首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clod crushing resistance, bulk density, moisture content, and size distribution, together with fifteen bulk soil physical properties, were determined at thirty sites. Regression analyses indicated that the plasticity index of the soil is the principal property affecting both the clod crushing resistance and the yield of clods. Other less closely related properties are not always consistent in their effect between clod size ranges. A‘clod factor’ was derived from the product of the clod crushing resistance and the weight of clods in the ridge for each soil. The clod factor is linearly correlated with plasticity index (r= 0·587, P= 0·002) and a clod factor > 1000 was found for soils with a plasticity index greater than about 5. Harvest observations suggest that where the clod factor exceeded 1000, the efficiency of a mechanical potato harvester was reduced.  相似文献   

2.
Abstract

The accuracy of the clod method in determining fine‐earth bulk density in very gravelly soils can be affected by the difficulty of fine‐earth separation from both coarse fragments and the coating substance. A modification of the paraffin‐coated clod method is presented that accurately determines fine‐earth bulk density of very gravelly soils. The modification involves washing the paraffin‐coated clod in boiling water to separate paraffin from gravel and hardened soil aggregates. Samples were analyzed with an existing gravel correction method, herein referred to as the hand removal method (HRM), and the proposed modification, which is named the gravel washing method (GWM). Bulk density means for HRM and GWM were 1.29 and 1.41 g cm?3, respectively. This trend of higher bulk densities for GWM was consistent across pedons sampled in the study and was attributed to its ability to completely remove wax from gravels and hardened soil aggregates, effectively separating the fine‐earth fraction.  相似文献   

3.
Abstract

An interagency forest monitoring program has been initiated on a systematic network of forested plots often accessible only by foot traffic along a compass line. Extensive site classification and physiochemistry data are being collected for vegetation and soil indicators of forest health. In order to select a suitable technique for obtaining an estimate of mineral soil bulk density, conventional clod and core methods were compared across a wide range of forest soils within the Coastal Plain of southeastern Virginia. Replicate soil clods and cores were collected from two to four horizons within each of six pedons representing different soil series. Following analysis, the sample data were used to evaluate main and interaction effects due to differences in the method, series, horizon, and texture effects. Differences between the clod and core data were highly significant on average (P < 0.001) as were all of the main effects. Both methods exhibited high precision (average CV < 5%) within the individual horizons sampled. The two data sets were highly correlated (r = 0.98), and the regression equation used to predict clod bulk density with data from the core method is: Clod BD = (1.011 x Core BD) + 0.068; standard errors of ±0.042 and ±0.048 for the slope and intercept, respectively. From an operational standpoint, the core method appears to have many advantages over the clod method for sampling in remote locations.  相似文献   

4.
赵诚斋  赵渭生 《土壤学报》1979,16(3):265-276
本文就苏南地区二种粘质水稻土的土壤紧实度和土块组成对水稻生长的影响进行了研究,并对不同方法耕作后耕层土块的组成状况进行了观测,结果指出:土壤紧实度和土块/细土比例的不同对水稻生长有明显的影响,土壤紧实度对水稻生长的影响是通过土壤对根的机械阻力,抑制土壤养分的转化及水分物理特性的改变所致;而土块组成的影响可能主要是影响土壤养分的转化。研磨细了的土壤转化成NH4-N的量最高,土块大于1厘米者对NH4-N的产生受到严重抑制,因此认为,春耕后耕层中小于1厘米的土块是评定春耕质量的一个重要指标,耕层土块大于8厘米时妨碍栽秧操作,8-4厘米者影响次之,1-4厘米者对栽秧无影响。对于要获得较小土块组成的耕作质量,旋转耕作效果最好,机耙最差,但土壤经过充分晒垡后,各种耕作方法均可获得较好的相同效果,这时,对合适机具的选择主要可从经济效益考虑。渍水条件下土垡经过挤压受损后,可使土块膨软,这或对土壤养分的释放有利,故一般用于春耕机具,只考虑其切割效果而不同时考虑挤压作用是不足的。  相似文献   

