首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil organic matter (SOM) is important for plant growth and production. Conventional analyses of SOM are expensive and time consuming. Hyperspectral remote sensing is an alternative approach for SOM estimation. In this study, the diffuse reflectance spectra of soil samples from Qixia City, the Shandong Peninsula, China, were measured with an ASD FieldSpec 3 portable object spectrometer (Analytical Spectral Devices Inc., Boulder, USA). Raw spectral reflectance data were transformed using four methods:nine points weighted moving average (NWMA), NWMA with first derivative (NWMA + FD), NWMA with standard normal variate (NWMA + SNV), and NWMA with min-max standardization (NWMA + MS). These data were analyzed and correlated with SOM content. The evaluation model was established using support vector machine regression (SVM) with sensitive wavelengths. The results showed that NWMA + FD was the best of the four pretreatment methods. The sensitive wavelengths based on NWMA + FD were 917, 991, 1 007, 1 996, and 2 267 nm. The SVM model established with the above-mentioned five sensitive wavelengths was significant (R2=0.875, root mean square error (RMSE)=0.107 g kg-1 for calibration set; R2=0.853, RMSE=0.097 g kg-1 for validation set). The results indicate that hyperspectral remote sensing can quickly and accurately predict SOM content in the brown forest soil areas of the Shandong Peninsula. This is a novel approach for rapid monitoring and accurate diagnosis of brown forest soil nutrients.  相似文献   

2.
ABSTRACT

The precise assessment of soil organic matter (SOM) is required when studying soil pedology, chemistry, physics, and fertility. Besides, it is a key for evaluating soil quality, plant growth, and sustainable land management. This research aims to correlate the SOM resulted from loss-on-ignition (LOI) with those from wet combustion (Walkley–Black, WB). A total of 130 soil samples were collected from Egypt and analyzed using WB and LOI. In LOI, samples exposed to the combustion temperatures of 300, 375, 430, and 550°C for 2 and 4 hours. Using RStudio, simple linear regressions were conducted to estimate the most suitable temperature/time combinations. The results showed that applying lower temperatures (300 and 375°C) for 2 hours provided a strong correlation between LOI and WB with R2 of 93 and 94% for all dataset and sandy soils, respectively. For clay soils the respective R2 values at 300 and 375°C were 83 and 85%. The proposed combinations were valid to estimate SOM content for different soils with correlation up to 0.99 for sandy soils.  相似文献   

3.
ABSTRACT

A long-term fertilizer experiment was initiated in kharif 2007 in a maize–wheat sequence at the Experimental Farm of Department of Soil Science, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur under the network of All India Coordinated Research Project on Soil Test Crop Response (STCR) Correlation Studies. The experiment consisted of eight treatments (control, general recommended dose, soil test based, farmers’ practice, target yield of 25 (rabi)/30 (kharif) and 35 (rabi)/40 (kharif) q ha?1 either with or without 5 t ha?1 farm yard manure) replicated thrice in a randomized block design. All the passive and active pools of soil organic matter (SOM) were highest under STCR treatments for target yield 35 q ha?1 + farmyard manure (FYM). The highest value of both humic and fulvic acids under STCR treatment for target yield 35 q ha?1 with FYM was statistically at par with treatment for target yield 25 q ha?1 with FYM. The R2 value indicated that about 96% to 98% of the total variation in grain yield was attributable to SOM fractions. The contribution of all fractions of SOM towards the total variation in straw yield was 96% to 97%.  相似文献   

4.
Monitoring exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR) variability in soils is both time-consuming and expensive. However, in order to estimate the amounts of amendments and land management, it is essential to know ESP and SAR variations and values in sodic or saline and sodic soils. Thus, presenting a method which uses easily obtained indices to estimate ESP and SAR indirectly is more optimal and economical. Input data of the current research were 189 soil samples collected based on a regular networking approach from Miankangi region, Sistan plain, Iran. Then, their physicochemical properties were measured. Results showed that SAR = 3.8 × ln(EC) + 22.83 × ln(pH) – 44.37, (R2 = 0.63), and ESP = 3.98×ln(EC) + 36.88(pH) – 56.98 (R2 = 0.78) are the best regression models for estimating SAR and ESP, respectively. Moreover, multilayer perceptron (MLP), which explains 95–97% of parameters of soil sodicity using EC and pH as inputs, was the best neural network model. Therefore, MLP could be applied for ESP and SAR evaluation with high accuracy in the Miankangi region.  相似文献   

