首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

2.
Living plants change the local environment in the rhizosphere and consequently affect the rate of soil organic matter (SOM) decomposition. The rate may increase for 3‐ to 5‐folds, or decrease by 10 % to 30 % by plant cultivation. Such short‐term changes of rate (intensity) of SOM decomposition are due to the priming effect. In the presence of plants, a priming effect occurs in the direct vicinity of the living roots, and it is called rhizosphere priming effect (RPE). Plant‐mediated and environmental factors, such as, plant species, development stage, soil organic matter content, photosynthesis intensity, and N fertilization which affect RPE are reviewed and discussed in this paper. It was concluded that root growth dynamics and photosynthesis intensity are the most important plant‐mediated factors affecting RPE. Environmental factors such as amount of decomposable C in soil and Nmin content are responsible for the switch between following mechanisms of RPE: concurrence for Nmin between roots and microorganisms, microbial activation or preferential substrate utilization. Succession of mechanisms of RPE along the growing root in accordance with the rhizodeposition types is suggested. Different hypotheses for mechanisms of filling up the C amount loss by RPE are suggested. The ecosystematic relevance of priming effects by rhizodeposition relates to the connection between exudation of organic substances by roots, the increase of microbial activity in the rhizosphere through utilization of additional easily available C sources, and the subsequent intensive microbial mobilization of nutrients from the soil organic matter.  相似文献   

3.
Summary We investigated the effects of pitch pine seedling roots on extractable N, microbial growth rate, biomass C and N, and nematodes and microarthropods in microcosms with either organic (41% C, 1.14% N) or mineral (0.05% C, 0.01% N) horizon soils of a spondosol. Root quantity was manipulated by varying plant density (0, 1, 2, or 4 seedlings) and rhizosphere soil was separated from non-rhizosphere soil by a 1.2 m mesh fabric. In the rhizosphere of organic soil horizons, moisture, microbial growth rate, biomass C and N, and extractable N declined as root density was increased, but there was little effect on nematodes or microarthropods. High levels of extractable N remained after 5 months, suggesting that N mineralization was stimulated during the incubation. In the rhizosphere of mineral soil horizons, microbial growth rate, and nematode and microarthropod abundances increased at higher root density, and in the absence of roots faunal abundance approached zero. Faunal activity was concentrated in the rhizosphere compared to non-rhizosphere soil. In organic soil horizons, roots may limit microbial activity by reducing soil moisture and/or N availability. However, in mineral soil horizons, where nutrient levels are very low, root inputs can stimulate microbial growth and faunal abundance by providing important substrates for microbial growth. Our results demonstrate a rhizosphere effect for soil fauna in the mineral soil, and thus extends the rhizosphere concept to components of the soil community other than microbes for forest ecosystems. Although our results need to be verified by field manipulations, we suggest that the effects of pine roots on nutrient cycling processes in coniferous forests can vary with soil nutrient content and, therefore, position in the soil profile.  相似文献   

4.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   

5.
  【目的】  覆盖作物影响果园土壤的微生物和线虫群落,研究不同覆盖作物对土壤微生物和线虫群落的影响特征可为生态果园管理提供理论依据。  【方法】  试验于2016年在湖北十堰的猕猴桃园内进行,供试品种为美味猕猴桃 (Actinidia deliciosa),2015年定植。覆盖作物处理为白三叶草、鼠茅草,以清耕为对照 (CK)。连续进行3年试验后,于2019年采集土壤样品,测定土壤水分、全氮、硝态氮和有机碳含量,测定细菌、真菌和线虫数量,并分析微生物、线虫群落结构变化及其影响因素。  【结果】  与清耕对照相比,覆盖白三叶草显著提高了土壤含水量、硝态氮、总氮和有机碳含量,降低了土壤C/N值;覆盖鼠茅草显著提高了土壤含水量,但硝态氮、总氮和有机碳含量没有显著变化,且均显著低于白三叶草处理。覆盖白三叶草较清耕显著增加了土壤微生物总量、细菌生物量,而覆盖鼠茅草与清耕没有显著差异。覆盖白三叶草和鼠茅草均显著提高了土壤微生物Shannon-Wiener多样性指数和Simpson优势度指数,但均没有改变土壤的真菌/细菌值和革兰氏阴性菌/革兰氏阳性菌值。土壤中线虫总量、食真菌线虫和植食线虫数量均表现为白三叶草 > 鼠茅草 > 清耕处理,并且白三叶草处理线虫数量显著高于清耕,线虫群落物种丰富度也显著高于清耕。冗余分析 (RDA) 表明,土壤含水量、总氮、有机碳含量是影响土壤微生物、线虫群落的主要环境因子。  【结论】  覆盖白三叶草和鼠茅草均影响猕猴桃园土壤的水分、养分含量和生物多样性。与种植鼠茅草相比,种植白三叶草可显著提高土壤碳、氮含量,更有利于增加果园土壤生物多样性,提高线虫数量,形成健康的微生物结构。  相似文献   

