首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was conducted to investigate whether the shoot cadmium (Cd) concentration in 11 rice and 10 soybean cultivars varied among 4 soils with different levels of Cd contamination. Significant differences in shoot Cd concentration were found among rice or soybean cultivars grown in the 4 soils. The ranking of the rice cultivars for the shoot Cd concentration varied considerably among the soils. On the other hand, the soybean cultivars were ranked similarly in terms of shoot Cd concentration in the 4 soils. Significant and positive correlations were found between the Cd and Zn concentrations and between the Cd and Mn concentrations in the shoot of rice cultivars, when they were grown in 2 soils with relatively moderate levels of Cd contamination. The shoot Cd concentration in the soybean cultivars, however, was not correlated with the concentrations determined for any of the metals (Zn, Mn, Cu, and Fe) across the 4 soils. Significant and positive correlations between the concentrations of Cd in younger shoots and mature seeds were detected among the soybean cultivars in 2 soils used, unlike among the rice cultivars, indicating that it may be difficult to evaluate the genotypic variation in seed Cd concentration using relatively younger shoots in the case of rice. These results revealed that genotypic differences in shoot Cd concentration in rice or soybean are variable or invariable among soils, respectively.  相似文献   

2.
Genotypic differences in arsenic (As) and cadmium (Cd) uptake and their translocation within rice seedlings grown in solution culture were investigated. Arsenic uptake and its translocation differed significantly between eight cultivars. The largest shoot and root As concentrations were found in cultivar ‘TN1’ and ‘ZYQ8’, while cultivar ‘JX-17’ had the lowest As concentration. Arsenic concentration in shoot or root of ‘JX-17’ was about 50% of that in cultivar ‘ZYQ8’. Specific Arsenic uptake (SAU) was found significantly different between rice cultivars, which was about 2-fold higher of ‘ZYQ8’ than that of ‘JX-17’. The Cd accumulation also differed significantly between cultivars. Rice cultivar ‘JX-17’ had the highest ability in Cd uptake, but the lowest ability in Cd translocation from root to shoot. The transfer factor (TF) of Cd had an important effect on Cd accumulation by rice seedlings. Arsenic can competitively inhibit P uptake by rice seedlings, P concentrations in shoots, or roots treated with As were significantly lower than those without As addition. However, the concentrations of P and As were positively correlated within these genotypes. The Cd immobilization by cell wall was an important mechanism for Cd detoxification. The cell wall bound 21–44% of total Cd in shoots and 25–59% of total Cd in roots of these tested genotypes. The genotypic differences in As and Cd uptake and translocation within rice seedlings provide the possibility of selecting and breeding genotypes and /or cultivars with reduced levels of As and Cd in rice grains.  相似文献   

3.
采用土培盆栽试验方法,以东北地区大面积种植的32个水稻品种为试验材料,在土壤中未添加和添加Cd(5mg.kg-1Cd)的条件下,研究水稻生长、籽粒产量和Cd在水稻植株不同部位的分配规律。结果表明,土壤中添加Cd后,多数水稻籽粒产量和植株总生物量下降,只有少数品种籽粒产量和生物量有所上升。Cd在水稻植株中的含量遵循根系〉茎叶〉颖壳〉籽粒的规律,但从分配比例来看,土壤中未添加Cd时根系中Cd的分配比例较高,添加Cd后茎叶中Cd的分配比例明显增加。从稻米产量和质量安全角度综合考虑,认为越路早生(3号)品种为农业生产中较理想的种植品种,沈农265(1号)、农林315(30号)、屉锦(31号)、沈稻12(32号)品种可以在中轻度污染的农田土壤条件下种植,而千重浪-1(8号)、辽盐2(14号)、辽盐283(17号)、辽恢190(19号)以及吉03-2843(27号)品种尽量避免在污染土壤上种植。研究结果对东北地区镉污染稻田选择水稻品种,保障稻米安全具有重要意义。  相似文献   