5.
The advent of affordable, ground-based, global positioning information (GPS)–enabled sensor technologies provides a new method to rapidly acquire georeferenced soil datasets in situ for high-resolution soil attribute mapping. Our research deployed vehicle-mounted electromagnetic sensor survey equipment to map and quantify soil variability (?50 ha per day) using apparent electrical conductivity as an indirect measure of soil texture and moisture differences. A portable visible–near infrared (VNIR) spectrometer (350–2500 nm) was then used in the field to acquire hyperspectral data from the side of soil cores to a specified depth at optimized sampling locations. The sampling locations were derived by statistical analysis of the electromagnetic survey dataset, to proportionally sample the full range of spatial variability. The VNIR spectra were used to predict soil organic carbon (prediction model using field-moist spectra: R2 = 0.39; RPD = 1.28; and air-dry spectra: R2 = 0.80; RPD = 2.25). These point values were combined with the electromagnetic survey data to produce a soil organic carbon map, using a random forest data mining approach (validation model: R2 = 0.52; RMSE = 3.21 Mg C/ha to 30 cm soil depth; prediction model: R2 = 0.92; RMSE = 1.53 Mg C/ha to 30 cm soil depth). This spatial modeling method, using high-resolution sensor data, enables prediction of soil carbon stocks, and their spatial variability, at a resolution previously impractical using a solely laboratory-based approach.  相似文献   

6.
ABSTRACT

Experiments were conducted to study the adsorption kinetics and isothermal adsorption mechanism of nitrification inhibitor nitrapyrin onto the black soil of northeastern China. The nitrapyrin adsorption kinetics of the black soil were fitted with a quasi-second-order kinetics equation before and after organic matter removal (R2 ≥ 0.8320, p < .05). The adsorption isotherm was obtained by the Langmuir equation (R2 ≥ 0.9400, p < .05). Isothermal adsorption requires less energy and is a spontaneous endothermic reaction with an L-type isothermal curve (n > 1), dominated by surface physical adsorption. With the decrease of organic matter content in black soil, the adsorption mechanism of nitrapyin changed from distribution mechanism to surface adsorption. The black soil’s organic matter content exhibited a quadratic relation with the maximum adsorption capacity and adsorption constant (Kf) at the different temperatures, reaching significant levels (R2 ≥ 0.6484, p < .05).  相似文献   

7.
Soil nitrogen (N) mineralization rates from different agricultural regions in California were determined and related to soil properties. Undisturbed soil cores were sampled in spring from 57 fields under annual crop rotations and incubated at 25℃ for 10 weeks. Soil properties varied across and within regions, most notably those related to soil organic matter (SOM), with total soil carbon ranging from 6 to 198 g kg?1. Multivariate linear regression was used to select soil properties that best predicted N mineralization rates. Regression models with a good fit differed between soils with high and low SOM contents, but generally included a measure of SOM quantity, its quality as well as soil texture or mineralogy. Adjusted R2 values were 0.95 and 0.60 for high and low SOM soils, respectively. This study has shown that information on soil properties can contribute to better estimates of N mineralization in soils of contrasting characteristics.  相似文献   

8.
中国农耕区土壤有机质含量及其与酸碱度和容重关系   总被引:4,自引:0,他引:4  
对我国农耕区土壤有机质区域变化及其与酸碱度和容重关系进行系统分析,为耕地地力提升和改善土壤结构提供支撑。基于国家级耕地长期定位监测点913个,统计分析全国及7大区域(东北NE、华北NC、西北NW、长江中游MYR、长三角YRD、华南SC、西南SW)耕层土壤有机质含量、酸碱度及容重变化特征。结果表明,全国农耕区耕层土壤有机质含量平均值为22.4~24.8 g/kg。其中有机质含量中等偏低的监测点位占比达72.5%。不同区域耕层土壤有机质含量差异显著(p<0.05),MYR耕层土壤有机质含量显著高于其他6个区域。全国农耕区耕层土壤pH和容重平均分别为(6.90±1.20),(1.30±0.15) g/cm3。不同土壤利用方式对土壤有机质、酸碱度及容重产生影响。水田耕层土壤有机质含量显著高于旱地,旱地耕层土壤pH和容重则显著高于水田。亚当斯方程和指数函数分别推荐拟合土壤容重对有机质含量响应关系(R2=0.09,RMSE=0.17,n=759),以及土壤pH对土壤有机质含量响应(R2=0.16,RMSE=1.24,n=886)。全国农耕区耕层土壤有机质含量总体中等偏低,呈现出东南向西北依次降低趋势。土壤pH及容重与土壤有机质呈现显著的负相关关系。亚当斯模型及指数方程能较好地拟合土壤容重及pH对有机质的响应关系,可用于非线性插值法补充土壤容重及pH缺失值。  相似文献   

