIC) contributes to neural function in development and differentiation of CNS. In this study, we have investigated the expression of GJIC during the differentiation of neuronal stem cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neuronal stem cell-derived cells from rat brain. During neuronal stem cell differentiation, expressions of Cx43 and 32 were increased for the duration of 72 hr, however the effect were decreased on the 7d. In the neuronal stem cell-derived cells, pretreatments with p38 MAP kinase inhibitor, SB203580, and MEK inhibitor, PD98059, could protect GJIC against TPA-induced inhibition of GJIC. Our data suggest that GJIC plays an important role during neuronal stem cell differentiation, and ERK1/2 and p38 MAP kinase signaling pathway may be closely related functionally to regulate gap junction in rat neuronal stem cell-derived cells.  相似文献   

2.
Gap junctional intercellular communication (GJIC) is involved in the regulation of many cellular processes. MAP kinases are known to affect GJIC and phosphorylation of connexin (Cx). MAP kinases can also be a regulator of cell proliferation and growth. This study was undertaken to show the relevance between expression patterns of Cxs and MAP kinases in rat mammary epithelial cells (RMECs). In order to characterize the RMECs, they were stained with Peanut lectin, which indicates most alveolar epithelial cells, and Thy-1.1 was used as a marker of luminal epithelial cells or myoepithelial cells, respectively. We studied the expression patterns of major gap junction proteins, Cx26, 32, and 43 in RMECs. Western blot analysis demonstrated that Cx26 gradually decreased from day 2, while Cx32 was expressed constantly from day 1 to 14. Cx43 dramatically increased on day 5 and decreased thereafter. The expression patterns and phosphorylation of ERK1/2 and JNK were similar to Cx43, but expression of p38 was like that of Cx32. These results showed that the MAP kinases that comprise ERK1/2, p38, and JNK were involved in regulation of Cxs. Our data suggests that GJIC plays an important role during rat mammary differentiation and that MAP kinases may be closely related functionally to regulate the gap junction.  相似文献   

3.
Connexin 43 (Cx43)-mediated gap junctional communication in granulosa cells is crucial for germ line development and postnatal folliculogenesis. We previously showed that follicle-stimulating hormone (FSH) promoted phosphorylation of Cx43 in rat primary granulosa cells. We further identified Ser365, Ser368, Ser369, and Ser373 in the carboxy-terminal tail as the major sites of phosphorylation by FSH, and found that the phosphorylation of these residues was essential for channel activity. In this study, we investigated the protein kinase(s) responsible for FSH-induced phosphorylation. H89, a cyclic AMP-dependent protein kinase (PKA) inhibitor, inhibited FSH-induced phosphorylation both in vivo and in vitro, whereas PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, had little effect on the phosphorylation level. Ca2+-dependent protein kinase (PKC) appeared to negatively regulate phosphorylation. Phosphopeptide mapping with or without H89 treatment indicated that PKA could be responsible for phosphorylation of the four serine residues. In addition, the purified catalytic subunit of PKA could phosphorylate the recombinant C-terminal region of Cx43, but not the variant in which all four serine residues were substituted with alanine. These results suggest that FSH positively regulates Cx43-mediated channel formation and activity through phosphorylation of specific sites by PKA.  相似文献   

4.
Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K/Akt activator, in ASB15+ was able to partially override the previously observed phenotype of delayed differentiation, whereas administration of the PI3K/ Akt inhibitor, LY294002, decreased phosphorylation of Akt and differentiation of all cell lines similar to the untreated ASB15+ myoblasts. These results provide initial evidence that ASB15 has a role in early myoblast differentiation and that its effects may be mediated in part by the PI3K/Akt signal transduction pathway.  相似文献   