5.
The early stages of bacterial colonization of a sterilized soil put in contact with the same non-sterile soil were investigated. Soil mesocosms of 269 cm3 composed of sterilized spherical remoulded soil clods of 27 mm diameter surrounded by non-sterilized 2-4 mm soil aggregates of the same soil (considered as a source of bacterial colonizers) were designed. Bacterial colonization was monitored from 0 to 14 days in three concentric portions of the sterilized clods (outer, intermediate and inner) and in the surrounding non-sterile soil, by measuring cell numbers and substrate-induced respiration (SIR). In addition, modifications of genetic diversity of the soil bacterial community associated to colonization were monitored with the ribosomal intergenic spacer analysis (RISA) technique in the intermediate portion of the sterilized soil clod and in the surrounding non-sterile soil aggregates. Assessments of bacterial cell numbers and SIR rates showed that the sterilized soil clod was colonized rapidly during incubation time from its outer to its inner portion. In addition, the bacterial genetic structure of the clod varied during incubation time, suggesting succession of bacteria during recolonization. Comparison of cell numbers, SIR rates and bacterial genetic structure between the soil clod and the surrounding soil aggregates showed that the colonization process in the clod led to the establishment of a bacterial community different from the surrounding soil aggregates.  相似文献   

6.
Abstract

A computer program was developed to calculate bulk density(BD), coefficient of linear extenslbility(COLE), linear extensibility(LE), and linear shrinkage(LS) in the presence or absence of coarse fragments (>2mm). When coarse fragments are present in a soil clod, COLE and linear extensibility calculations become more complex, requiring additional equations and correction factors. The calculation of linear shrinkage is not sensitive to coarse fragments, thus requiring a single equation. This BASIC computer language program is accommodating to various parameter imputs and correction factors for fast calculation of BD, COLE, LE and LS in soil clods with and without coarse fragments.  相似文献   

7.
Measurement of soil bulk density is important for understanding the physical, chemical, and biological properties of soil. Accurate and rapid soil bulk density measurement techniques play a significant role in agricultural experimental research. This review is a comprehensive summary of existing measurement methods and evaluates their advantages, disadvantages, potential sources of error, and directions for future development. These techniques can be broadly categorised as direct and indirect methods. Direct methods include core, clod, and excavation sampling, whereas indirect methods include the radiation and regression approaches. The core method is most widely used, but it is time consuming and difficult to use for sampling multiple soil depths. The size of the coring cylinder used, operator experience, sampling depth, and in-situ soil moisture content significantly affect its accuracy. The clod method is suitable for use with heavy clay soils, and its accuracy is dependent on equipment calibration, drying time, and operator experience, but the process is complicated and time consuming. Excavation techniques are most commonly used to evaluate the bulk density of forest soils, but have major limitations as they cannot be used in soils with large pores and their measurement accuracy is strongly influenced by soil texture and the type of analysis selected. The indirect methods appear to have greater accuracy than direct approaches, but have higher costs, are more complex, and require greater operator experience. One such approach uses gamma radiation, and its accuracy is strongly influenced by soil depth. Regression methods are economical as they can make indirect measurements, but these depend on good, quality data of soil texture and organic matter content and geographical and climatic properties. Also, like most of the other approaches, its accuracy decreases with sampling depth.  相似文献   

8.
The shrinkage potential of natural clods from a variety of clayey soils was measured and related to their physical, chemical and mineralogical properties. It is shown that the most important factors affecting shrinkage are initial bulk density, clay content, organic carbon content and cation exchange capacity of the peroxidised clay, and mica-smectite content on a whole soil basis. Multiple regression equations involving the initial bulk density, clay content, organic carbon and cation exchange capacity accounted for 87 and 82 per cent of the variation in total shrinkage of topsoils and subsoils respectively. Because of restrictions on shrinkage imposed by factors such as climate, crops, ground-water and moisture release characteristics of soils, soils with a high shrinkage potential may not behave very differently to soils with a much lower potential. On these grounds it is concluded that the shrinkage criteria used in US Taxonomy are not applicable in Britain.  相似文献   