9.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

10.
ABSTRACT

Soil hydraulic parameters like moisture content at field capacity and permanent wilting point constitute significant input parameters of various biophysical models and agricultural practices (irrigation timing and amount of irrigation to be applied). In this study, the performance of three different methods (Multiple linear regression – MLR, Artificial Neural Network – ANN and Adaptive Neuro-Fuzzy Inference System – ANFIS) with different input parameters in prediction of field capacity and permanent wilting point from easily obtained soil characteristics were compared. Correlation analysis indicated that clay content, sand content, cation exchange capacity, CaCO3, and organic matter had significant correlations with FC and PWP (p < .01). Validation results revealed that the ANN model with the greatest R2 and the lowest MAE and RMSE value exhibited better performance for prediction of FC and PWP than the MLR and ANFIS models. ANN model had R2 = 0.83, MAE = 2.36% and RMSE = 3.30% for FC and R2 = 0.81, MAE = 2.15%, RMSE = 2.89% for PWP in training dataset; R2 = 0.80, MAE = 2.27%, RMSE = 3.12% for FC and R2 = 0.83, MAE = 1.84%, RMSE = 2.40% for PWP in testing dataset. Also, Bayesian Regularization (BR) algorithm exhibited better performance for both FC and PWP than the other training algorithms.  相似文献   

11.
The effect of long-term (45 years) mineral and organic fertilization on soil organic matter (SOM) quantity (organic C and N content) and quality (hot-water-soluble C content, microbial biomass C content, hydrophobic organic components of SOM, soil enzyme activities) was determined in a field experiment established in Trutnov (North Bohemia, sandy loam, Eutric Cambisol). Six treatments were chosen for investigation: unfertilized control, mineral fertilization (NPK), straw N, farmyard manure (FYM) and straw and FYM completed with mineral NPK. Soil samples were taken from the arable layer (0–20 cm) in spring over the period of 2004–2010. The positive effect of FYM on the total organic C and N content, hot-water-soluble C content and hydrophobic organic components of SOM was more than 50% higher than that of straw and mineral N fertilization. Application of straw N increased microbial biomass C content in soil and generated invertase activity above the level of FYM. Hot-water-soluble C content, hydrophobic organic components of SOM and urease activity were positively correlated with total organic C and N content (R = 0.58–0.98; p < 0.05). Addition of mineral NPK to both the straw and FYM emphasized the effect of organic fertilization in most of monitored characteristics.  相似文献   

12.
Abstract

We examined the effects of manure + fertilizer application and fertilizer-only application on nitrous oxide (N2O) and methane (CH4) fluxes from a volcanic grassland soil in Nasu, Japan. In the manure + fertilizer applied plot (manure plot), the sum of N mineralized from the manure and N applied as ammonium sulfate was adjusted to 210 kg N ha?1 year?1. In the fertilizer-only applied plot (fertilizer plot), 210 kg N ha?1 year?1 was applied as ammonium sulfate. The manure was applied to the manure plot in November and the fertilizer was applied to both plots in March, May, July and September. From November 2004 to November 2006, we regularly measured N2O and CH4 fluxes using closed chambers. Annual N2O emissions from the manure and fertilizer plots ranged from 7.0 to 11.0 and from 4.7 to 9.1 kg N ha?1, respectively. Annual N2O emissions were greater from the manure plot than from the fertilizer plot (P < 0.05). This difference could be attributed to N2O emissions following manure application. N2O fluxes were correlated with soil temperature (R = 0.70, P < 0.001), NH+ 4 concentration in the soil (R = 0.67, P < 0.001), soil pH (R = –0.46, P < 0.001) and NO? 3 concentration in the soil (R = 0.40, P < 0.001). When included in the multiple regression model (R = 0.72, P < 0.001), however, the following variables were significant: NH+ 4 concentration in the soil (β = 0.52, P < 0.001), soil temperature (β = 0.36, P < 0.001) and soil moisture content (β = 0.26, P < 0.001). Annual CH4 emissions from the manure and fertilizer plots ranged from –0.74 to –0.16 and from –0.84 to –0.52 kg C ha?1, respectively. No significant difference was observed in annual CH4 emissions between the plots. During the third grass-growing period from July to September, however, cumulative CH4 emissions were greater from the manure plot than from the fertilizer plot (P < 0.05). CH4 fluxes were correlated with NH+ 4 concentration in the soil (R = 0.21, P < 0.05) and soil moisture content (R = 0.20, P < 0.05). When included in the multiple regression model (R = 0.29, P < 0.05), both NH+ 4 concentration in the soil (β = 0.20, P < 0.05) and soil moisture content (β = 0.20, P < 0.05) were significant.  相似文献   

