首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this 2-year field study, we investigated the allelopathic effects of three wheat cultivars (Shafaq-06, Faisalabad-08 and Sehar-06) against different density levels (0, 100, 200 and 300 plants m?2) of littleseed canarygrass (Phalaris minor Retz.). Crop was sown on 1 and 3 December during 2010–2011 and 2011–2012 cropping seasons, respectively. The results showed that wheat cultivar Shafaq-06 produced more phenolic compounds at all density levels of littleseed canarygrass during both years, which caused more inhibition of littleseed canarygrass growth. More suppressive advantage of cultivar Shafaq-06 against littleseed canarygrass was responsible for its better morphological and yield related traits, and grain yield than cultivars Faisalabad-08 and Sehar-06. Among the tested cultivars, cultivar Sehar-06 had minimum allelopathic potential in suppressing littleseed canarygrass. In crux, Shafaq-06 possesses allelopathic potential to suppress littleseed canarygrass and may be used for breeding future wheat cultivars with high allelopathic activity for better weed suppression.  相似文献   

2.
Herbicide resistances in Amaranthus tuberculatus: a call for new options   总被引:1,自引:0,他引:1  
Amaranthus tuberculatus is a major weed of crop fields in the midwestern United States. Making this weed particularly problematic to manage is its demonstrated ability to evolve resistance to herbicides. Herbicides to which A. tuberculatus has evolved resistance are photosystem II inhibitors, acetolactate synthase inhibitors, protoporphyrinogen oxidase inhibitors, and glyphosate. Many populations of A. tuberculatus contain more than one of these resistances, severely limiting the options for effective herbicide control. A survey of multiple-herbicide resistance in A. tuberculatus revealed that all populations resistant to glyphosate contained resistance to acetolactate synthase inhibitors, and 40% contained resistance to protoporphyrinogen oxidase inhibitors. The occurrences of multiple-herbicide resistances in A. tuberculatus illustrate the need for continued herbicide discovery efforts and/or the development of new strategies for weed management.  相似文献   

3.
The aryloxyphenoxypropionic acid (AOPP) and cyclohexanedione (CHD) herbicides inhibit the first committed enzyme in fatty acid biosynthesis, acetyl CoA carboxylase (ACCase). The frequent use of AOPP and CHD herbicides has resulted in the development of resistance to these herbicides in many grass weed species. New herbicides that inhibit both the susceptible and resistant forms of ACCase in grass weeds would have obvious commercial appeal. In the present study, an attempt was made to identify molecules that target both the herbicide-sensitive and -resistant forms of ACCase. Seven experimental compounds, either CHD-like or AOPP-CHD hybrids, were synthesized and assayed against previously characterized susceptible and resistant forms of ACCase. All seven compounds inhibited ACCase from sensitive biotypes of Setaria viridis and Eleusine indica (I50 values from 6.4 to >100 microM) but were not particularly potent compared to some commercialized herbicides (I50 values of 0.08-5.6 microM). In almost all cases, the I50 values for each compound assayed against the resistant ACCases were higher than those against the corresponding sensitive ACCase, indicating reduced binding to the resistant ACCases. One compound, a CHD analogue, was almost equally effective against the resistant and susceptible ACCases, although it was not a very potent ACCase inhibitor per se (I50 of 51 and 76 microM against susceptible ACCase from S. viridis and E. indica, respectively). The AOPP-CHD hybrid molecules also inhibited some of the resistant ACCases, with I50 values ranging from 6.4 to 50 microM. These compounds may be good leads for developing ACCase inhibitors that target a wider range of ACCase isoforms, including those found in AOPP- and CHD-resistant weed biotypes.  相似文献   

4.
Abstract

Aerobic rice is a potential water-wise rice production system, but high weed infestation has threatened its sustainability, which demands an efficient and cost-effective weed management technique. Eight commercial herbicide products were applied singly or as tank-mix or in sequence to evaluate their efficacy, rice selectivity and cost-effectiveness in aerobic rice. The study was conducted under field conditions in Malaysia during 2010/2011 following a randomized complete block design. Most of the herbicide treatments provided excellent weed control, and produced much higher net benefit than weedy or weed-free check. None of the herbicides caused significant phytotoxicity to rice plants. Among the herbicide treatments, sequential application of Cyhalofop-butyl+Bensulfuron at early growth stage followed by Bentazon/MCPA at mid growth stage provided the highest weed control efficiency, productivity and net benefit. Application of Bispyribac-sodium at early growth stage followed by Bentazon/MCPA at mid growth stage performed very close to the above-mentioned treatments. Sequential application of Pretilachlor/safener just after seeding followed by Propanil/Thiobencarb at early growth stage also provided satisfactory results in terms of efficacy and economic return. Since manual weeding was not economic, herbicide rotation using the above chemicals may be recommended for effective weed management in aerobic rice.  相似文献   