9.
Compacted clay liners are commonly used as components of the lower portion of composite double liner systems for hazardous waste containment. Because the overlying leachate collection and removal systems and the FMLs are not perfect leachate still comes into contact with the lower liner and thus makes it critical that the clay liner component be constructed to achieve the lowest possible hydraulic conductivity. This research was conducted to evaluate the effects of clod size on the hydraulic conductivity of compacted soils and the uniformity of conductivity with depth within a lift of compacted soil. Two subsoils, one from the Beaumont series (smectitic) and one from the Kosse series (kaolinitic), were evaluated in the laboratory and then compacted in large fixed wall permeameters using maximum clod sizes of <2.5, <5.0, and <7.5 cm to a compacted lift thickness of 23 cm. Measurements were made of the hydraulic conductivity of the entire lift, the lower two thirds of the lift, and the lower one third of the lift. The results show that the conductivity of the lower one third of the lift can be as great as 8.7 times that measured for the entire lift and indicates that liners need to be constructed using thin lifts to achieve more uniform low conductivity throughout the liner. The data also indicated that under the carefully controlled conditions of this study and with the clod sizes used, the clod size did not have a significant effect on the hydraulic conductivity of the soils tested. Soil bulk density was poorly correlated with hydraulic conductivity and indicates that measuring the bulk density of a compacted soil is an inadequate method for assuring low hydraulic conductivity. Measurements of the time to the first appearance of leachate indicated that 8 to 17 d are required for water to penetrate a 23 cm thick compacted liner with an average conductivity of 1 × 10?7 cm s?1.  相似文献   

10.
TILTH MELLOWING     
Effects of weathering action, mainly wetting and drying cycles, on the strength of the clods produced by tillage are studied. Experiments were carried out on sandy loam soils at two sites in South Australia, and on silt loam and clay soils at Wye College, England. It is found that tillage increases the amplitude of soil water content fluctuations. These bigger soil water content fluctuations resulted in a decrease in the clod strength and this in turn modified the size distribution of the clods produced by tillage in the South Australian soils. The decrease in clod strength, as measured by the drop shatter test, was followed by an increase in the proportion of the smaller aggregate size fraction produced by a second implement pass. It is suggested that, for soils in which the increase in the soil water content fluctuations after the first tillage implement pass decreases clod strength, a further implement pass should be delayed for several days. By doing this, the soil can be tilled with minimum energy and cost to produce a good seed bed.  相似文献   

11.
黄河三角洲地区的土壤入渗性能差,且盐分含量高,掺沙可以加速盐渍土块崩解,改良土壤质地与结构,从而改善入渗性能和水盐在土壤运移过程。以黄河三角洲地区盐渍土土块为研究对象,采用室内土柱模拟试验,设置3种掺沙比例:CK (0)、S1(20%)、S2(50%),土块组成:<1 mm (20%),1~2 mm (28%),2~5 mm (34%),5~10 mm (18%)研究积水入渗条件下掺沙比例对相继2次入渗过程中盐渍土土块崩解及其对水盐运移的影响,从而明确掺沙对盐渍土的改良效果。结果表明,在第1次灌水淋洗和水分再分布后,用干筛法和湿筛法测量得到S1和S2土壤> 0.25 mm的土块含量,较对照组分别降低17.92%,15.50%和51.45%,32.00%;不同掺沙比例下,同一时刻的湿润锋和累计入渗量均表现为S2 > S1 > CK,且S1和S2的稳定入渗率在第1次和第2次入渗过程中,较对照组分别增加60.00%,66.67%和400.00%,900.00%;同一土层深度的脱盐率随掺沙比例增加,掺沙比例为50%时,脱盐深度比20%和对照组分别增加33.3%和45.45%,脱盐量分别提高1.19%~19.01%和4.21%~77.52%。综上,盐渍土掺沙可以有效促进盐渍土块崩解,提高入渗速率和洗盐效率。研究结果可为盐碱地改良提供参考依据。  相似文献   