4.
Cadmium (Cd) as a non‐essential toxic metal has become one of the seriously environmental problems. Overload of Cd into plant shoots, particularly the addible parts (i.e., grains), jeopardizes crop production and food safety. Isolating and identifying genotypic variations in Cd accumulation of rapeseed (Brassica napus) cultivars is an efficient approach for phytoremediation and developing lower Cd‐accumulating plants. In this study, a trial was conducted under natural condition in Nanjing, China, from 2014 to 2017, and identified 64 rapeseed cultivars collected from the areas of Gui Zhou province. Rapeseed grew under moderate Cd exposure (5 mg kg?1) for 5 months, and shoots were harvested for Cd quantification. A great variation of total Cd concentrations in shoots, ranking from 0.16 to 17.03 mg Cd kg?1, was found. Following the initial examination of all cultivars, two sets of plants with high (#138 and #177) and low (#208 and #244) Cd concentrations were further investigated. Throughout the growth period, cultivars #138 and #177 accumulated more Cd during vegetative (30, 60, and 120 d) and late developmental (180 d) stages than cultivars #208 and #244. The higher Cd concentration in shoots of #138 and #177 was associated with the higher Cd concentration in xylem sap, suggesting the greater capability of Cd translocation from roots to shoots. Compared to #208 and #244, Cd exposure moderately reduced zinc and iron concentrations in some tissues of #138 and #177, whereas the manganese and magnesium concentrations showed no change. Although #138 and #177 cultivars accumulated more Cd in their shoots, no Cd toxicity was detected. Moreover, both #138 and #177 cultivars had a similar biomass to #208 or #244. These results suggest that #138 and #177 rapeseeds are tolerant to Cd stress.  相似文献   

5.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

6.
Effects of silicon (Si) on subcellular distribution and chemical forms of Cd in two contrasting peanut cultivars, Qishan 208 (low seed Cd cultivar) and Haihua 1 (high seed Cd cultivar), were investigated by a hydroponics experiment at low Cd level (0.2 μM CdCl2). Two cultivars differ in Cd translocation, subcellular distribution and chemical forms. In comparison to Qishan 208, Haihua 1 shows higher translocation factors (TFs); this may be resulted from higher Cd in the soluble fraction, and a larger proportion of inorganic Cd (extracted by 80% ethanol) and water-soluble Cd (extracted by d-H2O) in roots. Pretreatment with Si decreased Cd in the cell wall, and enhanced Cd in the soluble fraction for both cultivars. However, effects of Si on chemical forms and TFs are cultivar dependent. Si enhances Cd translocation and the d-H2O extractable Cd in Haihua 1. Positive correlations were observed between TF and Cd in the soluble fraction (r = 0.71, P < 0.05), and between TF and d-H2O extractable Cd in root (r = 0.89, P < 0.001). Therefore, larger proportion of d-H2O extractable Cd may be responsible for high TF in Si pretreated plants of Haihua 1.  相似文献   