13.
The effect of soil organic matter (SOM) on sorptive parameters under different soil management practices in Rendzic Leptosol was studied. In 2006, an experiment of different management practices in a productive vineyard was established in the locality of Nitra-Dra?ovce (Slovakia). The following treatments were established: (1) control (grass without fertilization), (2) T (tillage), (3) T + FYM (tillage + farmyard manure), (4) G + NPK3 (grass + 3rd intensity of fertilization for vineyards), (5) G + NPK1 (grass + 1st intensity of fertilization for vineyards). Soil samples were collected every month during the year 2010. Obtained results showed increased hydrolytic acidity (by 23%), sum of basic cations (by 37%) and decreased total cation exchange capacity (CEC) (by 36%) with higher doses of fertilization in comparison to control. Application of farmyard manure had a positive effect on the increase in the SOM cation sorption capacity. Positive correlations between pH and sum of basic cations (SBC) (r = 0.493, ≤ 0.001), CEC (r = 0.498, ≤ 0.001) and cation sorption capacity of SOM (r = 0.391, ≤ 0.01) were observed. Higher values of labile carbon:potentially mineralizable nitrogen (CL:Npot) ratio corresponded with lesser CEC, SBC and base saturation values in the soil. With increased humus quality (higher values of humic acid:fulvic acid (CHA:CFA) ratio), cation sorption capacity of SOM significantly increased (r = 0.329, p ≤ 0.01). The results of this study proved that the application of farmyard manure had a positive effect on the increase of SOM sorption capacity, but higher doses of mineral fertilizers added to soil had a negative effect.  相似文献   

14.
Biochar is used as a soil amendment for improving soil quality and enhancing carbon sequestration. In this study, a loamy sand soil was amended at different rates (0%, 25%, 50%, 75%, and 100% v/v) of biochar, and its physical and hydraulic properties were analyzed, including particle density, bulk density, porosity, infiltration, saturated hydraulic conductivity, and volumetric water content. The wilting rate of tomato (Solanum lycopersicum) grown in soil amended with various levels of biochar was evaluated on a scale of 0–10. Statistical analyses were conducted using linear regression. The results showed that bulk density decreased linearly (R2 = 0.997) from 1.325 to 0.363 g cm?3 while the particle density decreased (R2 = 0.915) from 2.65 to 1.60 g cm?3 with increased biochar amendment, with porosity increasing (R2 = 0.994) from 0.500 to 0.773 cm3 cm?3. The mean volumetric water content ranged from 3.90 to 14.00 cm3 cm?3, while the wilting rate of tomato ranged from 4.67 to 9.50, respectively, for the non-amended soil and 100% biochar-amended soil. These results strongly suggest positive improvement of soil physical and hydraulic properties following addition of biochar amendment.  相似文献   