5.
Cell-to-cell interaction via cell contact-dependent pathway is essentially important for maintenance and regulation of corpus luteum (CL) integrity and its physiological actions. The objective of the present study was to evaluate the mRNA expression of the cell adhesion molecules (CAMs) that are constituent factors of gap junctions [connexin (Cx) 43] and adherence junctions (VE-, E-, N-cadherin) in two types of endothelial cells from the mid CL and in CL tissue during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. Specific mRNA expression for Cx43 and N-cadherin was detected in cytokeratin-positive (CK+) and cytokeratin-negative (CK-) luteal endothelial cells (EC) and fully luteinized granulosa cells (LGC). E-cadherin mRNA was expressed in CK+EC and LGC, but not in CK-EC. VE-cadherin mRNA was expressed in both CK+ and CK-EC. During the estrous cycle, Cx43 mRNA expression was significantly lower in the regressing CL. VE-cadherin expression also tended to increase in the mid CL and increased significantly in the regressing CL. E-cadherin mRNA expression was higher in the early and late CL than in the mid- and regressing CL. N-cadherin mRNA expression gradually increased from the early to late CL followed by a decrease in the regressing CL. During PGF(2alpha)-induced luteolysis, Cx43 mRNA expression appeared to increase, and VE-cadherin and E-cadherin mRNA significantly increased at 24 h. N-cadherin mRNA expression decreased 2 and 4 h after PGF(2alpha) administration. Collectively, expression of the mRNAs for CAMs was different in the two types of luteal endothelial cells and fully luteinized granulosa cells and changed independently in the CL during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. The results suggest that CAMs play physiological roles in cell-to-cell communication to regulate both gap and adherence junctions during CL development and regression in the cow.  相似文献   

6.
OBJECTIVE: To isolate bovine mammary gland cells with stem cell characteristics. SAMPLE POPULATION: Monolayers of bovine mammary gland cells. PROCEDURE: Mammary gland cell populations were separated by use of selected media supplements. Phenotypic characteristics were examined via light and transmission electron microscopy. Cellular expression of casein and connexin 43 was identified immunohistochemically. A scrape-loading and dye transfer assay was used to examine the mammary gland cell populations for homogenous gap junctional intercellular communication (GJIC). RESULTS: Subpopulations of mammary gland cells grown in vitro are classified on the basis of their distinct morphologic features and ability to communicate via gap junctions. Ultrastructurally, 2 morphologically distinct cell types were classified as type I and II cells. Type I cells were small light undiffertiated cells and large light undifferentiated cells that were deficient in functional gap junctions (as is characteristic of stem cells). Type II cells included large light differentiated cells and terminally differentiated cells; GJIC was functional in type II cells. Type II cells had cytoplasmic expression of connexin 43, whereas, type I cells did not. All cells expressed casein. CONCLUSIONS AND CLINICAL RELEVANCE: Subpopulations of bovine mammary gland cells with stem cell characteristics were identified. Phenotypic differences are observed among type I bovine mammary gland cells with stem cell characteristics. Gap junctional intercellular communication may be necessary for the differentiation of stem cells. Characterization of bovine mammary gland stem cells and their progeny may provide a new tool with which to study mammary gland health.  相似文献   

7.
The present study was performed to detect the presence of gap junction protein connexin 43 (Cx43) and describe the changes in its expression during ovarian follicular atresia in the swamp buffalo in comparison with cattle. Ovaries of Philippine swamp buffaloes (Bubalus bubalis; SB) and Holstein-Friesian cows (Bos taurus; HF) were collected from slaughterhouses, fixed in 10% formalin in PBS and embedded in paraffin. Sections of healthy follicles and at various follicular stages of atresia were immunostained with anti-Cx43 antibody. Cx43 appeared as punctate staining between granulosa cells (healthy to advanced atretic follicles), indicating assembled gap junctions, but was absent in the theca interna. In SB as well as in HF, granulosa cells showed a dense, moderate, and sparse immunoreactivity to Cx43 in healthy, early atretic, and advanced atretic follicles, respectively. Cumulus cells (in the advanced atretic follicle) surrounding oocytes and adjacent granulosa layers retain the Cx43 protein, although there was only a sparse expression of Cx43 observed in the granulosa layers distant from oocytes in the same follicles. The results indicate that gap junction protein Cx43 decreases in association with atresia and supports the concept that a loss of gap junctional communication plays a coordinating role in the process of atresia. Furthermore, the schema of Cx43 immunoreactivity in SB granulosa cells is similar to that of HF.  相似文献   

