首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 220 毫秒
1.
氮矿化是土壤中氮素循环的重要过程,研究温度变化对不同退化梯度高寒湿地土壤净氮矿化速率的影响,对于理解全球气候变暖背景下土壤氮循环过程具有重要意义。以甘肃省甘南尕海湿地为研究对象,采用室内培养和间歇淋洗的方法,研究不同温度(15、25、35 ℃)培养下,4种退化梯度湿地(未退化、轻度退化、中度退化及重度退化)的土壤在0~10 cm、10~20 cm、20~40 cm土层的氮矿化特征。结果表明:1)同一湿地退化梯度,土壤净氮矿化速率和硝化速率随温度的升高逐渐增大,氨化速率随温度的升高先增大后减小。一级动力学方程的拟合值显示,35 ℃培养条件下土壤的氮矿化势(N0)最大。在同一温度下,不同退化梯度的土壤氮矿化势值变化显著,因而反映了土壤氮矿化潜力。2)在不同的培养时间下,随着温度的升高,土壤氮矿化速率和硝化速率均呈现上升的趋势;在整个培养期,不同退化梯度湿地的土壤在同一土层中的净氮矿化速率均随着培养时长的延长而呈现下降的趋势,在培养初期(12~24 d),土壤氮矿化速率显著升高,在培养后期,氮矿化速率逐渐减缓。3)湿地不同退化梯度对土壤氮矿化影响差异显著,4种退化程度下土壤净氮矿化量在不同温度下排序为35 ℃>25 ℃>15 ℃。温度对土壤氮矿化过程具有一定影响,高温有利于土壤氮矿化过程的进行。  相似文献   

2.
为探讨高寒湿地退化对土壤氮转化酶活性的影响,以青藏高原东缘尕海湿地未退化(ND)、轻度退化(LD)、中度退化(MD)和重度退化(HD)4种不同退化程度0~40 cm土层沼泽草甸为研究对象,研究不同退化与土层中土壤氮转化酶(蛋白酶、脲酶、硝酸还原酶和亚硝酸还原酶)活性的变化特征及其与土壤理化性质之间的关系。结果表明:1)随沼泽草甸退化程度加剧,土壤含水量、全氮、铵态氮和微生物生物量氮含量均显著降低,土壤温度与硝态氮含量却显著增加。2)随退化程度加剧,各土层土壤脲酶活性增加、蛋白酶活性降低,且仅在20~40 cm土层存在显著差异;硝酸还原酶活性增加、亚硝酸还原酶活性降低,在0~20 cm土层存在显著差异。3)各退化程度中,土壤脲酶、蛋白酶、亚硝酸还原酶活性均随土层深度的增加而显著下降,硝酸还原酶活性仅在HD显著下降。4)退化程度和土层对4种土壤氮转化酶活性均存在显著影响,且对土壤硝酸酶和亚硝酸还原酶活性存在显著交互作用。5)冗余分析表明土壤含水量对土壤氮转化酶活性变化的贡献率高达67.1%,其是驱动尕海沼泽草甸退化演替过程中土壤氮转化酶活性变化的主导因素。研究结果可为高寒湿地生态系统退化中的土壤酶活性变化规律提供理论依据。  相似文献   

3.
李梦  胡容  蒲玉琳  张世熔  李婷  贾永霞  李云 《草地学报》2021,29(5):1025-1033
为明晰退化高寒沼泽湿地土壤氮矿化及其对气候变暖的响应,本研究采用淹水培养法研究相对原生沼泽(RPM)向轻度退化沼泽(LDM)、中度退化沼泽(MDM)、重度退化沼泽(HDM)退化过程中土壤氮矿化特征及温度效应。结果表明:不同退化程度土壤铵态氮累积量、氨化速率和氮矿化势的大小都是MDM>RPM>LDM>HDM;退化沼泽土壤氨化速率相较于RPM在5~15℃时减慢,在20~25℃时加快;4种湿地土壤铵态氮累积量和氨化速率均随温度升高而增大;沼泽退化降低了氮矿化的温度敏感系数,且HDM显著高于LDM和MDM。因此,在若尔盖多年月均气温低于15℃的条件下,高寒沼泽湿地退化降低了土壤氨化速率、供氮潜力和氨化作用的温度敏感性,减小了土壤氮的可利用性。  相似文献   