5.
The sustainability of rice–wheat cropping system (RWCS) is threatened by increasing labor, water, and energy crises in the region. Conservation RWCSs offers an ecofriendly alternate option. This study was aimed to evaluate the impact of sesbania brown manuring in direct‐seeded aerobic rice (DSAR) and of rice residue mulch in no‐tilled wheat (NTW) on soil health, weed dynamics and system productivity. The experiment was composed of five RWCS systems: (i) DSAR‐NTW; (ii) DSAR + sesbania brown manuring‐NTW; (iii) DSAR‐NTW + rice residue mulch; (iv) puddled transplanted flooded rice (PudTR)‐NTW; and (v) PudTR‐plow‐tilled wheat. Sesbania brown manuring in direct‐seeded rice decreased the weed density and dry biomass 41–56% and 62–75%, respectively, than the sole direct‐seeded rice crop. At rice harvest, better soil health, in terms of total nitrogen (N), soil organic carbon, soil microbial biomass carbon, and soil microbial biomass nitrogen, was noted with DSAR + sesbania brown manuring‐NTW. Rice residue mulch retention in NTW decreased weed density and dry weight by 60 and 69%, respectively, than those under NTW with no mulch. At wheat harvest, highest total N, soil organic carbon, and soil microbial biomass carbon were recorded with DSAR‐NTW + rice residue mulch, followed by DSAR + sesbania brown manuring‐NTW. Overall, NTW grown after DSAR + sesbania brown manuring produced more grain yield than PudTR‐NTW and PudTR‐plow‐tilled wheat systems. In conclusion, sesbania brown manuring in DSAR and residue mulch retention in NTW may be opted to improve soil properties, suppress weeds, and to harvest better grain yield and achieve higher system productivity in conservation RWCSs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Rice–wheat cropping system covers about 24 million hectares in China, India, Pakistan, Nepal, and Bangladesh, and zinc deficiency is widespread in rice–wheat belts of all these five countries. The current practice of applying zinc sulfate heptahydrate (ZnSO4 · 7H2O) to soil is problematic because of the poor quality of the nutrients available in the market to the farmers. Zinc (Zn)–coated urea is therefore being manufactured to guarantee a good‐quality Zn source. This article reports the results from a field study conducted to study the relative efficiency of zinc sulfate and zinc oxide (ZnO)–coated ureas in rice–wheat cropping system. The highest grain yield of rice–wheat cropping system was obtained with 2.0% coating of urea. Zinc sulfate was also a better coating material than ZnO. Partial factor productivity, agronomic efficiency, apparent recovery, and physiological efficiency of applied Zn decreased as the level of Zn coating was increased.  相似文献   

7.
Field experiments were conducted at Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan, to check the effect of polymer-coated diammonium phosphate (DAP) on maize–wheat cropping system. Different rates of polymer-coated and uncoated phosphorus (P) were applied first to maize then followed by wheat after harvesting of maize on same field. Results showed that application of 100% of recommended P from polymer-coated DAP increased plant height (10%), chlorophyll content (4%), biological yield (17%), grain yield (36%), agronomic efficiency (43%), and nitrogen, phosphorus, and potassium contents of maize produces, while in case of wheat 75% recommended P from polymer-coated DAP increased plant height (6%), chlorophyll content (18%), biological yield (20%), grain yield (14%), agronomic efficiency (72%), and nitrogen, phosphorus, and potassium contents of grains and straw as compared with uncoated DAP. So, it can be summarized that polymer-coated DAP can effectively improve growth, yield, and phosphorus-use efficiency of maize and wheat crop.  相似文献   