8.
REASONS FOR PERFORMING STUDY: Connexin 43 (Cx43) is a ubiquitously distributed gap junction protein in testes and other reproductive tissues. Adjacent cells share ions and small metabolites through intercellular channels, which are present in gap junctions. Previously, Cx43 has not been reported in testes, epididymides and prostates either in healthy stallions or cryptorchid horses. OBJECTIVES: To demonstrate the expression pattern of Cx43 in the reproductive tissues of stallions and examine whether naturally occurring bilateral cryptorchidism has any influence on distribution and expression of Cx43. METHODS: The expression and the presence of Cx43 protein were detected by means of immunohistochemistry and Western blot analysis using a polyclonal rabbit anti-Cx43 antibody. RESULTS: In stallions, gap junctions appeared as structures localised to cell-cell contacts between adjacent cells. In testes, Cx43 expression was detected in the interstitial tissue and seminiferous tubules, between Leydig and Sertoli, as well as Sertoli and germ cells. In epididymides, Cx43 was localised between epithelial cells, whereas in prostates, between secretory cells of the glandular epithelium. In the cryptorchid, a clear reduction of Cx43 signal was observed in all reproductive tissues. CONCLUSIONS: Coupling of Leydig cells via gap junctions may suggest that steroidogenic function of the testis is under the influence of these intercellular channels. Within seminiferous tubules, the expression was found to be stage-specific, pointing to its role in coordinating spermatogenesis. Differential distribution of Cx43 protein in the reproductive tract of normal and cryptorchid stallions indicates that expression is clearly dependent on the physiological status of the horse. POTENTIAL RELEVANCE: Detection of Cx43 expression in equine testicular, epididymal, and prostatic cells is important for a better understanding of the role of intercellular membrane channels in direct cell communication within the reproductive tract of stallions.  相似文献   

9.
Bovine trophoblast protein-1 (bTP-1) is a Type I interferon secreted by the bovine trophoblast from about Day 15 of pregnancy. It is not known whether bTP-1 has functional properties in common with other interferons. The aim of the present study was to determine whether bTP-1 inhibits proliferation of lymphocytes induced by mitogens, mixed lymphocyte cultures (MLC) and interleukin-2 (IL-2) and, if so, whether this activity is similar to that of a related interferon, bovine interferon-alpha I1 (bIFN-alpha I1). Stimulation of lymphocyte proliferation caused by phytohemagglutinin (PHA), concanavalin A (Con A) and pokeweed mitogen (PWM) was inhibited by bTP-1 and bIFN-alpha I1 without any reduction in cell viability. Maximum or near-maximum inhibition (less than 50%) was achieved at concentrations of 0.5-5.0 nM of bTP-1 and bIFN-alpha I1. Cells stimulated with PWM were less inhibited than cells stimulated with PHA and Con A. Both bTP-1 and bIFN-alpha I1 inhibited MLC to a greater degree than lectin-stimulated cells (maximum inhibition was 78% or greater). Also, bTP-1 and bIFN-alpha I1 slightly inhibited incorporation of [3H]thymidine ([3H]TdR) induced by the combination of phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), and calcium ionophore A23187. Finally, bTP-1 and bIFN-alpha I1 had bimodal effects on incorporation of [3H]TdR by IL-2-induced lymphocytes. Incorporation of [3H]TdR was increased at 0.005 nM and 0.05 nM concentrations while higher concentrations caused a slight decrease in [3H]TdR incorporation. Results confirm that bTP-1 inhibits lymphocyte proliferation in a manner similar to that caused by the leukocyte-derived interferon, bIFN-alpha I1. Incomplete inhibition of mitogen-induced proliferation and differences in degree of inhibition between various stimulators suggest that bTP-1 and bIFN-alpha I1 preferentially inhibit certain lymphocyte subpopulations. Local inhibition of lymphocyte proliferation caused by bTP-1 may help protect the allogeneic conceptus from immune responses to fetal antigens or regulate the release of cytokines from endometrial lymphocytes.  相似文献   

