首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Coupling media are necessary to ensure that transducers bond to wood specimens to minimize coupling losses and improve the accuracy of ultrasonic measurements. There are several types of coupling media available, and the optimal choice is not known. In this work, we analyzed the results of ultrasonic wave attenuation for 0.1-MHz longitudinal and transverse transducers with six different materials as coupling media in nine species of Brazilian wood with densities in the range 700–1170 kg/m3. Tests were performed using constant pressure on the transducer and with wave propagation in the longitudinal direction. For transverse transducers, the polarization was in the radial and tangential directions. The results were analyzed statistically and showed that, for attenuation in both longitudinal and transverse waves, the material used for coupling had significant effects, whereas the wood species had no effect. For longitudinal waves, the statistical evaluation showed that the coupling material performance was strongly dependent on the species of wood, but it was not possible to observe any tendency of behavior associated with specific anatomical properties.  相似文献   

2.
Abstract

The present work reports on the main physical and mechanical properties of Pinus leucodermis mature wood, one of the least studied coniferous species in south-east Europe. Pinus leucodermis heartwood specimens were found to have average density values of 0.73 g cm?3 at equilibrium moisture content of 11.5% and average density of 0.64 g cm?3 under oven-dry conditions. The overall tangential shrinkage was 3.4% and the radial shrinkage was 1.9%. The modulus of rupture was on average 77 N mm?2, while the static modulus of elasticity averaged 7087 N mm?2. The hardness of P. leucodermis heartwood using the modified Janka test was 33.4 N mm?2 in the transverse direction and 48.0 N mm?2 in the longitudinal direction, while its compression strength parallel to grain was approximately 41.6 N mm?2.  相似文献   

3.
Flat-sawn specimens of eight wood species, albizia (Paraserianthes falkata, 0.23 g/cm3), Japanese cedar (Cryptomeria japonica, 0.31 g/cm3), red lauan (Shorea sp., 0.36 g/cm3), European spruce (Picea abies, 0.44 g/cm3), Douglas fir (Pseudotsuga douglasii, 0.50 g/cm3), elm (Ulmus sp., 0.51 g/cm3), Japanese beech (Fagus crenata, 0.64 g/cm3), and Japanese birch (Betula maximowicziana, 0.71 g/cm3), were impregnated with low molecular weight phenol-formaldehyde (PF) resin and their compressive deformations were compared. The volume gain (VG) and weight gain due to 20% resin solution impregnation were different among species. Furthermore, the specific volume gain (VG/specific gravity), indicating the degree of swelling of the cell wall, also varied from 17.7% for European spruce to 26.4% for elm. Oven-dried specimens of each species were compressed using hot plates fixed to an Instron testing machine. The deformation behavior of resin-impregnated wood up to 10MPa was significantly different among the species. Stress development during cell wall collapse for low density wood was minimal. As a consequence, a significant increment of density occurred up to 2MPa for low density wood such as albizia and Japanese cedar. When PF resin-impregnated wood was compressed up to 2MPa and the pressure was kept constant for 30min, the density of Japanese cedar reached 1.18g/cm3, about 30% higher than the density of compressed Japanese birch, which possesses an original density that is 2.5 times higher than that of Japanese cedar. The mechanical properties of resin-impregnated wood, especially low density wood, increased with density. Hence, it is manifested that low density wood species have an advantage as raw materials for obtaining high-strength wood at low pressing pressure.  相似文献   

4.
Abstract

The aim of this study was to reveal some important physical properties of two lesser used wood species from Mozambique. Density of wood, green moisture content (MC), shrinkage, swelling, sorption–desorption behaviour and quantitative colour analyses were carried out to facilitate the potential use of Icuria dunensis (ncurri) and Pseudolachnostylis maprounaefolia (ntholo). The study found that the average densities at 12% MC were 907.1 kg m?3 for ncurri and 1023.4 kg m?3 for ntholo. The average values of green MC were 31.4% for ncurri and 39.2% for ntholo. Ncurri and ntholo wood showed low coefficients of anisotropy for heartwood, 1.3 and 1.4, respectively. The colour measurements described the patterns of radial and longitudinal variations in wood colour. In conclusion, ntholo and ncurri are characterized by high density and dimensional stability. Ntholo can be used where small dimensional changes are required, e.g. in joinery, flooring and furniture.  相似文献   