4.
唐艳梅  马维伟 《草原与草坪》2021,41(6):74-80,87
为了研究尕海沼泽化草甸湿地随退化程度的加剧氮素的分布特征,对该区域4个退化演替阶段,即未退化(UD)、轻度退化(LD)、中度退化(MD)和重度退化(HD)的4个土层深度(0~10 cm、10~20 cm、20~30cm和30~40 cm)土壤的全氮、速效氮、微生物量氮及亚硝态氮含量进行了测定.结果表明:不同阶段0~40 cm土层全氮、亚硝态氮、微生物量氮和速效氮含量均值均按照UD、LD、MD、HD的顺序降低.0~10 cm和30~40 cm土层HD的全氮、速效氮含量分别显著低于UD 15.28% 和2.33%、12.13% 和8.41%;UD的微生物量氮和亚硝态氮含量分别显著高出HD 13.94% 和10.58%、22.69% 和51.70%(P<0.05).回归分析土壤氮素含量与土层深度之间呈线性负相关关系,除全氮外,其他氮组分含量与土层深度的R2均大于0.88.由此说明湿地退化显著降低了0~10 cm土层湿地土壤的氮素含量,但这种降低趋势随着土层加深逐渐趋于稳定.  相似文献   

5.
为了探讨不同退化梯度高寒草地土壤重金属含量对土壤养分和酶活性的影响,本试验以三江源区玛多县周边高寒草地未退化(Non-degraded grassland,ND)、轻度退化(Light degraded grassland,LD)、中度退化(Moderate degraded grassland,MD)以及重度退化(Heavy degraded grassland,HD)4种不同退化梯度为研究对象,分别采取高寒草地0~10 cm、10~20 cm和20~30 cm的土样,对土壤理化性质(全氮、全磷、全钾和全碳等)、酶活性(脲酶、蔗糖酶、淀粉酶、蛋白酶、纤维素酶、磷酸酶、过氧化氢酶、多酚氧化酶)和重金属含量(铜Cu、铬Cr、铅Pb、锌Zn和镉Cd)进行测定和分析。试验结果表明,土壤理化性质、酶活性和重金属含量随着高寒草地退化程度的加剧呈先降低后上升再降低的趋势。土壤理化性质中,不同退化程度草地0~10 cm土层土壤全碳、硝态氮和pH差异显著(P<0.05);10~20 cm土层土壤全氮、硝态氮、全碳和pH差异显著(P<0.05);20~30 cm土层土壤全氮和全碳差异显著(P<0.05)。土壤酶中,不同退化程度草地0~10 cm土层土壤脲酶、蔗糖酶、过氧化氢酶和多酚氧化酶,差异显著(P<0.05);10~20 cm和20~30 cm土层土壤脲酶、蔗糖酶、淀粉酶、过氧化氢酶和多酚氧化酶差异显著(P<0.05)。土壤重金属元素含量中,不同退化程度草地0~10 cm和10~20 cm土层土壤Cu,Cd,Zn以及20~30 cm土层Cu,Cr,Cd差异显著(P<0.05)。同一退化程度随土层加深重金属含量具富集趋势。相关性分析显示5种重金属含量与土壤理化性质和土壤脲酶、蔗糖酶、多酚氧化酶以及过氧化氢酶显著相关(P<0.05)。根据土壤污染负荷指数法计算,各退化梯度土壤均属于重金属中度污染。综上所述,本试验分析了不同退化草地土壤物理变化、酶活性变化及重金属含量变化,可为三江源高寒草地土壤健康、资源可持续利用、防止土壤退化提供参考。  相似文献   

6.
以青藏高原东缘尕海湿地不同植被退化程度样地(未退化healthy vegetation(CK)、轻度退化slightly degraded vegetation(SD)、中度退化moderately degraded vegetation(MD)和重度退化heavily degraded vegetation(HD))为研究对象,分析了植被退化对湿地土壤不同层次总碳、活性碳、微生物量碳的影响,并计算了各退化程度的碳库管理指数。结果表明:除HD的活性炭外,土壤总有机碳和活性碳均随土层的增加而减少,0~40 cm平均总有机碳含量为CK > SD > MD > HD,CK显著高于其他退化阶段;土壤活性有机碳含量为CK > MD > SD > HD,植被退化显著降低土壤活性有机碳,尤其0~10 cm,10~20 cm土层的土壤活性碳比CK分别下降了72.31%和53.31%;CK和SD的微生物量碳随土层加深显著降低,HD恰好相反,0~40 cm平均土壤微生物量碳含量为MD > CK > SD > HD,MD显著增加土壤微生物量碳,而HD显著降低土壤微生物量碳;尕海湿地0~40 cm土层的碳库各项指数受表层的影响比较大,植被退化能显著降低表层土壤的总有机碳、稳态碳和碳库指数,而显著增加湿地碳库活度指数。  相似文献   