8.
Conservation agriculture (CA) practice increases agronomic productivity and soil fertility, yet CA stimulate nitrogen (N) immobilization and weed interference during the early periods of implementation. This study focuses on efficient N management by soil testing and optical sensor (GreenSeekerTM) information; and weed management using brown manuring (Sesbania aculeata co-culture) and herbicide mixtures under CA-based maize (Zea mays L.) – wheat (Triticum aestivum L. emend Fiori & Paol) system in the Indo-Gangetic Plains. Fertilizer N application guided by the optical sensor increased grain yields of maize and wheat up to 20 and 14% (average of two years), respectively, compared to whole N application at sowing. Weed management using brown manuring in maize and herbicide mixtures in wheat increased the grain yields up to 10 and 21%, respectively, over the weedy check. The optical sensor-based N management saved up to 45 and 30 kg N ha–1 of the optimized N fertilizer rate in maize and wheat, respectively, over whole N application. Fertilizer N management coupled with brown manuring resulted in 5 and 4% higher soil organic carbon accumulation. Implementing efficient N fertilizer and weed management in the early years of CA can improve agronomic yield, fertilizer savings, and soil organic carbon content.  相似文献   

9.
Three diclofop-methyl (DM) resistant biotypes of Lolium rigidum (R1, R2, and R3) were found in different winter wheat fields in Spain, continuously treated with DM, DM + chlortoluron, or DM + isoproturon. Herbicide rates that inhibited shoot growth by 50% (ED50) were determined for DM. There were found that the different biotypes exhibited different ranges of resistance to this herbicide; the resistant factors were 7.2, 13, and 36.6, respectively. DM absorption, metabolism, and effects on ACCase isoforms were examined in these biotypes of L. rigidum. The most highly resistant, biotype R3, contained an altered isoform of ACCase. In biotype R2, which exhibited a medium level of resistance, there was an increased rate of oxidation of the aryl ring of diclofop, a reaction most likely catalyzed by a cytochrome P450 enzyme. In the other biotype, R1, DM penetration was significantly less than that observed in the resistant (R2 and R3) and susceptible (S) biotypes. Analysis of the leaf cuticle surface by scanning electron microscopy showed a greater epicuticular wax density in the leaf cuticles of biotype R1 than in the other biotypes.  相似文献   

10.
An experiment was carried out during the year 1990–91 and 1991–92 at the University farm, Mohanpur in order to study the response of manurial residue to wheat crop at different doses of fertilizer under rice‐wheat cropping sequence. Incorporation of farm yard manure @ 10 t/ha to winter paddy showed significant effect on succeeding crop, wheat as compared to only fertilizer use in both the crops. Grain yield, and number of effective tillers/m2 of wheat were significantly influenced by manurial residue and attained their highest values at 100 per cent recommended dose of fertilizer with moderate soil health. Manurial residue showed higher rate of increment in grain yield of wheat at 75 per cent dose of fertilizer but leaving the soil with poor fertility condition.  相似文献   

11.
Cotton–wheat is the second most important cropping system after rice–wheat in India and Pakistan, and is practiced on about 4.02 mha. By 2010, more than 6 million Indian farmers had adopted transgenic Bt cotton on 9.4 mha—almost 90% of the country’s total cotton area. There is a paucity of information on the effects of intercropping and integrated nitrogen (N)–management practices in transgenic Bt cotton on productivity, nutrient availability, and soil biological properties in the succeeding wheat crop in a cotton–wheat system. A study was made to evaluate and quantify the residual effect of two-tiered intercropping of cotton and groundnut with substitution of 25–50% recommended dose of nitrogen (RDN) of cotton by farmyard manure (FYM) on productivity and soil fertility in a cotton–wheat system at New Delhi during 2006–2008. Wheat following groundnut-intercropped cotton receiving 50% RDN substitution through FYM had significantly 5% greater grain yield than that after sole cotton. Residual soil fertility in terms of organic carbon (C), potassium permanganate (KMnO4)-N, and dehydrogenase activity (14%) showed an improvement under cotton + groundnut–wheat system with substitution of 50% RDN of cotton by FYM. Apparent N balance as well as actual change in KMnO4-N at wheat harvest was negative in most of the treatments, with greater loss (–58.1) noticed under pure stand of the cotton–wheat system with 100% RDN of cotton through urea. The study suggested that inclusion of legume and organic manure in transgenic Bt-cotton–wheat system is a sustainable practice for combating escalating prices of N fertilizers with environmental issues and instability of transgenic hybrids in south Asian countries.  相似文献   