6.
连作番茄根区病土对番茄生长及土壤线虫与微生物的影响   总被引:4,自引:0,他引:4  
探索连作番茄根区病土对番茄根结线虫病的诱导效果及引起连作障碍的微生态机制,可为深入了解番茄连作障碍发生机理及探究番茄连作障碍防治方法提供科学依据。本研究利用盆栽试验,测定了番茄在健康土壤及接种病土土壤中生物学特性变化及根结线虫侵染状况,并分析鉴定了土壤中微生物及线虫的种类与数量。结果表明,接种连作番茄根结线虫病株根区病土会对番茄生长及根结线虫侵染产生影响:1)番茄苗期根系根结数达9个?株~(-1),健康土壤无根结;土壤线虫数量较健康土壤增加390.4%;收获期番茄根结线虫侵染率达62.7%,病情指数为80.0%。2)番茄生长受到抑制,叶片防御酶活性降低,收获期茎叶及根系鲜质量较健康土壤分别减少50.2%及33.1%,苗期番茄叶片PPO活性较健康土壤降低15.8%,POD活性较健康土壤增加24.0%,差异均达显著水平(P0.05)。3)番茄根系更易感染有害菌,根系内病原菌甘蓝假单胞菌数量较健康土壤增加463倍,根区土壤细菌、真菌及放线菌总数分别增加46.3%、94.5%及134.0%。4)食细菌线虫、食真菌线虫及植物寄生性线虫数量分别为健康根区土壤的3.3倍、1.6倍及7.3倍,其中的植物寄生线虫95.6%为根结线虫。综上所述,接入连作番茄根结线虫病株根区病土不仅导致番茄遭受根结线虫侵染,而且会导致土壤线虫总量及植物寄生线虫所占比例大幅增加,并使番茄根系内有害细菌数量显著增加,对番茄生长造成显著抑制作用,同时影响番茄的生理生化特性,受线虫侵染番茄防御性酶活性降低,使其更易被根结线虫及病原菌侵染,番茄根区土壤线虫、微生物及根系内优势细菌的种类与数量及其之间的作用发生改变。  相似文献   

7.
Transgenic alfalfa over-expressing a nodule-enhanced malate dehydrogenase (neMDH) cDNA and untransformed alfalfa plants were grown at the same field site and rhizosphere soils collected after 53 weeks of plant growth. These alfalfa lines differ in the amount and composition of root organic acids produced and exuded into the rhizosphere. Nucleotide sequencing of PCR-based 16S ribosomal DNA (rDNA) clone libraries and Biolog™ GN microtiter plates were employed to assess the activity of naturally occurring rhizobacteria in the two alfalfa rhizospheres. Selected macro- and micro-elements in the two alfalfa rhizosphere soils were also measured. Analysis of 240 16S rDNA clone sequences indicated the existence of about 11 bacterial phyla and their major subdivisions in the two alfalfa rhizosphere samples. There were qualitative changes in the abundance of bacterial phylogenetic groups between rhizosphere soils of transgenic and untransformed alfalfa. Carbon substrate utilization profiles suggested that rhizosphere samples from transgenic alfalfa had significantly greater microbial functional diversity compared with rhizosphere samples from untransformed alfalfa. The concentrations of nitric acid extractable P, K, Mn, Zn and Cu increased significantly in the transgenic alfalfa rhizosphere compared with the untransformed alfalfa rhizosphere. These observations indicate that organic acids produced by plant roots significantly influence rhizosphere microbial diversity and availability of macro- and micro-nutrients and demonstrate the utility of such trangenic plants as tools for studying the potential impact of plant root exudates on soil microbial ecosystems.  相似文献   