7.
田梦  孙宗玖  李培英  汪洋 《草地学报》2020,28(1):141-148
为探讨草地土壤种子库种子萌发对全球气候变暖的适应机制,本研究采用常规方法对模拟温度增加[对照(CK)、增加2℃(T2)、增加4℃(T4)、增加6℃(T6)]下中度退化蒿类荒漠草地可萌发土壤种子库数量及其多样性进行了观测。结果表明:0~5,5~10 cm土层土壤种子库萌发的物种数及其幼苗总密度随温度增加呈下降趋势,且T6处理0~5(5~10)cm萌发物种数及萌发密度依次较对照降低57.1%(33.3%),70.4%(75.0%)。随温度增加,0~5,5~10 cm土层蒿类荒漠可萌发土壤种子库物种组成与地上植被物种组成相似性总体呈下降趋势,且T6处理相似性最低。温度增加后蒿类荒漠土壤萌发物种的Shannon-Wiener指数、Pielou指数、Patrick指数总体呈下降趋势,且0~5 cm土层较5~10 cm土层下降明显。综上,增温抑制了土壤种子库种子的萌发,可能不利于退化蒿类荒漠草地的恢复。  相似文献   

8.
黄河源区不同退化程度高寒草地土壤特征研究   总被引:16,自引:10,他引:6  
研究了不同退化梯度的高寒草地不同层次(0~10cm,10-20cm和20-30cm)土壤理化性状变化特征。结果表明:随草地退化程度的加重,土壤含水量下降,土壤容重和pH值增加;土壤有机碳含量亦随退化程度加剧而降低,以0-10cm土层的降低最明显,轻度,中度和重度退化的“黑土滩”草地该土层有机碳含量与未退化草地相比,分别下降36.1%,66.79/6和73.5%;草地0-10cm土壤全氮、全磷含量大小顺序为轻度退化〉未退化〉中度退化〉“黑土滩”退化草地,全钾变化趋势不明显。轻度、中度、“黑土滩”退化草地0~10cm土层速效氮分别比未退化草地降低了21%,54%和64%,10-20cm土层中度退化草地和“黑土滩”分别降低了37%和21%;随草地退化程度加大,速效钾含量在各土层的变化趋势不同,但不同土层的最大速效钾含量均出现在轻度退化草地。  相似文献   

9.
以东祁连山围封草地(FG)、轻度退化草地(LD)、中度退化草地(MD)、重度退化草地(HD)4种类型高寒草甸为研究对象,分别在春季、夏季和冬季采集各类型高寒草地0~10cm、10~20cm和20~30cm土层的土壤样品,研究了土壤的无机氮总量、铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)含量及土壤脲酶活性,以明确不同退化程度对高寒草甸土壤无机氮和脲酶活性特征及其季节动态的影响。结果表明,草地退化对表层土壤的无机氮总量影响较大,春季和夏季3种不同退化程度高寒草地土壤无机氮总量均显著升高,春季LD、MD和HD分别比FG升高了39.9%、28.9%和68.4%,夏季分别升高了19.1%、28.7%和33.6%,但冬季却显著降低,LD、MD和HD分别比FG降低了20.4%、27.2%和47.4%。土壤无机氮形态的研究结果表明草地退化对土壤无机氮形态的效应存在季节差异,草地退化导致春季表层土壤铵态氮含量升高,而对硝态氮含量影响不大,从而导致土壤无机氮总量升高,而夏季情况正好相反,草地退化对夏季表层土壤的铵态氮含量影响不大,而硝态氮含量升高,同样导致土壤无机氮总量升高。草地退化对脲酶活性的影响同样存在季节差异,相比FG,春季LD和MD的表层土壤脲酶活性显著提高,HD下降,而夏季和冬季随着退化程度的加剧,脲酶活性均表现出逐渐升高的趋势,表明轻度和中度退化加快了春季高寒草甸土壤氮素的转化,增加了土壤无机氮的供应能力。  相似文献   