5.
Despite the exceptional position of yew among the gymnosperms concerning its elastomechanical properties, no reference values for its elastic constants apart from the longitudinal Young’s modulus have been available from literature so far. Hence, this study’s objective was to determine the Young’s moduli E L, E R and E T and the shear moduli G LR, G LT and G RT of yew wood. For that purpose, we measured the ultrasound velocities of longitudinal and transversal waves applied to small cubic specimens and derived the elastic constants from the results. The tests were carried out at varying wood moisture contents and were applied to spruce specimens as well in order to put the results into perspective. Results indicate that E L is in the same order of magnitude for both species, which means that a high-density wood species like yew does not inevitably have to have a high longitudinal Young’s modulus. For the transverse Young’s moduli of yew, however, we obtained 1.5–2 times, for the shear moduli even 3–6 times higher values compared to spruce. The variation of moisture content primarily revealed differences between both species concerning the shear modulus of the RT plane. We concluded that anatomical features such as the microfibril angle, the high ray percentage and presumably the large amount of extractives must fulfil important functions for the extraordinary elastomechanical behaviour of yew wood which still has to be investigated in subsequent micromechanical studies.  相似文献   

6.
Some of the properties of particleboard made from paulownia   总被引:3,自引:0,他引:3  
The objective of this study was to determine some of the properties of experimental particleboard panels made from low-quality paulownia (Paulownia tomentosa). Chemical properties including holocellulose, cellulose, lignin contents, water solubility, and pH level of the wood were also analyzed. Three-layer experimental panels were manufactured with two density levels using urea–formaldehyde as a binder. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), screw-holding strength, thickness swelling, and surface roughness of the specimens were evaluated. Panels with densities of 0.65 g/cm3 and manufactured using a 7-min press time resulted in higher mechanical properties than those of made with densities of 0.55 g/cm3 and press times of 5 min. Based on the initial findings of this study, it appears that higher values of solubility and lignin content of the raw material contributed to better physical and mechanical properties of the experimental panels. All types of strength characteristics of the samples manufactured from underutilized low-quality paulownia wood met the minimum strength requirements of the European Standards for general uses.  相似文献   

7.
Most research on carbon content of trees has focused on temperate species, with less information existing for tropical trees and very little for tropical plantations. This study investigated factors affecting the carbon content of nineteen tropical plantation tree species of ages seven to twelve and compared carbon content of Khaya species from two ecozones in Ghana. For all sample trees, volume of the main stem, wood density, wood carbon (C) concentration and C content were determined. Estimated stem volume for the 12-year-old trees varied widely among species, from 0.01 to 1.04 m3, with main stem C content ranging from 3 to 205 kg. Wood density among species varied from 0.27 to 0.76 g cm?3, with faster growing species exhibiting lower density. Significant differences in wood density also occurred with position along the main stem. Carbon concentration also differed among tree species, ranging from 458 to 498 g kg?1. Differences among species in main stem C content largely reflected differences among species in estimated main stem volume, with values modified somewhat by wood density and C concentration. The use of species-specific wood density values was more important for ensuring accurate conversion of estimated stem volumes to C content than was the use of species-specific C concentrations. Significant differences in wood density did exist between Khaya species from the wet and moist semi-deciduous ecozones, suggesting climatic and site factors may also need to be considered. Wood densities for these plantation grown trees were lower than literature values reported for the same species in natural forests, suggesting that the application of data derived from natural forests could result in overestimation of the biomass and C content of trees of the same species grown in plantations.  相似文献   