12.
Tillage and weed control are critical components of cropping systems that need to be combined such that crops benefit from reduced competition. However, weeds may also contribute to the biological diversity within the agro‐environment. This greenhouse study investigated whether common weeds of arable cropping systems were suitable host plants for arbuscular mycorrhizal fungi (AMF), allowing the development of extraradical mycelium (ERM) that can contribute to the early colonization of a following wheat crop, especially in the absence of soil disturbance. Weeds were allowed to grow for up to 2 months before being controlled by soil disturbance or herbicide application (glyphosate or paraquat). Pregerminated wheat seeds were then planted. Chemical control of the weeds prior to sowing enhanced the early arbuscular mycorrhiza (AM) colonization rate of wheat roots, whereas mechanical disturbance was less acceptable as a method of weed control for rapid AM colonization. The type of herbicide (contact or systemic) had no impact on colonization of the wheat crop. Enhanced AM colonization promoted early P acquisition and growth of the crop. Appropriate management of weeds emerging between two consecutive cropping seasons coupled with no‐till soil management could ensure a quick and efficient AM colonization of the following wheat plants.  相似文献   

13.
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh.  相似文献   

14.
ABSTRACT

Lack of crop diversification with suitable vegetable-based cropping system is a major constraint in limiting the productivity and sustainability of north-western Indian sub-Himalayas. To find out a sustainable vegetable-based cropping system in this region, a three year colocasia-based vegetable intensive experiment was conducted at Hawalbagh, Almora, India in a sandy clay loam soil under sub-temperate climatic conditions. Seven colocasia-based vegetable cropping systems along with rice–wheat system were compared under recommended package and practices. The system productivity in terms of colocasia equivalent yield was highest under colocasia–onion–frenchbean (52.38 Mg ha?1) system. Sustainable yield index was highest with colocasia–gardenpea–frenchbean system (0.86). After 3 years, total soil organic carbon (0–5%), available N (2–22%), P (–7% to 14%) and K (3–15%) concentrations were increased in all cropping systems except rice–wheat system, where negative balance of available P (7%) was observed over that of initial soil. Significantly higher soil microbial activity, soil carbohydrate, dehydrogenase, protease, acid and alkaline phosphatases activity were observed under colocasia–onion system. The results suggest that colocasia–onion–frenchbean system with higher productivity improves soil fertility and enhances enzymatic activities.  相似文献   

15.
Fenoxaprop-p-ethyl (FE), 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate, ethyl ester (R), is an aryloxyphenoxypropionate herbicide for postemergence control of annual and perennial grasses in paddy fields; its site of action is acetyl-coenzyme A carboxylase (ACCase), an enzyme in fatty acids biosynthesis. The possible mechanism(s) of resistance to FE in a resistant biotype of Echinochloa phyllopogon was examined, namely, absorption, translocation, and metabolism of FE and ACCase susceptibility to fenoxaprop acid (FA). Studies of the in vitro inhibition of ACCase discounted any differential active site sensitivity as the basis of resistance to FE. There were differences in absorption rates between biotypes from 3 to 48 h after application (HAA). Biotypes did not differ in either the amounts or the rates of FE translocated; 98% of applied [14C]FE remaining in the treated leaf. However, there was a good correlation between the rate of herbicide metabolism and the plant resistance. The R biotype produced 5-fold less FA and approximately 2-fold more nontoxic (polar) metabolites 48 HAA than the S biotype. Moreover, the higher rate of GSH conjugation in the resistant biotype as compared to the susceptible one indicates that GSH and cysteine conjugation is the major mechanism of resistance of the R biotype against FE toxicity.  相似文献   

16.
Whole-plant response of two suspected resistant Avena fatua biotypes from Chile and Mexico to ACCase-inhibiting herbicides [aryloxyphenoxypropionate (APP), cyclohexanedione (CHD), and pinoxaden (PPZ)] and the mechanism behind their resistance were studied. Both dose-response and ACCase enzyme activity assays revealed cross-resistance to the three herbicide families in the biotype from Chile. On the other hand, the wild oat biotype from Mexico exhibited resistance to the APP herbicides and cross-resistance to the CHD herbicides, but no resistance to PPZ. Differences in susceptibility between the two biotypes were unrelated to absorption, translocation, and metabolism of the herbicides. PCR generated fragments of the ACCase CT domain spanning the potential mutations sited in the resistant and susceptible biotypes were sequenced and compared. A point mutation was detected in the aspartic acid triplet at the amino acid position 2078 in the Chilean biotype and in isoleucine at the amino acid position 2041 in the Mexican wild oat biotype, which resulted in a glycine triplet and an asparagine triplet, respectively. On the basis of in vitro assays, the target enzyme (ACCase) in these resistant biotypes contains a herbicide-insensitive form. This is the first reported evidence of resistance to pinoxaden in A. fatua.  相似文献   