8.
Plant‐pathogenic nematodes are a major cause of crop damage worldwide, the current chemical nematicides cause environmental damage, but alternatives such as biological control are less effective, so further understanding of the relationship between nematodes, nematicides, biological control agents and soil and rhizosphere microorganisms is needed. Microbial populations from roots of cabbage and tomato plants infested with the root‐knot nematode Meloidogyne incognita were compared with those from plants where the nematode was controlled by the nematicide aldicarb, or a nematophagous fungus with biological control potential, Pochonia chlamydosporia. The total numbers of culturable bacteria and fungi in rhizosphere soil were similar in all three treatments for both plants, around 100‐fold more than in control soil in which there were no plants. However, there were clear differences in the catabolic diversity, assessed by Biolog EcoPlate? carbon substrate utilization assays, between microbial populations from unplanted soil and the rhizosphere. In cabbage, a poor host for M. incognita, the rhizosphere population from P. chlamydosporia‐treated plants was distinct from the population from untreated and aldicarb‐treated plants. In tomato, a host susceptible to the nematode, the catabolic diversity of populations from aldicarb‐ and P. chlamydosporia‐treated plants was similar and differed from the untreated, nematode‐infested plants. The genetic diversity of the fast‐growing heterotrophic bacteria in the tomato rhizosphere, indicated by PCR fingerprinting with ERIC primers, was very different in the infested roots, whereas the profiles of isolates from both aldicarb‐ and P. chlamydosporia‐treated roots were similar. Evidently, nematodes have a greater impact on the rhizosphere population of a susceptible host, tomato, than a poor one, cabbage, and nematode‐infested roots are colonized by a different subpopulation of soil microbes from that on plants where infection is controlled, illustrating differences in root morphology and physiology.  相似文献   

9.
茅苍术间作对连作花生土壤线虫群落的影响   总被引:1,自引:0,他引:1  
张亚楠  李孝刚  王兴祥 《土壤学报》2016,53(6):1497-1505
以连作10年花生的红壤为基质,分别设置花生单作和花生/茅苍术间作处理,于花生成熟期采集单作花生根际土壤、间作处理花生和茅苍术根际土壤,分析土壤线虫的数量、多样性和群落结构,以揭示茅苍术间作对土壤线虫群落的影响及对花生连作障碍的缓解机制。结果表明,与花生单作相比,间作处理花生的株高、主根长、秸秆干重和荚果干重显著增加(p0.05)。茅苍术间作减少了连作花生土壤线虫的总数,显著提高了花生根际土壤食细菌线虫、食真菌线虫和捕食/杂食线虫的相对丰度,降低了植物寄生线虫的相对丰度(p0.05)。与花生单作相比,间作提高了花生根际土壤线虫的Shannon-Wiener多样性指数(H′)和均匀度指数(J),而土壤线虫群落的优势度指数(λ)显著降低。间作处理花生根际土壤线虫的瓦斯乐斯卡指数(WI)和自由生活线虫成熟度指数(MI)显著升高,植物寄生线虫成熟度指数(PPI)显著降低,而线虫通道比(NCR)无显著变化。综合分析得出,茅苍术间作可以提高花生连作土壤线虫多样性、优化土壤线虫群落结构,进而增强有益线虫的生态功能、改善花生连作障碍。  相似文献   