10.
氮沉降增加已成为全球变化的重要现象之一,已显著影响草地土壤氮素循环。以内蒙古额尔古纳草甸草原为研究对象,进行了6年不同形式氮添加试验,设置无机氮和有机氮比例分别为:10∶0 (N1),7∶3 (N2),5∶5 (N3),3∶7 (N4),0∶10 (N5)和对照处理0∶0 (CK)。通过土壤有机质物理分组及室内矿化培养的方法,从氮素形态、氮素组分及氮素潜在矿化三方面研究不同比例有机、无机氮添加对草原土壤氮素分配和转化特征的影响。结果表明,土壤全氮含量未受氮素添加形式的影响;氮添加显著提高了0~20 cm土层矿质氮含量,尤其是土壤硝态氮,其中N4(无机氮∶有机氮=3∶7)混合氮肥处理下硝态氮含量增幅最大,较对照处理增加1332%。不同形式氮添加没有影响氮素在土壤颗粒态有机氮(轻组)及矿物结合态有机氮(重组)中的占比;N1(无机氮∶有机氮=10∶0)处理显著提高了0~10 cm土层颗粒态有机氮(轻组)及0~20 cm土层矿物结合态有机氮(重组)中的氮素相对含量,较对照分别增加了91%和44%。氮添加增加了10~20 cm次表层土壤硝化速率的同时降低了氨化速率,但土壤净氮矿化速率不受氮添加形式的影响。因此,有机/无机氮添加比例变化对草原土壤氮素形态和周转的影响也更加复杂。  相似文献   

11.
邵建翔  刘育红  马辉  魏卫东 《草地学报》2022,30(6):1370-1378
青藏高原生态地位显著,草地退化影响区域生态安全,针对退化高寒草地土壤理化性质的研究众多但结果存在较大异质性。通过检索纳入79篇与退化高寒草地土壤理化性质相关的文献,采用整合分析方法用于定量述评不同退化程度高寒草地浅层土壤主要理化性质的效应及变化规律。结果表明:高寒草甸0~10 cm、10~20 cm土层内随着退化加剧土壤容重、pH上升,土壤含水量、有机碳、全氮、全磷、全钾、速效氮、速效磷、速效钾下降;高寒草原0~10 cm、10~20 cm土层内随退化加剧,土壤容重上升,pH、含水量、有机碳、速效钾下降。总体反映出不同退化程度对高寒草地土壤主要理化性质产生较大负面影响,研究结果可为青藏高原高寒草地生态保护提供依据。  相似文献   

12.
气候变化改变了青藏高原降水和温度,并影响非生长季土壤冻融格局。本研究采用冻融模拟试验,探究了祁连山岛状冻土区高寒草甸活动层(0~20 cm)土壤在长期昼夜冻融交替(149次)过程中土壤氮库对融化温度(5℃,10℃,20℃)和含水量(15%,30%,45%)的响应。结果表明:昼夜冻融过程中土壤有效氮大量释放期长达50天,以溶解性有机氮(Dissolved organic nitrogen, DON)、铵态氮(NH+4)累积为主。微生物量氮(Microbial biomass nitrogen, MBN)通过氮固持增加,发挥土壤有效氮“缓存库”作用;土壤含水量增加有利于冻融过程中DON和MBN积累,但含水量对NH+4累积存在阈值效应;融化温度对水分饱和土壤氮组分含量影响差异不显著,而干燥和湿度适中土壤DON,NH+4及硝态氮净累积量对低温融化响应较高温条件更敏感。气候变化驱动下冻融过程中温度和水分耦合效应对冻土区氮转化影响机制值得深入探讨。  相似文献   

13.
为探索土地利用方式变化对土壤理化性状的影响,以青藏高原青海省海北州原生矮嵩草(Kobresia humil)草甸、原生灌丛草甸、退化矮嵩草草甸、退化灌丛草草甸、人工草地、农田地为研究对象,对各利用方式下土壤的基本理化性状进行研究。结果表明:退化导致0~10 cm土层土壤容重增大,而对下层土壤容重没有明显影响,2种退化草地0~10 cm土层的土壤容重均大于10~20 cm土层,其中退化灌丛草甸与原生灌丛草甸之间差异显著(P<0.05),人工种植也导致表层土壤容重有升高的趋势,人工种草和开垦均导致0~20 cm土层土壤容重的变异消失。草地退化和开垦均导致土壤有机碳和全氮含量降低,草地退化还导致土壤全磷含量降低,但开垦为农田后对土壤全磷的影响不大;草地退化和开垦也导致土壤有机碳、全氮、全磷含量沿土壤深度的变异消失。草地退化后表层土壤的有机碳、全氮和全磷含量明显降低,而退化对10~20 cm土层的有机碳含量影响不大。草地退化、开垦和农用均导致土壤表层速效氮的损失,草地开垦和农用的损失尤为剧烈;不同利用方式对土壤速效磷的影响较为复杂,未表现出一致的规律性。  相似文献   