7.
采用水培试验,以低镉(Cd)积累水稻品种‘D83A/R527’和高Cd积累水稻品种‘辐优838’为供试材料,设置3个Cd浓度(5μmol·L~(-1)、10μmol·L~(-1)、25μmol·L~(-1))处理,从Cd亚细胞及化学形态分布角度研究了不同基因型水稻品种的Cd积累特性,为探讨水稻对Cd的吸收积累生理机制提供科学依据。结果表明:(1)水稻‘D83A/R527’的根系和茎叶Cd含量及根系-茎叶转移系数均显著低于‘辐优838’(P0.05)。(2)两水稻根系各亚细胞组分中Cd含量表现为可溶部分(F3)细胞壁(F1)细胞器(F2),茎叶表现为细胞壁(F1)可溶部分(F3)细胞器(F2);‘D83A/R527’根系和茎叶细胞壁Cd的质量分数(36.76%~51.75%)高于‘辐优838’(31.29%~49.07%)。(3)两水稻品种Cd化学形态含量均表现为氯化钠提取态(F_(NaCl)-Cd)醋酸提取态(F_(HAc)-Cd)去离子水提取态(F_W-Cd)乙醇提取态(F_E-Cd)盐酸提取态(F_(HCl)-Cd);随Cd处理浓度的增加,‘D83A/R527’根系F_E-Cd和F_W-Cd(活性态Cd)质量分数逐渐下降(24.75%~18.34%),‘辐优838’活性态Cd逐渐上升(27.18%~28.68%),茎叶F_(HAc)-Cd和F_(HCl)-Cd(惰性态Cd)质量分数(32.41%~38.98%)逐渐上升且高于‘辐优838’(28.44%~31.22%),‘D83A/R527’根系和茎叶F_(NaCl)-Cd质量分数(32.71%~51.17%)均高于‘辐优838’(32.14%~47.63%)。综上,‘D83A/R527’水稻幼苗Cd积累量低;与‘辐优838’相比,‘D83A/R527’水稻幼苗根系和茎叶细胞壁质量分数较高,"活性态"Cd质量分数较低,"惰性态"Cd则更高,表明‘D83A/R527’水稻对Cd有更强的固持能力。  相似文献   

8.
An experiment was conducted to evaluate the effect of soybean (Glycine max L.) cultivar, Cd rate, and cultivar x Cd rate interaction upon nutrient concentrations in the plant. Cultivars rated as T (tolerant) or S (susceptible) to Cd were included in the study. A factorial combination of 10 cultivars and 4 levels of Cd were randomized in 4 replications of a completely randomized design. Additions of CdCl2 dissolved in distilled water were made to weighed quantities of dry soil. The soil was a Flanagan silt loam (Aquic Argiudoll). Four weeks after planting, plants were harvested, air dried and dry ashed. Chemical determinations of Zn, Fe, Mn, Cu, K, Ca, Mg and P in plants were made by emission spectroscopy.

Nutrient concentrations were affected by cultivar and rate of Cd and generally, nutrient concentrations decreased as rate of Cd increased. The Cd linear x cultivar interaction significantly affected plant concentration of each element except P indicating that the linear effect of Cd was not consistent among all cultivars. A comparison of “susceptible”; cultivars with “tolerant”; cultivars showed significant differences in nutrient concentration of each element except K. Plant K concentration was significantly associated with a Cd linear x T (tolerant) vs. S (susceptible) interaction indicating that the linear trend due to Cd rate differed between cultivars rated S or T to Cd.  相似文献   

9.
A hydroponic experiment was conducted to investigate the effect of sulfur (S) on growth inhibition and oxidative stress caused by Cd2+ toxicity, using two rice cultivars with different grain Cd2+ content. Treatments consisted of factorial arrangement of three S levels (0.2, 0.4, and 0.8 mmol), two cadmium (Cd) levels (0 and 1 μ mol), and two rice cultivars (‘Bing 97252,’ a cultivar with low grain Cd2+ content, and ‘Xiushui 63,’ a cultivar with high grain Cd2+ content). The results showed that Cd2+ addition in the medium generally increased Cd2+ and malondialdehyde (MDA) content in both roots and shoots; the increases were more pronounced in ‘Xuishui 63’ than in ‘Bing 97252.’ Dramatic reductions in growth parameters, including plant height, root and shoot weight, tillers per plant, chlorophyll content, and net photosynthetic rate were found in the plants exposed to Cd stress relative to the plants without Cd2+ treatment. ‘Xiushui 63’ showed more sensitivity than ‘Bing 97252’ under Cd2+ exposure. In comparison with the lower S level (0.2 mmol), the higher S levels (0.4 and 0.6 mmol) helped alleviate Cd toxicity, characterized by a significant increase in growth parameters, and a decrease in Cd2+ and MDA content in both roots and shoots. In addition, superoxide dismutase (SOD) activity in the plants varied among tissues, cultivars, and Cd treatments. High Cd2+ and MDA content was consistently accompanied by higher SOD activity, and higher S levels caused a marked increase in glutathione content and a reduction in SOD activity, indicating a positive effect of S in alleviating oxidative stress.  相似文献   