10.
Abstract

Microbial parameters of rhizosphere soil, such as bacterial numbers or microbial activities, depend on the distance that microbes have to the root surface. In this study we show that the number of bacteria found in rhizosphere soil from white clover is highly correlated with root length density of the rhizosphere soil. In contrast, bacterial numbers, microbial activity (measured as fluorescein diacetate hydrolytic activity), and the amount of extractable carbon (C) in the rhizosphere of perennial ryegrass were independent of the amount of soil recovered from the roots. The missing rhizosphere effect in perennial ryegrass soils can be explained by the high rooting density of ryegrass, whereas the low rooting density of white clover results in gradients of microbial numbers and activities in soils. Results of these studies indicate that it is important to express microbial parameters on root length and soil weight bases, especially for less densely rooted soils.  相似文献   

11.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   

12.
A growing number of studies point at the involvement of root herbivores in influencing plant performance, community composition and succession. However, little is known about the factors that control root herbivore abundance and the role of local variation in the effectiveness of these factors. Here, we performed a full factorial experiment with plants, root-feeding nematodes and rhizosphere microbial communities from two dune sites, to test the hypothesis that the outcome of belowground multitrophic interactions depends on local differences between the interacting organisms. The organisms included the marram grass Ammophila arenaria, the cyst nematode Heterodera arenaria, microbial plant pathogens and natural enemies of the nematodes from two coastal foredune systems, one in The Netherlands and one in Wales. The two plant populations differed at the molecular and phenotypic level, and the microbial communities from the two dune sites differed in the composition of the dominant soil fungi but not of the dominant bacteria. Plants were negatively affected by the rhizosphere microorganisms from one of the sites. Nevertheless, nematode performance was not affected by the origin of both the host plants and the microbial communities. The reproductive output of the cyst nematode depended on the presence of microorganisms, as well as on inter-population variability in the response of the nematode to these natural enemies. In the absence of microorganisms, the two nematode populations differed in the number and size of the produced cysts, although maternal effects cannot be excluded. Inter-population differences in the host plant were a secondary factor in the nematode-microorganisms interactions, and did not influence bottom-up control of the cyst nematodes. Our results did not reveal strong signals of coevolution in belowground multitrophic interactions of plants, cyst nematodes and soil microbial communities. We conclude that the interactions between the studied organisms do not necessarily depend on their local vs. non-local origin. Nevertheless, we were able to show that local variation in soil organism community composition can be an important factor in determining the outcome of interactions in belowground multitrophic systems.  相似文献   

13.
Effects of soil amendment with crabshell chitin on the growth of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.), and on populations of soil bacteria, fungi, and plant-parasitic and free-living nematodes were investigated in a pot trial. Five soil samples were collected from Te Puke (Paengaroa Shallow Sand, a Typic Hapludand) and five from Hamilton (Bruntwood silt loam, an Aquic Hapludand), New Zealand. Subsamples of each soil were either amended with chitin or unamended and planted with white clover and ryegrass. The ryegrass shoot weight in amended soil was greater (P<0.01), most probably due to N mineralised from chitin. A significantly lower (P<0.01) root: shoot ratio of ryegrass in the amended soil also suggested improved N availability, and therefore less root mass was needed to support a given shoot mass. A reduction in nodulation was observed in 12-day-old white clover seedlings (P<0.05) and also in 6-week-old seedlings (P<0.01). The shoot weight of white clover was significantly lower (P<0.05) in amended soil, possibly due to phytotoxic effects of chitin. Chitin increased (P<0.01) the populations of bacteria and fungi by 13-fold and 2.5-fold, respectively. The cyst nematode of white clover, Heterodera trifolii, was significantly reduced in chitin-amended soil, possibly due to increased levels of chitinase produced by rhizosphere microorganisms. Two other plant-parasitic nematodes, Pratylenchus spp. and Tylenchus spp., were also reduced in ryegrass roots and in soil as a result of the chitin amendment. However, the total number of free-living nematodes increased 5.4-fold in amended soil.  相似文献   