15.
Modeling nitrogen mineralization at surface and deep layers of sandy soils   总被引:1,自引:0,他引:1  
We evaluated potential soil nitrogen mineralization of 46 sandy fields of the Pampas for determining the contribution of deep layers to mineralization and modeling its trend in depth as a possible tool for improving current existing mineralization models based on surface data. Mineralization, total and mineral nitrogen decreased with depth. A potential model fitted well to these variables (R2 = 0.95–0.99), but mineralization showed a more stratified profile. Consequently, the fraction of total nitrogen mineralized decreased with depth despite soils had constant texture across the profile. Potential mineralization to 1 m depth could be estimated using data from the 0–0.2-m soil layer and the average curvature of the potential model (R2 = 0.60) or linear regression methods (R2 = 0.71). Another estimation of potential mineralization could be performed by developing a pedotransfer function which used as predictors total nitrogen and depth (R2 = 0.62), without the need of laboratory incubations. Our results showed that for sandy soils, deep nitrogen mineralization account for 40% of soil mineralization and can be assessed using surface data or the total nitrogen content of the soils. Because surface soil mineralization and whole profile mineralization were highly correlated, it is improbable that field mineralization modeling may be improved using deep data in these soils.  相似文献   

16.
Vertisol soils of central India are heavy in texture, with high clay content and low organic matter. These soils are prone to degradation and the soil loss is due to poor management practices including excessive tillage. Based on a long-term study conducted for improving the quality of these soils, it was found that management practice such as low tillage (LT) + 4 t ha?1 compost + herbicide (Hb) recorded significantly higher organic carbon (OC) (6.22 g kg?1) and available N (188.5 kg ha?1) compared to conventional tillage (CT) + recommended fertilizer (RF) + off-season tillage (OT) + hand weeding (HW) (OC: 4.71 g kg?1, available nitrogen (N) (159.3 kg ha?1). Among the physical soil quality parameters, mean weight diameter (MWD) was significantly higher under LT + 4 t ha?1 straw + Hb (0.59 mm). The practice of LT + 4 t ha?1 straw + HW recorded significantly higher microbial biomass carbon (MBC) (388.8 μg g?1). The order of key indicators and their contribution towards soil quality was as follows: OC (29%) >, MBC (27%) > available zinc (Zn) (22%) > MWD (9%) > available boron (B) (8%), > dehydrogenase activity (DHA) (5%). The order of the best treatment which maintained soil quality index (SQI) values reasonably good (>1.5) was as follows: LT + 4t ha?1 compost + HW (1.65) > LT + 4 t ha?1 compost +Hb (1.60) > LT + 4t ha?1 straw + HW (1.50). Hence, these treatments could be recommended to the farmers for maintaining higher soil quality in Vertisols under soybean system. Correlation studies revealed stronger relationship between key indicators like OC (R2 = 0.627), MBC (R2 = 0.884), available Zn (R2 = 0.739) and DHA (R2 = 0.604) with Relative Soil Quality Index (RSQI). The results of the present study would be highly useful to the researchers, farmers and land managers.  相似文献   

17.
Organics, biological, and inorganic fertilizers play a crucial role for improving crop yield and soil properties. Accordingly, we assessed their impact on yield, microbial activities, and transformations of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) in soils under a 12-year-old intensively cultivated rice (Oriza sativa L.), mustard (Brassica juncea L.), sesame (Sesamum indicum L.) system with sole inorganic (NPK); NPK + farmyard manure (NPKF); NPK + green manure (NPKG) (Sesbania sesban L.), and NPK + green manure + bio-fertilizer (NPKGB) (Azotobacter chroococcum+ pseudomonas putida) treatments in sub-tropical India. The system yield was much higher with NPKF (23%) and NPKGB (18%) than that with NPK. Organic supplementation had a favorable influence on soil microbial biomass C (Cmic), N (Nmic), and activities of extracellular enzymes. Results of principal component and multiple regression analyses showed significant influence of Cmic on system yield (R2 = 91, = 0.001) and S availability (R2 = 62, = 0.001). Similarly, mineralizable N and acid phosphatase could predict significantly soil available N (R2 = 85, = 0.001) and P (R2 = 51; = 0.001), respectively. Results thus indicated that integrated nutrient management (NPKF/G) improved system yield, nutrient accumulation, and microbial activities in soils.  相似文献   