8.
Colorimetry of wood specimens from French Guiana   总被引:1,自引:0,他引:1  
The color of 97 species of wood specimens from French Guiana was measured on their radial and tangential surfaces with a colorimeter. We obtained the tristimulus values of X, Y, and Z of the 10° standard observer under the illuminant of D 65, and the values of the CIELAB color system, L *, a*, b*, C*, and h. When the lightness index (L *) was <54, b *, C *, and h showed positive correlations against L *. When L * was >54, a * and C * showed negative correlations against L *. These results imply that wood color should be discussed by separating wood specimens into the high and low-lightness groups. A good positive correlation was found between the L * and h throughout the whole range of L *. It is thought that the value of h can be an important index, as can L *, for comparing of wood color because h shows a simple relation with L *.  相似文献   

9.
A laboratory bioassay was conducted on the ability of didecyldimethylammonium chloride (DDAC) to protectPinus radiata D. Don wood specimens from attack by two of Australia's most economically important species of subterranean termite,Mastotermes darwiniensis Froggatt (Mastotermitidae) andCoptotermes acinaciformis (Froggatt) (Rhinotermitidae). Sapwood specimens ofP. radiata, treated to achieve nominal retentions of 0.5, 1.0, 2.0, 4.0 and 6.0 kg/m3 of active ingredient, were bioassayed against each of these termite species for four and eight weeks, respectively. Mean percentage mass loss data showed that between 2.0 and 4.0 kg/m3 of DDAC was necessary to protect specimens from significant attack by both species of termite. The usefulness of DDAC as a termiticide for timber, particularly in the above-ground situation, is discussed.With one table and one figure  相似文献   

10.
Heat treatment of Pinus pinaster and Eucalyptus globulus wood was carried out by hot air in an oven for 2–24 h at 170–200°C and by steam in an autoclave for 2–12 h at 190–210°C. The colour parameters L*, a* and b* were determined by the CIELAB method on radial, tangential and transverse sections of untreated and treated wood, and their variation with regard to the treatment (ΔL*, Δa* and Δb*) were calculated in percent. For untreated eucalypt wood, lightness (L*) varied between 54.1 and 63.8% with a* between 7.4 and 8.5, and b* between 15.7 and 19.9. For untreated pine wood, L* varied between 67.3 and 76.1%, a* between 6.9 and 7.6 and b* between 16.3 and 24.1. Oven heat-treated wood became darker (ΔL* about 50% for 4% mass loss), and this was more for eucalypt wood under the same treatment conditions. In general, the contribution of red (a*) and yellow (b*) colour decreased with heat treatment. The transverse section of the two species darkened less for both the treatments with small differences between radial and tangential sections. Lightness decrease was related to chemical changes; with good correlations with glucose (R = 0.96), hemicelluloses (R 2 = 0.92) and lignin (R 2 = 0.86). As regards colour, the heat treatments showed an interesting potential to improve the wood quality for solid timber products from pine and eucalypt.  相似文献   

11.
Analyses of land snails and habitat factors in acid beech forests were conducted in southern Germany (northern Bavaria). The objectives were to study the effects of habitat characteristics on snail density and species richness. Habitat structures were determined for 37 plots in one big forest. We found a significant relationship between the number of snail species and individuals and the following set of habitat factors coverage of herbaceous layer, growing stock, mean diameter at breast height of the three largest trees (DBHmax), stand age, total dead wood volume per ha, and advanced decomposed dead wood volume per ha. We use maximally selected rank statistics to estimate cutpoints separating stands with low densities, from stands with high snail densities. Here, we define cutpoints for a significant higher snail density at a stand age of 187 years, 57 m3/ha dead wood, 40 m3/ha advanced decomposed dead wood, 63 cm DBHmax and more than 1% herbaceous layer. For species richness, cutpoints are estimated at 338 m3/ha stand volume, 170 years stand age, 50 m3/ha total dead wood amount, 15 m3/ha advanced decomposed dead wood and 56 cm DBHmax. The microhabitat analysis shows a higher pH value and a higher Calcium content at the bottom of large snags and under large lying dead wood pieces in comparison to litter, upper mineral soil and at the bottom of vital living trees. Snail species and individual density are significantly linked to these patterns of chemical parameters. The identified cutpoints are a good base for ecological management decisions in forest management.  相似文献   