10.
Connexin 43 (Cx43) is the predominant gap junction protein within porcine ovary and is required for proper follicle and corpus luteum (CL) development. Recent research suggests maternally or neonatally mediated effects of antiandrogens on reproductive function during adulthood, notably those dependent on gap junctional communication. The current study was conducted to determine whether late gestational or neonatal exposure to the antiandrogen flutamide influences Cx43 gene expression in the adult porcine ovary. Flutamide was injected into pregnant gilts between days 80 and 88 of gestation and into female piglets between days 2 and 10 posnatally. After animals reached sexual maturity, the ovaries were collected from treated and nontreated (control) pigs. Expression of Cx43 mRNA and protein was determined for preantral and antral follicles and for CLs. In addition, 3β-hydroxysteroid dehydrogenase (3β-HSD) expression and progesterone concentration were determined for luteal tissues. In preantral follicles, Cx43 mRNA was down-regulated (P < 0.01) following maternal and neonatal flutamide exposure. In large antral follicles, Cx43 mRNA was up-regulated (P < 0.01) after neonatal flutamide administration. Immunofluorescence showed that Cx43 expression decreased (P < 0.001) in preantral follicles and increased (P < 0.001) in large antral follicles following flutamide exposure. In luteal tissues, Cx43 and 3β-HSD expression and progesterone concentration decreased (P < 0.01) after postnatal flutamide treatment. Overall, these results suggest the involvement of androgens in the regulation of Cx43 expression in pig ovary. Moreover, alteration of Cx43 expression by the administration of flutamide during particular prenatal and neonatal time periods may affect porcine follicle development, as well as CL formation and function.  相似文献   

11.
Connexin43 (Cx43) is a major protein of myometrial gap junctions. The number of Cx43 gap junctions increase dramatically with the onset of labour in association with development of synchronized uterine contractions. The formation of myometrial gap junctions follows an increase in the oestrogen to progesterone ratio indicating an important role of steroid hormones in regulating Cx43 expression at term. However, no relationship has been established between the expression of Cx43 in the non‐pregnant myometrium and concentration of steroid hormones during the oestrous cycle. Here, we used immunofluorescence and Western blotting to analyse the expression of Cx43 gap junctions in the myometrium of pre‐pubertal pigs (n = 7) and mature pigs at pre‐ovulatory (n = 7), luteal (n = 5) and late luteal (n = 3) stages of the oestrous cycle. The number of Cx43 gap junctions calculated per 1 mm2 of the myometrial section was low in pre‐pubertal pigs and significantly higher (p < 0.022) in pre‐ovulatory animals. In relation to pre‐ovulatory animals the number of myometrial gap junctions was significantly lower (p < 0.019) at the luteal phase and correlated with significantly higher (p < 0.005) concentration of endogenous progesterone. Phosphorylated isoforms of Cx43 protein were expressed in the myometrium of pre‐pubertal pigs and mature animals at pre‐ovulatory and late luteal phases, while they were down regulated at the luteal stage. These results indicate that changes of Cx43 expression in the porcine myometrium during the oestrous cycle may be regulated by progesterone concentration and may contribute to the modulation of uterine motility.  相似文献   

12.

Background

The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis.

Methods

First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80) and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90). Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay.

Results

Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p < 0.05) after exposure to flutamide at GD20. Moreover, in GD20, PD2, and PD90 groups, significantly lower AR expression (p < 0.05) was found in the principal and basal cells of the corpus and cauda regions, while in the stromal cells AR expression was significantly reduced (p < 0.05) along the epididymal duct. Concomitantly, a decrease in Cx43 expression (p < 0.05) was noticed in the stromal cells of the cauda region of GD20 and PD2 groups. This indicates high sensitivity of the stromal cells to androgen withdrawal.