10.
Cu, Zn, and Cd acquisition by two spinach cultivars depending on P nutrition and root exudation Within a spectrum of 11 spinach cultivars (cvs) differences in the Cu, Zn, and Cd contents of shoots had been noticed. The aim of this study was therefore to analyze in more detail the acquisition of Cu, Zn, and Cd by the most differing cultivars (Tabu and Monnopa) in dependence on P nutrition. The plants were grown in a low phosphorus Luvisol (pH 6.3; total contents Cu: 89, Zn: 297, Cd: 2.4 mg kg—1) with two phosphorus levels in pots under natural conditions. For the determination of inflow, root length/shoot weight ratio and of the Cu, Zn, and Cd concentration in the soil solution (rhizosphere) plants were harvested 26 and 40 days after sowing. Root exudation of organic acids of the two cvs was measured 35 days after growing in quartz sand with different P supply. Both cultivars responded to P fertilizer by doubling their shoot weight. With increased P supply (0.68—0.77% P in shoot‐DM) both cultivars showed similar heavy metal contents in the shoot resulting from similar root length/shoot weight ratios (RSR) and net uptake rates of the three elements as well as the same element concentrations in the rhizosphere soil solution. Under P deficiency, however, cv. Tabu (0.52% P in shoot‐DM) showed in comparison with cv. Monnopa (0.48% P) higher Cu, Zn, and Cd contents of shoots although its RSR was smaller than that of cv. Monnopa. However, the inflow for Cu was higher and for Zn and Cd significantly higher compared with cv. Monnopa. This result of cv. Tabu corresponded with higher concentrations of Cu, Zn, and Cd of its rhizosphere soil solution, and its higher exudation rates of oxalate, citrate, and malate (3.9; 1.0; 0.7 nmol cm—1 h—1). The corresponding values for cv. Monnopa were: 1.7; 0.3; 0.4 nmol cm—1 h—1. The mobilization of Cu, Zn, and Cd by the excreted organic acids seems to be responsible for the higher Cu, Zn, and Cd inflow of cv. Tabu.  相似文献   

11.
Abstract

An experiment was conducted in the greenhouse to evaluate the effects of seed phosphorus (P) concentration on growth, nodulation, and nitrogen (N) and P accumulation of three common bean (Phaseolus vulgaris L.) cultivars. Seeds were produced under low or high soil P levels, and soaked, or not, in 200 mM KH2PO4 solution. The experiment had a 3×3×2×2 factorial block design: three cultivars (ICA Col 10103, Carioca and Honduras 35), three levels of applied P (15, 30 and 45 mg P kg?1 soil), two native seed P concentrations, and two seed soaking treatments. Plants were harvested at flowering. Soaked seeds increased the number, dry mass and P content of nodules, but did not affect plant growth. Plants originated from seeds with high native P concentration presented higher shoot dry mass and nodule number and mass at every soil P level, and were less responsive to increased soil P supply, than plants from low seed P. In plants from seeds with high P, soil P levels did not alter significantly root dry mass, while in plants from seeds with low P bean cultivars expressed wider differences in root dry mass. The genotypic variability of nodulation was influenced by soil P levels and seed P concentration. Both higher soil or seed P supply enhanced N and P accumulation in shoots. These results indicate that a high seed P concentration produces plants less dependent on soil P supply, and can enhance nodulation and N2 fixation of common bean. Seed P supply affected the cultivar performance, and should be considered in evaluation of bean genotypes.  相似文献   