12.
Leachability,decay, and termite resistance of wood treated with metaborates   总被引:1,自引:0,他引:1  
The formation of insoluble metaborates in wood was investigated by impregnating the wood with borax and metallic salts, after which their properties (e.g., leachability in running water and biological resistance) were evaluated. The solubility of three metaborates in acidic solutions was also evaluated. Double-diffusion treatment was carried out to form the precipitates of metaborates in sapwood specimens of Japanese cedar (Cryptomeria japonica) at room temperature. Water-saturated wood specimens were first impregnated by a saturated borax solution and then diffuse-penetrated with Zn2+, Ca2+, or Pb2+ solution. The precipitates of the three metaborates in the wood proved to be insoluble or hardly soluble in water by the leaching test. With the decay test using a brown-rot fungus (Fomitopsis palustris) and a white-rot fungus (Trametes versicolor) and with the termite test using a virulent subterranean termite (Coptotermes formosanus), the metaborate-treated woods showed generally good decay and termite resistance with negligible mass loss of the specimens. Particularly, the lead metaborate formed in the wood provided superb biological resistance against decay and termite attacks. In addition, the precipitates of these metaborates were found to be soluble in acidic solution, suggesting a way to remove these chemicals from wood when disposing of waste materials.  相似文献   

13.
The equilibrium moisture content (EMC) of six wood species under desorption conditions of 20°C and 100% 0% relative humidity (RH), and the rate of adsorption at various depths of three wood species blocks under 98% RH at 22.5°C were studied. There were no significant differences among the EMC values for these six wood species over the RH range 40% 0%, but there were highly significant differences over the RH range 100% 50% at constant 20°C. The amount of moisture absorbed in the wood decreased curvilinearly with the increase of depth in the specimens as sorption time increased, and their relation could be represented by a semilogarithmic equation. Time-dependent adsorption behavior at various depths of the wood specimens could be represented by an exponential equation as a function of the product of the difference between moisture contents at equilibrium and initial conditions and the term (1 – e–t/). The value of of various wood species was found to increase linearly with the increased depth of the specimen and showed the following trend: hard maple (Acer sp.) > China fir (Cunninghamia lanceolata) > Japanese cedar (Cryptomeria japonica D. Don).Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997.  相似文献   

14.
Abstract

Nondestructive testing (NDT) can play an important role in improving the quality and reliability of tropical hardwood as an engineering material. By means of these methods, the stiffness of the material can be determined and the information used to improve its structural performance. Although, it is a usual approach for qualifying the material used to manufacture engineered wood products made mainly from softwoods, it is not so common for tropical hardwoods. Additionally, the lack of information regarding properties of glulam beam made from these kinds of wood is evident. In this context, the paper aimed at evaluating the theoretical and experimental deflection of glulam beams made from the Brazilian hardwood louro-vermelho (Sextonia rubra). Initially, the stiffness of each lamina was determined nondestructively using transverse vibration method (E dtv), which has been demonstrated to be the most suitable method for this wood species. Then, ten 5-lamina glulam beams were assembled according to descending lamina E dtv values. The experimental evaluation was performed using a four-point bending schedule. In general, the theoretical values of deflection were 2% higher than the experimental ones. The transverse vibration showed to be a suitable method to both measure lamina stiffness and predict glulam beam deflection.  相似文献   