Conclusions

The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43 (de)regulation, however, we can not exclude the possibility that in response to flutamide decreased Cx43 expression may represent one mechanism responsible for functional disturbance of the boar epididymis.  相似文献   

13.
Endocrine disrupters are exogenous compounds thought to mimic the action of estrogen or other hormones and influence endocrine activity in the body (Juberg, 2000). These chemicals have adverse effects not only in the reproductive system but also in the central nervous system during development and throughout life. Polychlorinated biphenyls (PCBs) are a class of environmentally persistent and widespread halogenated hydrocarbons. It has been reported that PCBs are potential neurotoxicants. Endosulfan is an organochlorine insecticide that is extensively used to control pests in vegetables, cotton, and fruits. To determine the effect of 2, 2', 4, 4', 5, 5',-hexachlorobiphenyl(2, 4, 5-HCB) and endosulfan on embryo nervous system, we isolated neural stem cells from rat brain at embryonic day 17. Isolated neural stem cells showed pluripotenty. Stem cells could differentiate into neurons and glia. Neurite formation in endosulfan and 2, 4, 5-HCB treated cells. And it appeared to be decreased as compared with that in untreated cells. In order to know the neuro-toxic mechanisms of 2, 4, 5-HCB and endosulfan in neuronal stem cells, we investigated mitogen-activated protein kinase activity (MAPK) and gap junctional intercellular communication (GJIC). Endosulfan decreased the MAPK activity in dose dependent manner. Endosulfan and 2, 4, 5-HCB inhibited GJIC compared to the untreated cell by scrape loading dye transfer (SL/DT). 2, 4, 5-HCB and endosulfan decreased the expression of connexin 43 in dose dependent manner. These results indicated that 2, 4, 5-HCB and endosulfan may inhibit differentiation and proliferation of neural stem cells and gap junctional intercellular communication which play a crucial role in the maintenance of cellular homeostasis.  相似文献   

14.
This study was designed to reveal connexin 43 (Cx43) mRNA and protein expression in porcine foetal gonads using RT‐PCR, immunohistochemistry and Western blot analysis. Expression of Cx43 was investigated in porcine foetal ovaries and testes on days 50, 70 and 90 post coitum (p.c.). RT‐PCR results indicated that Cx43 mRNA was expressed in both foetal ovaries and testes at all gestational ages examined. Cx43 protein was found in the foetal ovary but its distribution varied across ovarian compartments and changed during development. In foetal ovaries, Cx43 was localized between the interstitial cells surrounding egg nests on all investigated days of prenatal period. Moreover, Cx43 expression was observed between germ cells on day 50 p.c. as well as between pre‐granulosa and granulosa cells of primordial and primary follicles on days 70 and 90 p.c. In the foetal testes, Cx43 protein was detected between neighbouring Leydig cells on all examined days of prenatal period and between adjacent Sertoli cells exclusively on day 90 p.c. The presence of Cx43 protein in all investigated foetal gonads was confirmed by Western blot analysis. Cx43 protein detection between pre‐granulosa cells of primordial follicles suggests its role in regulation of the initial stages of follicle development. The Cx43 immunoexpression between neighbouring Leydig and between Sertoli cells indicates its involvement in controlling their functions. We propose that Cx43‐mediated gap junctional communication is involved in the regulation of porcine foetal gonadal development.  相似文献   

15.
卵泡中的颗粒细胞通过间隙连接彼此交流,也与卵母细胞相互联系.连接蛋白是组成间隙连接的基本结构单位,其中Cx43和Cx37是卵泡发育所必需的.Cx43介导的间隙连接偶联通道对于胚胎生殖嵴的发育和出生后的卵泡发生都是必不可少的.Cx37除了对卵母细胞和颗粒细胞之间的交流发挥作用外,还能在紧邻卵母细胞的颗粒细胞之间形成交流通道,缺失Cx37会影响到有腔卵泡的发育,并且卵母细胞不能发育至成熟,故Cx43和Cx37对卵泡发育至关重要.  相似文献   