14.
Abstract

Systemic acquired resistance (SAR) is a process whereby a plant that successfully resists a pathogen becomes highly resistant to subsequent infection not only by the original pathogen but also by a wide variety of pathogens. Most SAR research has focused on resistance in leaves, so much less is known about the effectiveness of foliar applications of SAR compounds in the protection of plant roots and associated microorganisms in soil. This study was conducted to determine if foliar SAR‐inducing applications (BTH or harpin) negatively impact the potato root system beneficial rhizosphere microbial populations and activity or influence pathogenic nematode populations. Foliar applications of benzo (1,2,3) thiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) and the microbial protein harpin applied in various combinations, timings, and rates showed no effects on microbial biomass, culturable bacteria, Pseudomonas populations, or N‐mineralization potentials over 2 years. No stimulatory or inhibitory effects on major bacterial populations were observed, indicating that SAR induction does not have a negative effect on general microbial populations or activities. BTH and harpin both reduced the numbers of lesion nematodes (Pratylenchus spp.) by potato harvest. BTH reduced root knot nematodes, Meloidogyne chitwoodi at the end of the season. In addition, BTH and high‐dose harpin (applied at the 4× rate) reduced the nematode infection index in comparison to the control. The SAR elicitors increased the population densities of nontarget free‐living nematodes in the soil compared to the control. Potato yields were not affected by plant elicitors but BTH and harpin both reduced the number of culled potatoes 26% compared to the control. Future studies are designed to determine if these plant elicitors have any direct effect on rhizosphere diversity or if plants with active defense pathways alter carbon flow and root exudates into the soil.  相似文献   

15.
Phosphorus is one of the most limiting macronutrients for plant productivity in agriculture worldwide. The main reasons are the limited rock phosphate reserves and the high affinity of phosphate (P) to the soil solid phase, restricting the P availability to the plant roots. Plants can adapt to soils low in available P by changing morphological or/and physiological root features. Morphological changes include the formation of longer root hairs and a higher root : shoot ratio both parameters increasing the root surface which provides the shoot with P. This may be successful if the P availability in soil, i.e., the P concentration of the soil solution is not extremely low (> 1–2 µM P). If the P concentration of the soil solution is lower, the diffusive flux to the root surface will be very low and may not satisfy the P demand of the shoots. Under these conditions plants have developed strategies to increase the rhizosphere soil solution concentration by secreting mobilizing agents. The most effective way of P mobilization is the release of di‐ and tricarboxylic acid anions, especially oxalate and citrate. Citrate can accumulate in the rhizosphere up to concentrations up to 80 µmol g?1 soil. Cluster root formation is an efficient way of carboxylate accumulation in the cluster root rhizosphere improving P mobilization. Cluster roots strongly improve the acquisition of the mobilized P. Considering a single root, around 80–90% of the mobilized P diffuses away from the root. From the rhizosphere of cluster roots, most of the mobilized P is taken up by the cluster roots. Both, the strong accumulation of carboxylates in and the effective P uptake from the cluster‐root rhizosphere are the basis of the unique ability of P acquisition by cluster root‐forming plants. Plants that do not form cluster roots, e.g., red clover, can also accumulate carboxylates in the rhizosphere. Red clover accumulates high quantities of citrate in the rhizosphere soil. Model calculations show that the release of citrate by red clover roots and its accumulation in the rhizosphere strongly improve P acquisition by this plant species in various soils. Similar results are obtained with alfalfa. In sugar beet, oxalate release can strongly contribute to P acquisition. In summary, P acquisition can be strongly improved by the release of carboxylates and should be taken as a challenge for basic and applied research.  相似文献   

16.
Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. Mixed grass-legume systems, together with microbial inoculants, were used to remediate a polycyclic aromatic hydrocarbon (chrysene) spiked agricultural soil. Inoculants were symbiotic rhizobia, which may play an important role in rhizoremediation by increasing plant and root growth. An inoculum of an isolate of Rhizobium leguminosarum bv. trifolii, selected for PAH tolerance, was produced using a peat carrier. The inoculum and white clover (Trifolium repens L.), were planted into soils with ryegrass (Lolium perenne L.). The soils spiked with chrysene (500 mg kg−1) then aged for 4 weeks. Shoot- and root-biomass of plants, and the amount of root nodulation, were determined. Rhizobial populations, soil pH and soil nitrogen were also monitored throughout the trial. In addition, the ability of the inoculated rhizobial strain to utilise chrysene as a sole carbon source was assessed. Direct uptake and/or degradation of chrysene by the clover and ryegrass did not occur to a significant degree. Enhanced losses of chrysene were seen in planted, non-sterile soils that contained a rhizobial inoculum. No direct degradation of chrysene by R. leguminosarum bv. trifolii was observed and no enhanced losses of PAHs were detected in sterile soils after inoculation with rhizobia. Results suggest that the enhanced dissipation of chrysene, observed in the non-sterile planted inoculated pots, was not a result of degradation of chrysene by R. leguminosarum bv. trifolii. The symbiotic association with R. leguminosarum bv. trifolii improved plant vigour and growth in inoculated planted treatments. This may have stimulated the rhizospheric microflora to degrade chrysene.  相似文献   