15.
Abstract

Wood is susceptible to decay by rot fungi if it is exposed to high-moisture contents during long periods of time and it is therefore important to limit the duration of such periods. Critical points in outdoor wood structures are, for example, end grain surfaces in joints where water can get trapped after a rain. It is therefore of interest to study both absorption and redistribution of moisture in wood. This paper presents moisture content profiles during end grain water absorption and redistribution in Norway spruce (Picea abies (L.) Karst.) measured by computed tomography with the specimens in individual climate boxes. Heartwood and sapwood of two provenances (slow-grown and fast-grown wood) were included. No major differences were seen between the water uptake of the slow-grown and the fast-grown wood since the densities were similar despite of the large difference in growth ring width. However, for the sapwood specimens, the moisture content was higher further into the specimens than for the heartwood specimens in agreement with previous studies. For the slow-grown wood, the redistribution was also generally more rapid for the sapwood specimens than for the heartwood specimens.  相似文献   

16.
Thermal insulation and warmth-keeping properties of thick plywood-faced sandwich panels with low-density fiberboard (plywood-faced sandwich, PSW), which were developed as wood-based structural insulation materials for walls and floors, are comprehensively clarified. The properties focused on were thermal conductivity (λ), thermal resistance (R), and thermal diffusivity (D). The results for PSW panels were compared with those for commercial wood-based boards, solid wood, and commercial insulators. The λ values were measured for PSW panels and their core and face elements. As a result, the composite theory of λ was found to be appropriate for PSW composites, because the calculated/experimental λ ratios were approximately 90%. The λ values for PSW panels with densities of 340 kg/m3 (PSW350) and 410kg/m3 (PSW400) were 0.070 and 0.077W/mK, respectively. The R values for PSW350 and PSW400 were 1.4 and 1.2m2K/W, and the D values were 0.00050 and 0.00046m2/h, respectively. Consequently, the PSW provided thermal insulation properties superior to those of the boards and in terms of warmth-keeping properties were greatly advantageous over the insulators. These advantages were due to the moderate densities of PSW panels. The PSW panel with sufficient thickness showed remarkably improved thermal resistance compared with those of the boards.  相似文献   

17.
Evaluation of wood preservatives in soil-contact tests is becoming an important issue since detoxification of wood-protecting compounds by fungi and bacteria found in soil may decrease the resistance of treated wood. In this study, the decay resistance of wood treated with didecyl dimethyl ammonium tetrafluoroborate (DBF), a recently developed quaternary ammonia compound, was evaluated in both soil bed and laboratory decay resistance tests. Small specimens (5×10×100 mm3) of DBF-treated and untreated sugi sapwood were subjected to decay in laboratory soil bed tests (DIN ENV 807 (2001)) followed by Basidiomycetes tests (DIN EN 113 (1996)). Exposure in field soil and compost soil substrates was used to observe the effects of wood degrading and other soil-inhabiting micro-organisms on the decay resistance of the specimens. Soil bed tests showed that DBF-treated wood specimens at 7.7 kg/m3 retention level (1% DBF solution concentration) showed better performance compared to 0.01 and 0.1% DBF treatments. The 7.7 kg/m3 retention level was also effective to protect the wood specimens against Coniophora puteana and Coriolus versicolor in Basidiomycetes tests. It is concluded that detoxification of wood preservatives in soil contact is an important factor to determine protective properties of treated wood in ground contact applications. Further experiments with larger specimens are needed to observe the performance of DBF-treated wood at higher retention levels in field above ground and ground contact tests. Dedicated to Prof. Dr. H.C. Mult. Walter Liese on the occasion of his 80th birthday.  相似文献   