16.
旨在研究RNF20及其介导的组蛋白H2B第120位赖氨酸的单泛素化(H2Bub)对小鼠棕色脂肪细胞成脂分化的影响。采集1日龄和2月龄雄性C57BL/6小鼠的棕色脂肪组织(n=3),用Western blot方法检测RNF20的表达及其介导的H2Bub水平。利用胶原酶消化法分离获得1日龄小鼠的棕色前体脂肪细胞。分别诱导棕色前体脂肪细胞和C3H10T1/2细胞系成脂分化,通过油红O染色检测其分化效果,进一步通过Western blot检测细胞分化前后(0和8 d)RNF20的表达及其介导的H2Bub水平。通过siRNA干扰Rnf20基因在C3H10T1/2细胞系中的表达,油红O染色方法观察Rnf20基因对成脂分化的影响,利用qPCR和Western blot技术检测Rnf20基因的干扰效率及其介导的H2Bub水平。结果显示,2月龄小鼠棕色脂肪组织中RNF20表达量及其介导的H2Bub水平均显著高于1日龄小鼠。脂肪细胞分化标记蛋白PPARγ和CEBPα的表达水平,RNF20表达量及其介导的H2Bub水平在棕色前体脂肪细胞及C3H10T1/2细胞成脂分化后均显著增加。此外,在C3H10T1/2细胞中敲降Rnf20基因后,与阴性对照组相比,RNF20及其介导的H2Bub水平显著降低,成脂分化后脂滴明显减少。综上表明,RNF20对小鼠棕色脂肪细胞的分化是必需的,敲降Rnf20基因导致组蛋白H2Bub水平显著降低,且降低了C3H10T1/2细胞的成脂分化效率。本研究丰富了小鼠棕色脂肪细胞分化过程中的表观遗传调控研究,为深入理解动物脂肪细胞分化提供了新的基因素材。  相似文献   

17.
Gap junctions have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues, and gap junctions play a major role in direct cell-cell communication. Gap junctional channels and connexin (Cx) proteins have been detected in adult ovaries in several species. Furthermore, it has been shown that several environmental factors, including maternal diet, may affect fetal organ growth and function. To determine whether maternal diet affects expression of Cx26, Cx32, Cx37, and Cx43 in fetal ovaries, sheep were fed a maintenance (M) diet with adequate (A) selenium (Se) or high (H) Se levels from 21 d before breeding to day 132 of pregnancy. From day 50 to 132 of pregnancy (tissue collection day), a portion of the ewes from the ASe and HSe groups was fed a restricted (R; 60% of M) diet. Sections of fetal ovaries were immunostained for the presence of Cxs followed by image analysis. All four Cxs were detected, but the distribution pattern differed. Cx26 was immunolocalized in the oocytes from primordial, primary, secondary, and antral follicles; in granulosa and theca layers of secondary and antral follicles; stroma; and blood vessels. Cx32 was in oocytes, granulosa, and theca cells in a portion of antral follicles; Cx37 was on the borders between oocyte and granulosa/cumulus cells of primordial to antral follicles and in endothelium; and Cx43 was on cellular borders in granulosa and theca layers and between oocyte and granulosa/cumulus cells of primordial to antral follicles. Maternal diet affected Cx26 and Cx43 expression, Cx26 in granulosa layer of antral follicles was decreased (P < 0.01) by HSe in the M and R diets, and Cx43 in granulosa layer of primary and granulosa and theca of antral follicles was increased (P < 0.05) by the M diet with HSe. Thus, Cxs may be differentially involved in regulation of fetal ovarian function in sheep. These data emphasize the importance of maternal diet in fetal growth and development.  相似文献   

18.
The Akt/protein kinase B (PKB) and extracellular signal-regulated kinase (ERK) pathways are involved in cell survival. This study examined the temporal profiles and localization of Akt/PKB and ERK1/2 activation in rat testis after ischemia/reperfusion (I/R). Testicular tissue was collected from normal control rats and rats exposed to reperfusion for 6, 24, and 48 hr after ischemic injury; the tissues were analyzed via Western blotting and immunohistochemistry. Western blot analysis showed that the levels of phosphorylated Akt/PKB (pAkt/PKB) and ERK1/2 (pERK1/2) increased significantly during the first 6-24 hr of reperfusion after ischemia. However, both of these activated proteins were decreased slightly at 48 hr after reperfusion. Immunohistochemically, low levels of pAkt/PKB expression were observed in Sertoli cells from the normal control. After I/R, pAkt/PKB expression increased mainly in the adluminal portion of the Sertoli cells, as well as in spermatogenic cells. In addition, pERK1/2 expression was observed in Sertoli and Leydig cells in the normal control. After I/R, pERK1/2 expression increased in some surviving spermatogenic cells (mainly spermatocytes), as well as in the adluminal portion of Sertoli cells. These results suggest that both Akt/PKB and ERK1/2 are involved in the survival of testicular cells during the early phase of testicular I/R. These pathways may represent important targets for increasing cell survival in testicular injury, including testicular torsion.  相似文献   