17.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

18.
Application of organic soil amendments is a traditional control method for plant–parasitic nematodes and it is considered a part of nematode-management programs. A variety of organic amendments, such as animal and green manures, compost, nematicidal plants and proteinous wastes, are used for this purpose, but nematode control efficacy is not always satisfactory. Elucidation of nematode-control mechanisms in amended soil may lead to improved efficacy or the development of more effective control techniques, although the effects of organic amendments on nematodes, microbial communities, plants and soil environments are very complex. Possible mechanisms involved in nematode suppression are: (1) release of pre-existing nematicidal compounds in soil amendments, (2) generation of nematicidal compounds, such as ammonia and fatty acids, during degradation, (3) enhancement and/or introduction of antagonistic microorganisms, (4) increase in plant tolerance and resistance, and (5) changes in soil physiology that are unsuitable for nematode behavior. Combinations of these mechanisms, rather than a single one, appear to produce nematode suppression in amended soils.  相似文献   

19.
Poor iron (Fe) availability in soil represents one of the most important limiting factors of agricultural production and is closely linked to physical, chemical and biological processes within the rhizosphere as a result of soil–microorganism–plant interactions. Iron shortage induces several mechanisms in soil organisms, resulting in an enhanced release of inorganic (such as protons) and organic (organic acids, carbohydrates, amino acids, phytosiderophores, siderophores, phenolics and enzymes) compounds to increase the solubility of poorly available Fe pools. However, rhizospheric organic compounds (ROCs) have short half‐lives because of the large microbial activity at the soil–root interface, which might limit their effects on Fe mobility and acquisition. In addition, ROCs also have a selective effect on the microbial community present in the rhizosphere. This review aims therefore to unravel these complex dynamics with the objective of providing an overview of the rhizosphere processes involved in Fe acquisition by soil organisms (plants and microorganisms). In particular, the review provides information on (i) Fe availability in soils, including mineral weathering and Fe mobilization from soil minerals, ligand and element competition and plant‐microbe competition; (ii) microbe–plant interactions, focusing on beneficial microbial communities and their association with plants, which in turn influences plant mineral nutrition; (iii) plant–soil interactions involving the metabolic changes triggered by Fe deficiency and the processes involved in exudate release from roots; and (iv) the influence of agrochemicals commonly used in agricultural production systems on rhizosphere processes related to Fe availability and acquisition by crops.  相似文献   

20.
Nucleic acid-based techniques allow the exploration of microbial communities in the environments such as the rhizosphere. Azospirillumbrasilense, a plant growth promoting rhizobacterium (PGPR), causes morphological changes in the plant root system. These changes in root physiology may indirectly affect the microbial diversity of the rhizosphere. In this study, the changes in the rhizobacterial structure following A. brasilense inoculation of maize (Zea mays) plants was examined by PCR-denaturating gradient gel electrophoresis (DGGE) and automated ribosomal intergenic spacer analysis (ARISA), using two universal primers sets for the 16S rRNA gene, and an intergenic 16S-23S rDNA primer set, respectively. Similar results were obtained when using either ARISA or DGGE performed with these different primer sets, and analyzed by different statistical methods: no prominent effect of A. brasilense inoculation was observed on the bacterial communities of plant roots grown in two different soils and in different growth systems. In contrast, plant age caused significant shifts in the bacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号