12.
《Soil & Tillage Research》1987,10(3):269-275
A simple field test is postulated for assessing ease of cultivation. In the proposed test, representative clods are sampled from the field, and place in portable apparatus where they are split between a cone and a ball. The force and movement to split the clod are recorded; average peak force is then plotted against clod deformation at peak force. Some preliminary data have been accumulated and plotted over a range of soil conditions. With sufficient data, areas on the graph can be identified, indicating that the soil is in a suitable or unsuitable condition for cultivation by a given implement.  相似文献   

13.
A method for the bulk density determination on soil clod is described. Clods are oven-dried, weighed and equilibrated over water saturated sand columns. Total volume of the clod is computed from the volume of its components - solid, and air. Air volume is calculated from the increase in weight of the dry clod on saturation.  相似文献   

14.
随着稻、麦的持续高产,高产稳产水稻土的土壤条件日益受到重视,不少单位进行了专门研究(上海市农业科学院土肥植保研究所土壤组,1975;广东省农业科学院土肥所土壤组,1976;中国科学院南京土壤研究所苏南调查组,1977).但研究的内容多偏重于土壤的农业化学性状或土壤形态的描述,而较少进行土壤结构性的研究.  相似文献   

15.
In areas where heavy vehicles are used, the subsoils often become very compacted. Freezing-thawing and wetting-drying have not been effective at reducing compaction. In this study, the type of soil shrinkage related to compaction was investigated to explain these amelioration failures. In conjunction with a shrinkage curve, the water retention characteristic was also measured because both can be related to compaction. Shrinkage and bulk density of undisturbed clods (about 200 cm3), as well as water retention of undisturbed cores, were measured to evaluate long-term compaction effects in two sets (better and poor tile drainage) of two axle-load treatments (9- and 18-Mg axle loads) relative to their control. Wet clods were sampled from the Ap (0 to 25 cm) and subsoil (30 to 45 cm) horizons of a Normania clay loam (fine-loamy, mixed, mesic Udic Haplustoll) in the spring of 1991 without fragmentation after the soil had a full winter to swell following moldboard plowing in the fall. Clods were further saturated, coated with a film, then allowed to air-dry. Mass and volume were determined periodically for eight months to measure shrinkage. Maximum volume reduction (m3m−3) of clods in the Ap layer (0.232) during shrinkage was significantly greater than in the subsoil layer (0.152), but compaction effects were not significant in either layer. Dry bulk density of subsoil clods (1.77 Mg m−3) was significantly greater than in the Ap layer (1.68 Mg m−3), but no statistical differences were observed among compaction treatments. Maximum shirnkage was always <1 and averaged 0.61 in the subsoil compared to averaged 0.80 in the Ap layer, which indicates nearly all structural and residual shirnkage after immediate air entry during gravity drainage. The water retention characteristic of the original compacted and control treatments were still significantly different in the better drained subsoil but not in the more poorly drained subsoil, which showed that the 9-Mg axle load overall since 1987 has compacted the subsoil nearly as much under wet soil conditions as the 18-Mg axle load initially. These soil structural measurements explain the failure of natural forces to reduce bulk density of the compacted subsoil.  相似文献   

16.
Soil clods were collected from the A horizons of six soils (3 Aqualfs and 3 Uderts) in the vicinity of Bayreuth in northern Bavaria. The soils had a range of clay contents and came from arable, meadow (pasture) and forest areas. The soils ranged in workability from easily workable to difficult to work. The clods, still moist as collected, were fractured into two parts by tensile stress and one part of each clod was embedded in polyester resin. The embedded clod parts were then sectioned to show profiles of the fracture surfaces. The profiles were digitized by a television scanner. Statistical measures of the roughness of the fracture surfaces were computed. Fracture surface roughness was strongly influenced by land use and soil clay content. Soil workability was related to fracture surface roughness and hence also to land use and soil clay content. Ease of soil working was mainly associated with the presence of soil structural features larger than 10 mm.  相似文献   