17.
Legumes as dry season fallow in upland rice-based systems of West Africa   总被引:4,自引:0,他引:4  
Declining fallow length in traditional upland rice-based cropping systems in West Africa results in a significant yield reduction due mainly to increased weed pressure and declining soil fertility. Promising cropping system alternatives include the use of weed-suppressing legumes as short duration fallows. N accumulation, N derived from the atmosphere (Ndfa), weed suppression, and the effects on rice yield were evaluated in 50 legumes, grown at four sites in Côte d'Ivoire with contrasting climate, soils, and rice production systems. The sites were located in the derived and the Guinea savanna and in the bimodal and the monomodal rainfall forest zones. Legume and weed biomass during the fallow were determined at bimonthly intervals. Percent Ndfa by biological N fixation was determined by 15N natural abundance. Fallow vegetation was cleared and rice seeded according to the practice of local farmers and the cropping calendar. Weed biomass and species composition were monitored at monthly intervals. Legume fallows appear to offer the potential to sustain rice yields under intensified cropping. Biomass was in most instances significantly greater in the legume fallow than in the "weedy" fallow control, and several legume species suppressed weed growth. N accumulation by legumes varied between 1–270?kg N ha–1 with 30–90%?Ndfa. Across sites, Mucuna spp., Canavalia spp., and Stylosanthes guianensis showed consistently high N accumulation. Grain yields of rice which had been preceded by a legume fallow were on average 0.2?Mg ha–1 or about 30% greater than that preceded by a natural weedy fallow control. At the savanna sites where fallow vegetation was incorporated, Mucuna spp. and Canavalia ensiformis significantly increased rice yield. In the bimodal forest zone, the highest rice yield and lowest weed biomass were obtained with Crotalaria anagyroides. In general, the effects of legume fallows on rice yield were most significant in environments with favourable soil and hydrological conditions.  相似文献   

18.
Adoption of legumes in cereal-based cropping systems and improvement of organic fertilizers are important to reduce chemical fertilizer use. We supplied compost and green manure (GM) of green pea plant residue (GP), without supplementation or supplemented with dried chicken manure (CM) and/or rapeseed oil residue (RR), for wheat and examined the effects of compost and GM (remaining fertilizer) on the rice of pea–wheat–rice system in two factorial pot experiments. Additions of pea residue resulted in an increase of 30% grains of rice compared to without addition, and compost increased 25% grains against GM. Supplementation increased 63–70% of rice grains as compared to the control. Nitrogen (N) and potassium (K) recovery efficiencies were correlated with yield, which suggested that composting and supplementation enabled effective nutrients accumulation in plant, resulting in better yield. Therefore, it is recommended that composting of GP with CM plus RR improves effectiveness of pea on rice of a pea–wheat–rice system.  相似文献   

19.
EMS诱变水稻创制抗咪唑啉酮除草剂种质   总被引:1,自引:0,他引:1  
为了创制水稻非转基因抗除草剂种质,丰富我国水稻轻简化栽培杂草防治所需的配套种质资源,本研究以0.5%(w/v)甲磺酸乙酯(EMS)水溶液诱变水稻种子14 h,然后以咪唑啉酮类除草剂筛选3 ~4叶期的M2水稻幼苗.结果发现,M2幼苗茎叶喷雾160 mg·L-1甲咪唑烟酸15 d后,非抗性苗黄化、生长被抑制甚至枯死,抗性苗...  相似文献   

20.
The rice–wheat cropping system (RWCS), producing about 5–10 Mg ha–1 y–1 of grain, is the backbone of food‐crop production in South‐East Asia. However, this system shows signs of fatigue as indicated by declining yields, negative nitrogen (N) balances, and reduced responses to applied fertilizer at some research centers. The return of rice and wheat residues can recycle up to 20%–30% of the N absorbed by the crops. However, their wide C : N ratio can temporarily immobilize native and applied N. To overcome this immobilization, wheat‐straw application was supplemented with the incorporation of Sesbania green manure and mungbean residues, and their effects on productivity, agronomic N efficiency, and system's apparent N balances were studied. Combining the application of wheat straw with Sesbania green manure or mungbean residues increased cereal grain yield and agronomic N efficiency and improved the generally negative apparent N balances. The combined use of wheat straw and mungbean produced an additional 0.5–0.6 t ha–1 protein‐rich grain and thus appears to be the most promising residue‐management option for rice–wheat cropping systems in South Asia, provided that the transition cropping season between wheat harvest and rice transplanting is long enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号