18.
Abstract

Wood density is an important quality variable, closely related to the mechanical properties of the wood. Precise wood density measurements in the log sorting would enable density sorting of logs for products such as strength-graded wood and finger-jointed wood. Density sorting of logs would also give more homogeneous drying properties and thus improve the quality of the final products. By compensating the radiographs from an X-ray log scanner for the varying path lengths using outer shape data from a three-dimensional (3D) scanner, it is possible to make precise estimates of both green and dry density. Measurements on simulated industrial data were compared with densities measured in computed tomographic (CT) images for 560 Scots pine (Pinus sylvestris L.) logs. It was found that green sapwood density could be measured with predictability R 2=0.65 and root mean square error (RMSE) of 25 kg m?3. Green and dry heartwood densities were measured with similar precision: R 2=0.79 and RMSE=32 kg m?3 for green density and R 2=0.83 and RMSE=32 kg m?3 for dry density.  相似文献   

19.
Summary The purpose of this study was to examine the influence of the moisture level on the cell-wall material in wood using pulsed proton nuclear magnetic resonance. The wood species used were western hemlock (Tsuga heterophylla (Raf.) Sarg.) and sitka spruce (Picea sitchensis (Bong.) Carr.), distinguishing between heartwood and sapwood regions. The moisture contents of the specimens were below the fibre saturation point and they were conditioned to equilibrium moisture contents based on initial desorption, adsorption and secondary desorption processes. From the FID experiments, the NMR-based moisture contents and the solid-wood lineshape second moments were determined. Average relative proton-spin densities, which were needed to calculate the NMR-based moisture contents, were determined from known moisture contents and they were: hemlock sapwood: 0.616; hemlock heartwood: 0.537; spruce sapwood: 0.679; and, spruce heartwood: 0.446. The average RSD value, considering both heartwood and sapwood, for western hemlock species was 0.577 and for sitka spruce was 0.563; these are close to published RSD values for other species. The condition as to how the equilibrium moisture content was attained did not influence the second moment for hemlock; however, for spruce sapwood, the second moments were sorption dependent. The hemlock M2 decreased from about 5.1 × 109 s-2 at low MNMR to 4.5 × 109 s-2 (heartwood) and 4.3 × 109 s-2 (sapwood) at higher mnmr. The adsorption and secondary desorption M2 for the spruce sapwood region decreased from about 5.0 × 109 s-2 at low mnmr to about 4.1 × 109 s-2 near the MF, whereas M2 for the spruce heartwood decreased from about 4.3 × 109 s-2 at low MNMR to about 3.5 × 109 s-2 near MF. Extractives may have a key role in obtaining the RSD and second moments.This project was financially supported by the Science Council of British Columbia, MacMillan Bloedel Research. The Natural Sciences and Engineering Research Council of Canada is acknowledged for their support of the NMR spectrometer measurements  相似文献   

20.
Applicability of gaseous treatment with allyl isothiocyanate (AIT) was evaluated for controlling the established microbial infestation of wood in the laboratory. Small sapwood specimens from five wood species measuring 20 mm (T)×20 mm (R)×10 mm (L) were first preincubated on 2% malt-agar medium with placing them on a fully grown monoculture of seven test fungi. After 7 weeks of preincubation they were transferred to fresh medium and exposed to AIT fumigant at concentrations of 2360 and 23600ppm AIT in the air of a petri dish to determine threshold values of exposure periods for each test fungus. The 2360 ppm concentration was not effective forPenicillium funiculosum, Gliocladium virens, orRhizopus stolonifer for any of the wood species-exposure period combinations. Those test fungi could grow even at 23600ppm after 48h exposure whenCryptomeria japonica andFagus crenata were used as wood substrate. Growth of other test fungi was inhibited at 2360ppm with a few exceptions in the case ofAspergillus niger. The required periods of exposure to suppress microbial regrowth were different with wood species-test fungi combinations. As two wood-decaying basidiomycetes,Trametes versicolor andFomitopsis palustris, were easily controlled at 2360ppm after 24h exposure regardless of wood species, AIT treatment proved applicable to the control of internal decay of utility poles and other relevant products in service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号