19.
The objectives of present study were to evaluate the effect of casein kinase 1 (CK1) inhibition D4476 on in vitro maturation (IVM) and developmental competence of bovine oocytes. The cumulus oocyte complexes (COCs) were cultured in maturation medium with D4476 (0, 2, 5, 10, 20 μM) for 24 hr. After IVM and in vitro fertilization, through expansion average scores of cumulus cells (CCs), oocyte maturation efficiency, cleavage rate and blastocyst rate of zygote, we found 5 μM D4476 could increase the development potential of oocytes. After the COCs were treated with 5 μM D4476, the results of quantitative real‐time PCR analysis, Lichen red staining and PI staining showed that under without affecting germinal vesicle breakdown and nuclear morphology, D4476 could significantly decrease CK1 and upregulate TCF‐4 in oocytes. Furthermore, without influencing the level of Bad and CTSB, D4476 could significantly increase the expression of β‐catenin, TCF‐4, Cx43, MAPK, PTGS‐2, PTX‐3, TGS‐6, Bax and Bcl‐2 in CCs. Western blot analysis revealed that the addition of 5 μM D4476 during the maturation of COCs resulted in a lower level of Cx43 protein at 12 hr and a higher expression of Cx43 protein at 24 hr compared to the group without D4476. These results indicate that adding optimum D4476 (5 μM) to maturation medium is beneficial to maturity efficiency and development competence of bovine oocytes.  相似文献   

20.
镉(Cd)是生物毒性最强的污染物之一,为探讨外源信号分子H2O2对Cd胁迫下裸燕麦生理响应的调节作用,采用珍珠岩栽培,以裸燕麦品种“定莜6号”为材料。试验设4个处理:1) 叶面喷施蒸馏水,根部浇灌营养液(对照);2) 叶面喷施5 mmol·L-1 H2O2溶液,根部浇灌营养液;3) 叶面喷施蒸馏水,根部浇灌含有50 mg·L-1 Cd2+的营养液;4) 叶面喷施5 mmol·L-1 H2O2溶液,根部浇灌含有50 mg·L-1 Cd2+的营养液。研究外源H2O2对Cd胁迫下裸燕麦幼苗生长、活性氧代谢、光合参数和碳同化关键酶活性的影响。结果表明:喷施H2O2显著缓解了Cd胁迫下裸燕麦幼苗根长、株高、鲜重和干重的下降程度,降低了Cd胁迫下裸燕麦幼苗叶片中超氧阴离子、H2O2、丙二醛和抗坏血酸含量及过氧化氢酶活性,提高了超氧化物歧化酶和抗坏血酸过氧化物酶活性及谷胱甘肽、类黄酮、总酚和原花青素含量,而对过氧化物酶活性的影响不大。另外,喷施H2O2对Cd胁迫下裸燕麦叶片中叶绿素a、叶绿素b含量及叶绿素a/b、气孔导度和蒸腾速率无显著影响,但提高了类胡萝卜素含量、净光合速率及核酮糖1, 5-二磷酸羧化酶、景天庚酮糖1, 7-二磷酸酯酶和果糖1, 6-二磷酸醛缩酶和转酮醇酶活性,降低了胞间CO2浓度。上述结果表明,外源H2O2能够通过调控活性氧清除系统降低Cd胁迫诱导的氧化损伤,并提高碳同化关键酶活性,减轻Cd胁迫对光合作用的抑制,从而缓解Cd对裸燕麦幼苗生长的抑制,增强裸燕麦对Cd胁迫的耐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号