12.
《Journal of plant nutrition》2013,36(7):1259-1270
Abstract

The effect of cadmium (Cd) toxicity on growth, lipid peroxidation, and antioxidant enzymes was studied using two rice cultivars, Bing 97252 with low and Xiushui 63 with high grain Cd accumulation. Plants were exposed to 0–5 μ M Cd in hydroponic culture. Cadmium stress inhibited plant height and chlorophyll content and altered melondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Roots and shoots responded differently to Cd in terms of antioxidant enzyme activity. Generally, the activities of SOD, POD, and CAT decreased with increase in Cd level, while the activity of MDA increased with increase in Cd level. With the increase in Cd concentration in nutrient solution, MDA content in shoots and roots of Xiushui 63 increased at a much higher rate than did that of Bing 97252 at both growth stages. At booting stage, a decrease of 46%–52% in SOD activity was noted in plant roots grown under 5 μ M Cd, while at tillering stage the decrease was 13%–19% compared with the control. A significant decrease in chlorophyll content and plant height was noted under higher Cd treatment (1.0 and 5.0 μ mol) at two stages. The higher MDA and lower chlorophyll content in the cultivar Xiushui 63 showed that it is more sensitive to Cd than the cultivar Bing 97252.  相似文献   

13.
Exploitation of genetic differences to select wheat cultivars’ pollution-safe from cadmium (Cd) contamination requires better understanding of Cd uptake and translocation patterns. For this purpose, 15 wheat cultivars were grown in nutrient solution and exposed to four levels of Cd, i.e., 0, 15, 30, and 45 µM. The plants were harvested after 2 weeks of Cd exposure. Root and shoot relative dry matter (DM) was decreased in most of the cultivars, but some cultivars did not exhibit any toxic symptoms. The lowest Cd concentration in shoots was recorded for Lasani-2008 and Iqbal-2000 while the highest for Sehar-2006 and Inqlab-91. Both root absorption and translocation accounted for regulating Cd concentration in shoots. There was no relationship between relative DM and Cd concentrations in roots and shoots. The results suggest that wheat cultivars with low shoot Cd concentration but higher tolerance, i.e. Lasani-2008 and Iqbal-2000, could be used in breading programs for low Cd wheat.  相似文献   

14.
Abstract

To clarify the mechanism of Magnesium (Mg) in alleviating cadmium (Cd) phytotoxicity, Japanese mustard spinach (Brassica rapa L. var. pervirdis) was grown for 10 days after treatment in hydroponics in a growth chamber under natural light. The treatments were: (1) nutrient solution alone (Control), (2) 10 mmol L?1 Mg (High-Mg), (3) 2.5 µmol L?1 Cd (Cd-toxic), (4) 2.5 µmol L?1 Cd plus 10 mmol L?1 Mg (Mg-alleviated). The Cd-toxic treatment showed substantial growth retardation and chlorosis of young leaves, such symptoms were not observed in Mg-alleviated plants. Magnesium-alleviated plants showed higher shoot growth, more than twofold, and decreased shoot Cd concentration, approximately 40%, compared with Cd-toxic plants. This increase in shoot growth and simultaneous decrease in shoot Cd concentration may explain the alleviation of Cd toxicity with Mg in Japanese mustard spinach. In Cd-toxic plants, concentrations of K in shoots and Zn in both shoots and roots increased compared with the other three treatments. Concentrations and accumulations of Fe and Mn in shoots decreased significantly in the Cd-treated (Cd-toxic and Mg-alleviated) plants compared with the control and High-Mg plants. Thus, the application of high amounts of Mg in the nutrient solution can alleviate Cd toxicity in plants.  相似文献   