17.
Detachment of soil particles by the processes of splash from rainfall and shallow flow from surface runoff is influenced by soil cohesion, soil aggregate properties, and characteristics of this flow. We have evaluated relationships between rates of detachment, aggregate size, and tensile strength of the soil. Soil and water losses were determined in the laboratory from sieved air‐dry samples on three aggregate size ranges of two clay loam soils differing in particle‐size distribution and organic matter. Tensile strength was measured for each aggregate size range. The results showed that as clod size increased, detachment rates increased and interaggregate tensile strength decreased. Wash erosion increased as initial clod size increased despite a decrease in runoff. Final rates of loss by splash were greater from the largest clods than from the smaller clods. Finally, splashed material was larger in size than material washed off. The fact that the size of the splashed material was larger than washed‐off material shows that material in the wash suffered more impact by raindrops and thus was more likely to be fragmented.  相似文献   

18.
Introduction

In previous papers1,2, a method for determining the water-stable aggregate in paddy soils has been reported. This method is based on the slaking disruption of air dried clod of soil in an excess of water. The aggregates thus obtained are truly stable in water and also stable against a gentle agitation in wet sieving operation. It is very interesting to study the cementing materials which stabilize the aggregates.  相似文献   

19.
Abstract. In a series of experiments on 16 sites both a power-driven rotary-tine Wye Double Digger and a rigid tine winged subsoiler produced significant subsoil loosening and fissuring. The Double Digger consistently produced the greatest clod breakdown together with the least soil bulk densities and cone penetration resistances. Management strategies after loosening had an important influence on the longevity of the loosening effect. The rate of recompaction was least with controlled traffic and bed systems and increased with random traffic and with the growing of root crops. No significant differences in crop response were monitored between the two loosening treatments, yield response depending largely on the extent of moisture stress experienced by the crop. Loosening on silty soils reduced yields in wet seasons and this was associated with soil structural instability. Visual soil profile examination is necessary to support bulk density and cone penetration resistance measurements when assessing soil compaction.  相似文献   

20.
Large clods (centimetres in size) can be formed by tillage in clayey paddy fields where upland crops are planted. These clods cause early water depletion near the soil surface, which decreases crop germination and emergence rates. Because of the difficulty in reducing clod size, desiccation damage to seeds can be avoided by adjusting the seeding depth based on the clod size-dependent soil moisture profile. This study aimed to clarify the effect of clod size on (1) the evaporation rate (E) and soil moisture profile and (2) the mobility of soil water during the drying process. Evaporation experiments were conducted in an air-conditioned greenhouse with natural light using cylindrical columns filled with artificially made clods 3 (L columns) and 1 cm (S columns) in diameter. We measured E, potential evaporation rate (PE), and total soil moisture content (wtot) throughout the experiment and the soil moisture profiles at the end of the experiment. The water diffusivity (Dw) and apparent vapour diffusion coefficient (dvap) were calculated as the mobility of soil water and water vapour, respectively. We found that wtot was lower in the L column than in the S column, although not at the onset of the experiment. At the end of the experiment, the soil moisture content was lower in the L column than in the S column throughout the soil layer. In contrast, E/PE was higher in the L column than in the S column throughout the experiment and even at the same wtot. Regarding mobility, Dw was slightly greater in the L column than in the S column in the soil moisture content range, where vapour movement could be greater than liquid water movement. In addition, the ratio of dvap to the diffusion coefficient of water vapour in soil was higher than unity in both columns and was 2.4–3.2 times higher in the L column than in the S column. In summary, larger clods caused a higher evaporation rate and lower soil moisture content, owing to the increased enhancement of water vapour movement probably induced by wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号