18.
Visible–near infrared (vis–NIR) spectroscopy can be used to estimate soil properties effectively using spectroscopic calibrations derived from data contained in spectroscopic databases. However, these calibrations cannot be used with proximally sensed (field) spectra because the spectra in these databases are recorded in the laboratory and are different to field spectra. Environmental factors, such as the amount of water in the soil, ambient light, temperature and the condition of the soil surface, cause the differences. Here, we investigated the use of direct standardization (DS) to remove those environmental factors from field spectra. We selected 104 sensing (sampling) sites from nine paddy fields in Zhejiang province, China. At each site, vis–NIR spectra were recorded with a portable spectrometer. The soils were also sampled to record their spectra under laboratory conditions and to measure their soil organic matter (SOM) content. The resulting data were divided into training and validation sets. A subset of the corresponding field and laboratory spectra in the training set (the transfer set) was used to derive the DS transfer matrix, which characterizes the differences between the field and laboratory spectra. Using DS, we transferred the field spectra of the validation samples so that they acquired the characteristics of spectra that were measured in the laboratory. A partial least squares regression (PLSR) of SOM on the laboratory spectra of the training set was then used to predict both the original field spectra and the DS‐transferred field spectra. The assessment statistics of the predictions were improved from R2 = 0.25 and RPD = 0.35 to R2 = 0.69 and RPD = 1.61. We also performed independent predictions of SOM on the DS‐transferred field spectra with a PLSR derived using the Chinese soil spectroscopic database (CSSD), which was developed in the laboratory. The R2 and RPD values of these predictions were 0.70 and 1.79, respectively. Predictions of SOM with the DS‐transferred field spectra were more accurate than those treated with external parameter orthogonalisation (EPO), and more accurate than predictions made by spiking. Our results show that DS can effectively account for the effects of water and environmental factors on field spectra and improve predictions of SOM. DS is conceptually straightforward and allows the use of calibrations made with laboratory‐measured spectra to predict soil properties from proximally sensed (field) spectra, without needing to recalibrate the models.  相似文献   

19.
The objectives were i) to assess indicators for potential nitrogen (N) mineralization and ii) to analyze their relationships for predicting winter wheat (Triticum aestivum L.) growth parameters (yield and N uptake, Nup) in Mollisols of the semi-arid and semi-humid region of the Argentine Pampas. Thirty-six farmer fields were sampled at 0–20 cm. Several N mineralization indicators, wheat grain yield and Nup at physiological maturity stage were assessed. A principal component (PC) analysis was performed using correlated factors to grain yield and Nup. The cluster analysis showed two main groups: high fertility and low fertility soils. In high fertility soils, combining PCs in multiple regression models enhanced the wheat yield and Nup prediction significantly with a high R2 (adj R2 = 0.71–0.83). The main factors that explained the wheat parameters were associated with water availability and N mineralization indicator, but they differ according to soil fertility.

Abbreviations: N: nitrogen; SOM: soil organic matter; POM: particulate organic matter; SOC: soil organic carbon; SON: soil organic nitrogen; POM-C: particulate organic carbon; POM-N: particulate organic nitrogen; Nan: anaerobic nitrogen; Nhyd: hydrolyzable N; NO3-N: cold nitrate; N205: N determined by spectrometer at 205 nm; N260: N determined by spectrometer at 260 nm; Pe: extractable P; Nup: wheat N uptake; NO3-N: inorganic N in the form of nitrate; FR: fallow rainfalls (March-Seeding rainfall); FLR: flowering rainfalls (October-December rainfall); GFR: grain filling rainfall (November rainfall); CCR: crop growing season rainfall (June-December rainfall); PCA: principal component analysis; PC: principal component; MR: multiple regression  相似文献   


20.
Determining potassium (K) fertilizer requirement using sorption isotherms is considered more accurate than conventional soil K tests. A total of 59 surface soil samples were used to establish K exchange isotherm. To evaluate K requirement sorption test, a glasshouse experiment using perennial ryegrass (Lolium perenne, cv. Roper) was carried out on 10 soil samples. The experiment was laid out as a completely randomized design with four replications and four K levels (K0, K20, K40, K80). Concentrations of K in solution established by adding K in the pots estimated from the sorption curve ranged from 20 to 80 mg K l?1 including check treatment (no K). Dry matter yield of ryegrass in most soils approached maximum as adjusted K levels were increased to 20 mg K l?1. The amounts of K required to bring the soils to 20 mg l?1 in soil solution varied among soils and ranged from 99 to 399 mg kg?1, on average 205 mg kg?1 soil. It was found that a useful regression model for the prediction of standard K requirement (K20) included the combination of plant available K extracted by NH4OAc (Av-K) and clay content: K20 = ?41 ? 0.63 Av-K + 9.0 Clay (R2 = 0.61, p < 0.001, n = 59).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号