14.
青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究   总被引:2,自引:0,他引:2  
为了明确青藏高原退化高寒草地土壤氮矿化特点以及影响因素,以高寒草甸和高寒草原为研究对象,运用原位培养法对健康与退化条件下2类型草地中土壤硝化速率、氨化速率以及氮素转化微生物、植物和土壤等因子进行了研究。结果表明:1)草地退化显著降低了高寒草甸和草原土壤净硝化速率和净氨化速率;2)草地退化降低了2类高寒草地土壤硝化细菌和氨化细菌数量,降低了土壤蛋白酶、脲酶活性;3)草地退化显著降低了NH4-N和NO3-N含量,降低了微生物生物量氮含量。相关分析表明,高寒草地中土壤硝化速率和氨化速率与土壤硝化细菌和氨化细菌的数量以及蛋白酶和脲酶密切相关。植物生物量、土壤含水量、有机碳、全氮含量通过影响微生物数量、微生物生物量及酶活性而成为影响土壤氮素转化的主要因素。因此,草地退化通过降低高寒草地硝化细菌和氨化细菌、土壤酶活性而降低土壤氮素转化速率和土壤有效氮的供给。  相似文献   

15.
以空间尺度代替时间尺度对青藏高原高寒矮嵩草草甸退化演替系列土壤表层有机碳和全氮储量及碳/氮比化学计量学特征进行了分析。结果表明:随退化程度的加深,高寒矮嵩草草甸退化演替系列0~10cm、10~20cm和0~20cm土壤有机碳储量变化趋势呈倒"V"字型,最高值出现在小嵩草草甸草毡表层开裂期,最低值出现在小嵩草草甸草毡表层剥蚀期;0~10cm、0~20cm土壤全氮储量变化特征与对应层次有机碳储量特征变化相同,而10~20cm土壤全氮储量变化趋势较有机碳滞后,最高值出现在小嵩草草甸草毡表层加厚期,最低值出现在黑土滩-杂类草次生裸地。土壤碳/氮比化学计量学变化趋势亦呈倒"V"字型,其中0~10cm、10~20cm最高值出现在正常小嵩草草甸,0~20cm最高值出现在矮嵩草草甸,各土壤层次碳/氮比最低值均出现在小嵩草草甸草毡表层开裂期。高寒矮嵩草草甸退化演替系列有机碳、全氮储量同碳/氮比分异特征表明,土壤碳/氮比化学计量学特征对草地退化的响应较储量特征敏感,其拐点正常小嵩草草甸是草地碳积累速率最高点,小嵩草草甸草毡表层开裂期是碳源汇转换拐点。  相似文献   

16.
对青海湖农场退耕还林草地以及耕地和天然草地的土壤有机碳(SOC)、全氮(TN)含量及储量、无机氮(Ninorg)含量、土壤pH等基础理化指标进行了测定分析。结果表明:退耕(还林草)地与耕地和天然草地土壤均偏碱性;退耕地及天然草地土壤容重及Ninorg含量均低于耕地;退耕地和天然草地0~5 cm土层C/N显著高于耕地;退耕地和耕地0~5,5~10,10~20 cm土层的SOC和TN含量低于天然草地;退耕还林草9年后各土层SOC和TN含量与耕地相比差异不显著,说明青海湖区持续耕作60多年后,要恢复土壤肥力仍需较长时间;对于0~30 cm土层的SOC及TN储量,退耕地和天然草地与耕地无显著差异,而退耕地与天然草地之间差异显著(P<0.05);耕地、退耕地以及天然草地0~20 cm土壤SOC含量分别占0~30 cm土层SOC储量的68.7%,72.9%和78.6%;0~20 cm土层TN含量分别占0~30 cm土层TN储量的68.7%,72.7%和78.2%;与天然草地相比,按耕地开垦60年计算,0~30 cm耕层内,C的损失率为0.11 t C·a-1·hm-2,N的损失率为0.015 t N·a-1·hm-2;土壤C和N含量与容重共同决定C和N储量的大小,因此土壤容重是影响土壤质量的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号