15.
A greenhouse hydroponic experiment was performed out to study the cadmium (Cd) uptake by four different barley cultivars at two Cd levels. The results showed that Cd concentrations in roots and shoots increased with Cd levels in the solution and Cd concentration in roots was much higher than that in shoots. The amount of Cd accumulated by plants increased continually with the duration of treatment, and the highest Cd concentration in roots and aboveground tissues was found approximately at the 100th and 70th day after Cd addition, respectively. Genotypes differed significantly in relation to Cd concentration in roots and aboveground tissues. Wumaoliuling showed a higher Cd concentration than the other three genotypes, while Mimai 114 had the lowest concentration. Cadmium uptake rate per plant increased slowly before the booting stage, then increased sharply during the 70–100 d period (approximately late elongation to booting stage), and after that Cd uptake rate tended to slow dramatically. However, the Cd uptake rate per unit of dry biomass showed a significant reduction after booting stage (70 d after Cd exposure), and the Cd uptake pattern varied by Cd levels in the medium. At the lower Cd level (0.1 μM), there were two peaks in Cd uptake rate, appearing at the seedling (20–30 d after Cd exposure) and stem elongation stages (50–70 d after Cd exposure), respectively, while there was only one peak at the stem elongation stage at the higher Cd level (1 μ M).  相似文献   

16.
通过营养液培养,重点研究了不同浓度镉(Cd)胁迫下,中双9号冬油菜(Brassica napus L.)幼苗体内生理生化及微量元素(Fe、Mn、Zn、Cu)含量的变化特征,目的是进一步阐明Cd胁迫对油菜生长产生毒害的作用机理。结果发现,Cd胁迫显著抑制了油菜幼苗的生长,植株根系和地上部干重随着Cd浓度的升高而显著降低;油菜幼苗叶片中光合色素含量也随着Cd浓度的升高而显著降低;油菜幼苗根系和地上部4种微量元素浓度也随着Cd浓度的升高发生了显著变化;同时,油菜幼苗体内抗氧化酶(SOD、POD和CAT)活性随着Cd浓度的升高表现出先显著升高后显著降低的趋势。这些结果表明,外源Cd胁迫通过降低油菜幼苗光合色素含量、抑制植株光合作用,引起幼苗体内养分代谢紊乱,诱导产生氧化胁迫等抑制了油菜幼苗的生长。研究还发现,中双9号油菜幼苗地上部Cd浓度和Cd富集量显著低于根系,中双9号应该属于低吸收Cd的冬油菜品种。  相似文献   

17.
A hydroponic experiment with two rice cultivars differing in cadmium (Cd) tolerance was conducted to investigate the alleviating effect of zinc (Zn) on growth inhibition and oxidative stress caused by Cd. Treatments consisted of all combinations of two Zn concentrations (0.2 and 1 μM), three Cd concentrations (0, 1, and 5 μM), and two rice cultivars (Bing 97252, Cd‐tolerant; Xiushui 63, Cd‐sensitive). Cd toxicity caused a dramatic reduction in plant height and biomass, chlorophyll concentration and photosynthetic rate, and an increase in Cd concentration in both roots and shoots, malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in shoots. The response of all these parameters was much larger for Xiushui 63 than for Bing 97252. Addition of Zn to the medium solution alleviated Cd toxicity, which was reflected in a significant increase in plant height, biomass, chlorophyll concentration, and photosynthetic rate, and a marked decrease in MDA concentration and activity of anti‐oxidative enzymes. However, it was noted that Zn increased shoot Cd concentration at higher Cd supply, probably due to the enhancement of Cd translocation from roots to shoots. Therefore, further studies are necessary to determine the effect of Zn supply on Cd translocation from vegetative organs to grains or grain Cd accumulation before Zn fertilizer is applied to Cd‐contaminated soils to alleviate Cd toxicity in rice.  相似文献   

18.
不同品种大白菜苗期吸收积累镉的差异研究   总被引:7,自引:0,他引:7  
利用实验室水培模拟轻度镉污染土壤研究了13个大白菜品种苗期吸收积累镉的差异。结果表明,不同品种大白菜地上部和根部的镉含量存在显著差异,其中,603大白菜地上部镉含量较低(104.7 mg kg-1),耐性指数较高,在轻度镉污染土壤上种植603大白菜有利于降低镉污染的人类健康风险。不同大白菜品种在受到Cd胁迫时,其叶绿素含量和组成均有显著差异,为耐性机理研究提供了理论依据。  相似文献   

19.
【目的】 研究镉胁迫下芹菜生长、镉吸收和向上运转品种间差异,为筛选镉低积累型芹菜品种减少镉对人体的危害提供依据。 【方法】 以10个芹菜品种为试材进行基质无土栽培试验,基质为蛭石,营养液采用1/2华南农业大学叶菜类营养液配方,以只浇灌营养液的处理作为对照,浇灌含15 mg/L氯化镉(CdCl2)的营养液为Cd胁迫处理;每3 d浇灌一次,每次浇灌0.2 L,累计浇灌15次,每盆Cd施用量为45 mg。移栽45 d后,测定生长指标与根、叶柄和叶片Cd含量。计算相对生长量(relative growth yield,RGY)和转运系数(translocation factor,TF),并筛选出高、低Cd积累品种。分别对高、低Cd积累品种进行穴盘基育苗,14 d后采用华南农业大学叶菜类营养液配方进行营养液栽培,21 d后利用非损伤微测技术(non-invasive micro-test technology,NMT)测定根系分生区、伸长区和根毛区Cd2+离子流速。 【结果】 与非Cd胁迫相比,Cd胁迫使‘速生四季西芹王’、文图拉西芹’、‘四季小香芹’、‘实心香芹’、 ‘雪白芹菜’ 地下部受到显著抑制,对地上部无显著影响;Cd胁迫促进了 ‘四季小香芹’ 地上部生长;而 ‘种都金黄芹菜’、‘红芹’、‘鲍芹’ 地上部受到显著抑制,对地下部则无显著影响;‘马家沟芹菜’ 和 ‘速生香芹’ 地上部和地下部均生长均受到抑制。食用器官叶柄中Cd含量以 ‘种都金黄芹菜’ 和 ‘雪白芹菜’ 最高;‘速生香芹’ 和 ‘实心香芹’ 最低。地上部Cd含量高的 ‘种都金黄芹菜’ 和 ‘雪白芹菜’ 对Cd转运能力也最高;Cd含量低的 ‘速生香芹’ 对Cd转运能力也最低。在根系成熟区(根毛区),‘种都金黄芹菜’ 较 ‘速生香芹’ 有更高Cd2+ 离子流速。 【结论】 Cd胁迫下,芹菜不同品种生长、Cd吸收、转运和积累存在显著差异。‘四季小香芹’、‘速生四季西芹王’、‘文图拉芹菜’、‘实心香芹’ 和 ‘雪白芹菜’ 较为耐镉;而 ‘种都金黄芹菜’、‘红芹’、‘鲍芹’、‘马家沟芹菜’ 和 ‘速生香芹’ 对镉敏感。‘雪白芹菜’ 和 ‘种都金黄芹菜’ 为高Cd积累型,‘实心香芹’ 和 ‘速生香芹’ 为低Cd积累型,其中 ‘实心香芹’ 表现为低Cd含量和高生长量。高Cd积累型芹菜较低Cd积累型芹菜有更强Cd2+ 吸收能力和Cd转运能力,根部Cd2+ 流速可用于低积累品种的快速筛选。   相似文献   

20.
采用营养液培养,基于叶绿体分离方法,研究了不同种类蔬菜对镉吸收、运输和亚细胞的分布规律。结果表明,蔬菜在不同浓度镉的营养液中培养1周后,蔬菜生物量没有产生显著差异,而不同种类的蔬菜生物量差异较大。镉在蔬菜叶片中大部分存在于细胞壁中,占总量的62%~85%,少量存在于原生质(不含叶绿体)和叶绿体中;随着营养液中镉浓度的增加,各组分中镉的含量明显增加,但分配比例变化不大。各种蔬菜根中镉的含量高于地上部镉含量;随着镉浓度的增加,根中镉分配比例从44%-59%降低至27%~38%;不同蔬菜根部对镉的吸收能力及镉向地上部转移的能力有显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号